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Abstract 
In this article, we propose a new class of production functions in the new 
classical theory of economics and study its qualities based on Euler’s relation 
of quasi-homogeneous functions. In a market economy environment, it is 
crucial to establish a firm’s profitability and draw conclusions about the op-
eration and to make a variety of assumptions using a function that is more 
consistent with reality in the future. We showed that the quasi-homogeneous 
function is a general form of the well known production functions such as 
Cobb-Douglas and Constant Elasticity of Substitution (CES). We have made 
some qualitative and quantitative analysis and compare our results with the 
classical models using statistical data of Japan.  
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1. Quasi-Homogeneous Production Functions and Its  
Properties 

The production function is one of the key concepts of mainstream neoclassical 
theories. By assuming that the maximum output technologically possible from a 
given set of inputs is achieved, economists use a production function in analysis, 
representing the mathematical formalization of the relationship between pro-
duction and the factors that actually contribute to that production. Such a func-
tion is a mapping  

: , 2nf R R n+ +→ ≥ , given by ( )1 2 3, , , , nf x x x x  

where n denotes the number of factors of production (inputs), 1 2, , , nx x x  are 
the inputs and f is the level of output (production).  

Definition 1 (Alina-Daniela & Gabriel-Eduard, 2019) Let f be a differentiable 
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function of n variables 1 2, , , nx x x  defined on the open set ( )nM M R⊂  then 
( ) ( ),0 ,0f M R→  is said to be a quasi-homogeneous function if the following 

condition holds  

( ) ( )1 2
1 2 3 1 2, , , , , , , n

n nf x x x x f x x xαα αγλ λ λ λ=             (1) 

of degree γ  with weight vector ( )1 2 3, , , , nα α α α α=   and all 0λ > . For in-

stance, the production function defined by ( ) 3 2,f x y x y= +  is a quasi-homo- 

geneous production function of degree 1 with weight vector 1 1,
3 2

 
 
 

. 

Theorem 1 (Alina-Daniela & Gabriel-Eduard, 2019) Let f be a differentiable 
function of n variables 1 2, , , nx x x  defined on the open set ( )nM M R⊂  of 
degree γ  with weight vector ( )1 2 3, , , , nα α α α α=   and all 0λ > . then 
( ) ( ),0 ,0f M R→  is satisfy the generalized Euler identity: 

1 1 2 2
1 2

.n n
n

f f fx x x f
x x x

α α α γ∂ ∂ ∂
+ + + =

∂ ∂ ∂
               (2) 

Let point ( )0 0 0
0 1 2, , , nM x x x  is chosen from the set M and the point 

( )1 20 0 0
1 2, , , n

nN x x x Mαα αλ λ λ ⊂ , 0λ∀ > . 
Proof of Theorem 1 Let us set down composite function ( )1, , ny f x x=  , 

0i
i ix xαλ= , 1,i n= . 
Functions ( )1,ix i n=  and f are differentiable where the 1λ =  then the f 

can be differentiable where the point 0M . We recall 

1 0ii
i i

x xαα λ
λ

−∂
=

∂
, ( )1,i n=  

and solve the d
d

y
λ

 where 1λ = , then  

0 0 0
1 1 2 2

1 2

d
d n n

n

y f f fx x x
x x x

α α α
λ

∂ ∂ ∂
= + + +

∂ ∂ ∂
                (3) 

on the other hand ( )0 0 0
1 2, , , ny f x x xγλ=  , whereas  

( ) ( )1 0 0 0 0 0 0
1 2 1 2

d , , , , , ,
d n n

y f x x x f x x xγγλ γ
λ

−= =                (4) 

where the 1λ =  then  
0 0 0

1 1 2 2
1 2

n n
n

f f ff x x x
x x x

γ α α α∂ ∂ ∂
= + + +

∂ ∂ ∂
                (5) 

0M  is the any point selected from M. 
Theorem 2 If f be a differentiable function of n variables 1 2, , , nx x x  defined 

on the open set ( )nM M R⊂  of degree γ  with weight vector  
( )1 2 3, , , , nα α α α α=   and all 0λ >  then by substituting  

( ) ( )1 2
1 2, , , , , , n

nT x x x z z zαα α=  , it can be a quasi-homogeneous function with 
variables ( )1 2, , , nz z z z=  . 

