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Abstract 
In this paper, the existence and uniqueness of a weak solution in the sense of 
[1] and [2] has been shown for a class of fully coupled forward-backward SDE 
(FBSDE) such that the forward drift coefficient is allowed to be discontinuous 
with respect to the backward component of the solution. The novelty of this 
paper lies on the fact that the FBSDE is non-Markovian, i.e., the coefficients 
of the FBSDEs are allowed to be random. This type of FBSDEs is inspired by 
the regime shift model, where the short term interest rate switches between 
regimes according to the rate level. As a consequence, the discontinuity of the 
system becomes inevitable, making it violate the usual assumptions of most 
existing results for FBSDEs. We show the weak well-posedness of the FBSDE 
by an approximation scheme, along with the decoupling strategy. 
 

Keywords 
Non-Markovian, Forward-Backward SDEs, Discontinuous Coefficients,  
Krylov Estimates, Weak Solution 

 

1. Introduction 

The following forward-backward stochastic differential equations (FBSDE) on 
[ ],t T  are considered in this paper:  

( ) ( )
( ) ( )

, , , , ,

, , , , , ,

, , d , , d ;

, , , d d ,

s st x t x t x t x t x
s r r r r rt t

T Tt x t x t x t x t x t x
s T r r r r rs s

X x b r X Y r r X Y W

Y g X f r X Y Z r Z W

σ = + +

 = − −

∫ ∫

∫ ∫
         (1) 

where W is a standard Wiener process and coefficients b, σ , h and g are in 
general random. The coefficient b is allowed to have discontinuity in y. More 
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precisely, we assume  

( ) ( ) [ ) ( ) ( ) [ ]
1 ,

1
, , , , for , 0, ,

i i

N
i n

y y
i

b s x y b s x y s x T
−

=

= ∈ ×∑ 1           (2) 

and 1 Ny y−∞ < < < < ∞ . For simplicity, we shall assume that all the processes 
involved are 1-dimensional, but as we shall see later, in most of the situation the 
higher dimensional cases, especially for the forward component X and the 
Brownian motion W, can be argued in an identical way without substantial dif-
ficulties. 

The FBSDE above is non-Markovian; namely, the coefficients are allowed to 
be random. The Markovian case (i.e., b, σ , h and g are deterministic functions) 
has been discussed in [3]. For instance, the following is a Markovian-type “re-
gime-switching” FBSDE:  

( ) ( )

( ) ( )
( )

0 0

0

, , d , , d

, , , d d ,

, ,

t t
t s s s s s

T T
t T s s s s st t

T T

X x b s X Y s s X Y W

Y g X h s X Y Z s Z W

X x Y g X

σ = + +

 = − −


= =


∫ ∫

∫ ∫              (3) 

where the coefficients σ , h, and g are deterministic Lipschitz functions, but the 
drift coefficient b takes the following form:  

( ) ( ) [ ) ( ) ( ) [ ]
1,

1
, , , , , , 0, ,

i i

m
i d

a a
i

b t x y b t x y t x y T
+

=

= ∈ × ×∑  1         (4) 

where 1 2a a−∞ < < < < ∞  is a finite partition of  , and ib ’s are determi-
nistic Lipschitz functions. The main feature of this FBSDE is that the coefficient 
b has, albeit finitely many, jumps in the variable Y. This type of FBSDEs is mo-
tivated by the following “regime-switching” term structure model that is often 
seen in practice. Consider, for example, the Black-Karasinski short rate model 
that is currently popular in the industry: let { }: 0tr r t= ≥  be the short rate 
process, and lnt tX r= , 0t ≥ . Then X satisfies the following SDE:  

( )d d d ,t t t tX k X t Wθ σ= − +                      (5) 

where W is a standard Brownian motion. A simple “regime-switching” version 
of (5) is that the mean reversion level θ  shifts between two values { }1 2,t b bθ ∈ . 
The switching in the short-rate is triggered by the level of the long rate. The ex-
istence of such structural shift was supported by empirical evidence (see, e.g. [4] 
[5]). Many dynamic models of the short rate have been proposed, and some of 
them are hidden Markovian in nature; that is, the switch is triggered by an ex-
ogenous factor (diffusion) process Y so that ( )t tb Yθ = , where ( ) { }1 2,b y b b∈  
(see, e.g., [6] [7] [8] [9]). As a result, “regime switch” models started to attract 
people’s attention. Sometimes business cycles are used as regime classification, 
while others might define regime by interest rate level. Either way, the important 
feature of regime switch model remains to be its accommodation to the interac-
tions between regimes and dynamics of the interest rate. A typical approach to 
model regime switch incorporates a hidden Markov process as a state variable 

https://doi.org/10.4236/am.2020.114024


Y. Hong 
 

 