Proof of Theorem 2 According to the given condition of the f function, the 
following equation must be true  

1 1 2 2
1 2

.n n
n

f f ff x x x
x x x

λ α α α∂ ∂ ∂
= + + +

∂ ∂ ∂
                (6) 

https://doi.org/10.4236/tel.2020.102024


D. Bayanjargal et al. 
 

 

DOI: 10.4236/tel.2020.102024 358 Theoretical Economics Letters 

 

substitution of f function, the equation can be defined as follows  

( ) ( ) ( )1 2
1 2 3 1 2 1 2, , , , , , , , , ,n

n n nf x x x x f z z z f z z zαα αγ γ γ= =          (7) 

to use the composite-function differential rule then  

( )
1 1d 1 1 , 1,

d
i

i i i i i
i i i i i i i

f f y f fx x x x z i n
x z z z z

α

α α

−∂ ∂ ∂ ∂
= ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ =

∂ ∂ ∂ ∂
        (8) 

by substitution, we can obtain the following equation  

( )1 2 1 2
1 2

, , , .n n
n

f f ff z z z z z z
z z z

λ ∂ ∂ ∂
= + + +
∂ ∂ ∂

                (9) 

We recall Euler’s theorem, we can prove that f is quasi-homogeneous function 
of degree γ . Now let’s construct the general form of the quasi-homogeneous 
function. The equation that was mentioned theorem 1, for a f function. If we in-
tegrate the Equation (1) and estimate the independent original integrals then we 
can obtain the solution as follows  

32

1 1 1 1

1 11

32
1 1 1 1

1 1 1 1

, , 0
n

nx xx yF
x x x x

α αα

α α α α

 
 

⋅ = 
 
 

                     (10) 

if we substitute y for main variables then 

( )
32

1

1 1 1

1 11
1

32
1 2 1 1 1 1

1 1 1

, , , , ,
n

n
n

x xxy f x x x x
x x x

α αα
α

α α α

 
 

= = Φ 
 
 

               (11) 

(11) are quasi-homogeneous function of n variables 1 2, , , nx x x , defined on 
the open set ( )nM M R⊂ , of exponent degree γ  will be exhausted. 

Proposition 
If f is quasi-homogeneous function of degree γ . In accordance with the fol-

lowing curve,  

( )

( )
( )

( )

1

2

0
1 1

0
2 2

0n
n n

x x

x x

x x

α

α

α

λ λ

λ λ

λ λ

 =


=
∗ = 


 =


                       (12) 

f is concave when 0 1λ< <  and convex when 1λ > . 
Proof of Proposition  
From the definition of f function the following condition is satisfied if  

( ) ( ) ( )1 20 0 0 0 0 0
1 2 1 2 1 2, , , , , , , , , n

n n nf x x x f x x x f x x xαα αγλ λ λ λ= =        (13) 

therefore we can imagine ( )1 2, , , nf x x x  is a function defined on (*) as a sin-
gle variable ( )ϕ λ  as follows  

( ) ( )0 0 0
1 2, , , nf x x xγϕ λ λ=                      (14) 

Differentiating the ( )ϕ λ  function twice, we can obtain the following equa-
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tion  

( ) ( )
2

2 0 0 0
1 22

d 1 , , ,
d nf x x xγϕ γ γ λ
λ

−= −                  (15) 

if we recall that f is positive then concave when 0 1γ< < , and convex when 
1γ > . 

Remark 1 We normalize that γ  always 1, if so function’s concave and con-
vex conditions are defined by iα . A quasi-homogeneous production function of 
n variables 1 2, , , nx x x  defined on the open set ( )nM M R⊂  of degree 1 with 
weight vector ( )1 2 3, , , , nα α α α α=   is concave when ( )1, 1,i i nα ≥ = . 

2. Quasi-Concave Functions and Properties 

Definition 2 (Arrow, 1961) f is said to be quasi-convex on ( )nM M R⊂  if 

( )( ) ( ) ( )( ) [ ]1 2 1 21 max , , 0,1f x x f x f xα α α+ − ≤ ∀ ∈          (16) 

f is said to be quasi-concave on ( )nM M R⊂  if  

( )( ) ( ) ( )( )1 2 1 21 min ,f x x f x f xα α+ − ≥               (17) 

f is called quasi-linear if it is both quasi-concave and quasi-convex. 
If the inequalities are strict, and, 1 2x x≠ , then the functions are called a strict 

convex and concave functions. 
Proof Definition 2 
f is quasi-convex if and only if f−  is quasi-concave. Note that  

( ) ( ){ } ( ) ( ){ }1 2 1 2min , max ,f x f x f x f x− = − −  

( ) ( ){ } ( ) ( ){ }1 2 1 2max , min , .f x f x f x f x− = − −  

First, suppose that f is quasi-concave. If the upper contour set of f  

( ) ( ){ }:fU x M f xα α= ∈ ≥  

and the lower-contour set of f  

( ) ( ){ }:fL x M f xα α= ∈ ≤  

are convex sets for each α . Let ( )1 2,x x M∈  and ( )0,1λ∈ . Assume, without 
loss of generality, that, ( ) ( )1 2f x f x≥ , letting, ( )2f x α= , we have  
( ) ( )1 2, fx x U α∈ . By convexity of ( )fU α , we have ( ) ( )1 fx x Uλ λ α+ − ∈  

( )( ) ( ) ( ) ( )( )1 2 2 1 21 min ,f x x f x f x f xλ λ α⇒ + − ≥ ≥ = . 
Conversely, suppose ( )fU α  is convex and empty or contains only one point, 

it is clear that it is convex, but suppose it contains at least two points 1x  and 

2x  then ( )1f x α≥  and ( )2f x α≥ , so 

( ) ( )( )1 2min ,f x f x α≥  

( )( ) ( ) ( )( )1 2 1 21 min ,f x x f x f xλ λ+ − ≥  

by hypothesis, and so ( ) ( )1 21 fx x Uλ λ α+ − ∈ , hence ( )fU α  is a convex set 
and f is quasi concave. Quasi-concave function is a generalization of concave 
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functions since we can show that the set of all quasi-concave functions contains 
the set of all concave functions. 

Theorem 3 (Mayer, 2007) If f is concave on M, it is also quasi concave on M. 
If f is convex on M, it is also quasi-convex on M. 

We prove the first part of the theorem and the second part will be proved 
analogously. 

Proof of Theorem 3 Suppose f is concave, then, for all 1 2,x x M∈  and  
( )0,1λ∈  we have  

( )( ) ( ) ( ) ( )
( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ){ } [ ]

1 2 1 2

1 2 1 2

1 2

1 1

min , 1 min ,

min , , 0,1

f x x f x f x

f x f x f x f x

f x f x

λ λ λ λ

λ λ

λ

+ − ≥ + −

≥ ⋅ + −

= ∀ ∈

 

Theorem 4 (Intriligator, 2002) let f be a differentiable function on M, where 

( )nM M R⊂  is convex and open. Then f is quasi-concave on M if and only if 
( )1 2,x x M∈  and ( ) ( ) ( )( )T

1 2 2 1 2 0f x f x f x x x≥ ⇒∇ − ≥ . 
Proof of Theorem 4 Suppose first that f is quasi-concave on M, then 

( ) ( ) ( )( ) ( )1 2 1 2 21f x f x f x x f xλ λ≥ ⇒ + − ≥  for ( )0,1λ∈  

since f is quasi-concave, we have  

( )( ) ( )( ) ( ) ( ){ } ( )2 1 2 2 1 1 2 11 min ,f x x x f x x f x f x f xλ λ λ+ − = − + ≥ =  

Therefore  

( )( ) ( )2 1 2 2 0
f x x x f xλ

λ
+ − −

≥  

As 0λ +→ , that is, taking the limit as λ  approaches through positive num-
bers, we obtain ( )( )T

2 1 2 0f x x x− ≥ , proving one part of the result. 
Conversely 
Assume that for all 1 2,x x M∈  such that ( ) ( )2 1f x f x≤ , we have  
( )( )2 1 2 0f x x x− ≥ . Pick any 1 2,x x M∈ , and suppose without loss of generality 

that ( ) ( ) ( ){ }1 1 2min ,f x f x f x= , we also have  

( )( ) ( ) ( ){ }1 2 1 21 min ,f x x f x f xλ λ− + ≥  

establishing the quasi-concavity of f. 

3. Production Function and Its Properties 

An economy’s output of goods and services depends on its quantity of inputs, 
called the factors of production, and its ability to turn inputs into outputs. The 
two most important factors of production are capital and labor, also the tech-
nology change alters the production function (Solow, 1956). We consider the 
functions that satisfy the following conditions (Intriligator, 2002):  

1) ( ) { }0, , , | 0n ny f x x X X R R x x+ + + += ≥ ∈ ⊂ = ≥ , where X +  is the domain 
of ( )f x  function.  
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2) | 0 , , , 1,
i

yX x X X X i n
x

++ ++ + ++ ∂
= ≥ ⊂ ≠∅ = 

∂ 
, where X ++  is said to be 

“economic domain” (when the resource’s price increase, there is no change on 
production function on this domain) 

3) 
2

1 1| 0, , , 0n n
i j

i j

yX x z z z X X X
x x

+++ +++ + +++
= =

 ∂ = ≤ ∀ ⊂ ≠ ∂ ∂  
∑ ∑ , this means 

that the production function is a quasi-concave on the domain.  
4) AX X X+++ ++= ≠ ∅ . where AX  is said to be the set of profit.  
5) The production function is twice differentiable.  
6) The production function is a quasi-homogeneous of degree γ , with weight 

vector ( )1
n

n Rα α α= ∈ . 
Let’s consider production function with two variables. According to the con-

dition (6) that was mentioned above, then the production function has the fol-
lowing general form:  

( )
2

1

1

1

2
1 2 1 1

1

, xy f x x x
x

γ α
α

α

 
 

= = Φ 
 
 

, 

according to the Euler’s theorem  

1 1 2 2
1 2

.f fx x f
x x

α α γ∂ ∂
+ =

∂ ∂
                    (18) 

if we divide both sides γ , then by substitution 1 2
1 2,α α

α α
γ γ

= =  then we can 
obtain the following equation  

1 1 2 2
1 2

.f fx x f
x x

α α∂ ∂
+ =

∂ ∂
                     (19) 

when 1λ = . and it is traceability that 1 2, 1α α ≥  from the properties of concave 
function. 

Again by substituting 
1

yU
z

= , 2

1

zS
z

= , 1 2

1 1

1 1 2 2,z x z xα α= = , where 1 2,z z  are 

said to be effective labors, then we get the following equation.  

( ) 2 2
1 2 1

1 1 1

, z zyy f z z z
z z z

   
= = Φ ⇒ =Φ   

   
              (20) 

Then the production function has the following general form:  

( )U S= Φ                            (21) 

where S is per labor capita and U is per capita production. By the economic low, 
U and S’s growth velocity rate is defined by the following equation.  

( )

( ) ( )

max

max

0 0

d1
d

d1
d

0 , 0

S SS n S
S t

U UU n U
U t

S S U U

α

  
= − =  

 


  = − = 
 

 = =



                  (22) 
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we can solve the equation then  

( )
( )

( ) ( )

max 0

max 0 0

max 0

max 0 0

e
e

e
e

nt

nt

n t

n t

S SS
S S S

U UU
U U U

α

α


= − +


 = − +

                     (23) 

If we express the equation by S then we have  

( )

( ) ( )

max 0
0 max

max 0 0
0 max

S SU U
S S S

U
S SU U U

S S S

ψ

ψ

 ⋅∆
  − =

 ⋅ ∆
− +   − 

                 (24) 

If we choose ( )n nα σ=  then (24) function have the following form:  

( )
( )

( ) ( )

max 0
0 max

max 0 0
0 max

S SU U
S S S

U U S
S SU U U

S S S

σ

σ

 ⋅ ∆
  − = =

 ⋅ ∆
− +   − 

             (25) 

We can show that it is a general form of the production function. 
For instance 
1) In the Equation (25), If max max,S U →∞  then  

0
0

SU U
S

σ
 

=  
 

                           (26) 

expressing by 1 2, ,x x y , we have  

2
1

1

1
1

2
1 1 21

1

xy A x A x x
x

σ

α
α α β

α

 
 

= ⋅ ⋅ = ⋅ ⋅ 
 
 

                    (27) 

(27) is a Cobb-Douglas function (Romer, 1996), 

( )0
1 20

1 1, 1 ,A U
Sσ

σα σ β
α α

= = − = . 

2) Express ( )n nα σ λ= ⋅ +  then 1 2 e ty Ax xα β λ= . 
3) In the Equation (25), maxU →∞  and ( )n nα =  then  

( )0
0 max

S SU U
S S S

 ⋅ ∆
=   − 

                     (28) 

expressing by 1 2, ,x x y  then 

2

1 2
1

2 2 1

1 1

1

2
1 1

1
1 2

1 1 1 1

2 2 max 2 1
max max1 1 2

1 1

1

x

x x Ay Ax A
x x S x xS S
x x

α

α α
α

α α α

α α

α
−

= = =

−
− −

         (29) 
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1 2

11 1

1 2A ax bxα α

−
− − 

 +
 
 

 is a Solow’s function. 

4) When 1 2α α=  then ( ) 1

1 2y A ax bxσ σ −− −= + , it is a function with degree σ  
and constant elasticity. 

5) In Equation (25), maxS →∞  then  

( )
( )

max 0
0

max 0 0
0

SU U
S

U S U
SU U U
S

σ

σ

 
 
 = =

 
− +  

 

                (30) 

if we express, 

1

max max 0
0

, ,UA U a b U U
S

σ
= = = −  then  

( ) ( )
( )

A aS
U U S

b aS

σ

σ= =
+

                     (31) 

express by 1 2, ,x x y  then  

2
1

2

1

1
1

2
1

0

1

2
1

1

xAx a
S

y

xb a
x

σ

α
α

σ

α

α

 
 
 
 
 =
 
 

+  
 
 

                       (32) 

6) The concavity and convexity conditions of the function (31) are 

( )
( )( )

( ) ( ) ( )( )
( )( )

1

2

2 22

2 3

d 0,
d

1 1d
d

A aS abU
S b aS

A aS a b b aSU
S b aS

σ

σ

σ σ

σ

σ

σ σ

−

−

= ≥
+

− − +
=

+

 

The function is concave when  
1

1
1

b aS
σσ

σ
−  ≤ + 

 

and quasi-concave when 
1

1
1

b aS
σσ

σ
−  < + 

 

4. Numerical Experiments 

In this part, we evaluate and compare the parameters of the quasi homogeneous 
function and classical production functions using specific economic indicators 
of Japan which are shown in Table 1. 
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Table 1. The main indicators of Japan. 

year Y K L year Y K L 

1955 33.2 33.8 79.9 1965 100 101 99 

1956 38.2 37.6 84.5 1966 109.6 110.6 99.5 

1957 42.6 42.4 87.6 1967 120.3 123.9 102.2 

1958 47.4 47.0 91.4 1968 131.2 138.1 106.4 

1959 53.5 52.2 95.8 1969 141.8 154.3 110.9 

1960 60.3 58.6 97.6 1970 153.4 170.4 115.7 

1961 66.3 65.6 96.3 1971 167.1 186.1 118.7 

1962 79.0 72.5 96.6 1972 183.6 201.7 122.6 

1963 81.3 80.4 99.1 1973 199.9 217.7 126.6 

1964 90.6 89.7 100.7 1974 215.2 235.1 130.6 

Statistics Bureau of Japan https://www.stat.go.jp/english/ (Statistics Bureau of JAPAN). 

 
Firstly, we consider the Cobb-Duglas function that is 

1 2 e ty A x xα β λ= ⋅ ⋅ ⋅  

and the parameters are evaluated as  
0.26261, 0.13860A β= =  

1.22422, 0.0331α γ= = −  

and determination coefficient is  

0.0118793rs =  

Second, we evaluate the parameters of our new function given by 

2
1

2

1

1
1

2
1

0

1

2
1

1

e t

xAx a
S

y

xb a
x

σ

α
α

λ
σ

α

α

 
 
 
 
 = ⋅
 
 

+  
 
 

 

then we have following results  
3.60827, 1.53651, 0.07003A a γ= = =  

1 1.46892, 0.06017, 0.00135732b rsα = = =  

2 4.460104, 1.5514α σ= =  

5. Conclusion 

In this paper, we proposed a quasi-homogeneous production function and 
showed how to construct the production function based on Euler’s theorem and 
the hypothesis that the production function is a quasi-homogeneous and qua-
si-concave. We also proved that the classical production functions are the special 

https://doi.org/10.4236/tel.2020.102024
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cases of the quasi-homogeneous production function. The numerical results 
show that the quasi-homogeneous function is practically more useful. 
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