DOI: 10.4236/am.2020.114024 330 Applied Mathematics 
 

into the short rate dynamics. For example,  

( )1 1 11 1t t tt t s s t s t tr r k r r uθ σ
+ + ++ +− = − +       (Bansal-Zhou [6]) 

where ts  is a Markov process with given transitional probability, 
( )1 ~ 0,1tu N+  is the noise. Introduction of the regime-dependence in these pa-

pers enriches the flexibility of the model and therefore leads to a higher capacity 
to fit empirical data. 

In particular, if we consider the case in which the triggering process is the 
long term rate, then following the argument of a term structure model (see, for 
example, Duffie-Ma-Yong [10]), and assuming the triggering level to be 0α >  
we can derive a FBSDE with discontinuous coefficient:  

( )

( )0

d d d

d e 1 d d

, .

t

t t t t

X
t t t t

T T

X b Y X t W

Y Y t Z W

X x Y g X

β σ = − +    = − +  


= =

                  (6) 

where lnt tX r= , tY  is the long term treasury bond price;  
( ) { } { }1 2y yb y b bα α≤ >= +1 1 , 1 2b b≠ ; and , ,α β σ  are constants. 
Clearly this is a special case of the FBSDE (3), and its strong solution under 

Markovian framework has been established in [3]. In this paper, we would like 
to extend the work of [3] and show the wellposedness of such FBSDE, namely, 
the existence and uniqueness of a solution ( ), , ,, ,t x t x t x

s s sX Y Z  to (2). The paper is 
organized as follows. In Section 2, we provide necessary preparations, establish 
assumptions and introduce notations. In section 3 we prove a priori estimates 
and a stability result. In Section 4 we prove a weak existence of the solution to 
the FBSDE (2). The main result of this paper is given in Section 5. 

2. Preliminary 

Assumption 2.1. We assume the following standing assumption for this pa-
per.  

(A.1) Each ( ),ib s x  is bounded, continuous in s, and uniformly Lipschitz in 
x, with Lipschitz constant 0K > ; 

(A.2) The function ( ), ,s x yσ  is continuous, and there exist constants 
0 σ σ< <  such that ( ), ,s x yσ σ σ≤ ≤ . Furthermore, for fixed s, ( ), ,sσ ⋅ ⋅ , 
along with its spatial derivatives, xσ  and yσ  are all uniformly Lipschitz in 
( ),x y , with Lipschitz constant 0K > ; 

(A.3) The function ( ), , ,f s x y z  is bounded, continuous in s and uniformly 
Lipschitz in ( ), ,x y z , with Lipschitz constant 0K > ; 

(A.4) The function ( )g x  is bounded, smooth and Lipschitz in x, and 

( ) ( ){ }2 2
0 0 00

, ,0,0 d
T

I g f s s⋅ + ⋅ < ∞∫  , where the norm 0⋅  is define in (11).  

It is well-understood that, in order to solve a fully coupled FBSDE one should 
look for a “decoupling random field” ( ), ,u t x ω , such that ( ),t tY u t X≡ , for all 

[ ]0,t T∈ ,  -a.s. (cf. e.g., [11]). In the Non-Markovian case, the decoupling 
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field should be a random field [ ]: 0,u T× ×   , and in light of the stochastic 
Feynman-Kac formula (cf. [12]), we expect that such a function u should solve 
the following quasilinear BSPDEs, in a certain sense:  

( ) ( )
( ) ( )

d , d , d ;

, ,
su s x s s x W

u T x g x

α β= +


=
                  (7) 

where  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

21, , , , , , , , , , d ;
2

, , , , , , .

xx x x

x

s x u s x u s x u u b s x u f s x u s

s x s x u s x s x u s x

α σ β σ γ

γ β σ

  = − + + +   
 = +

(8) 

We should note that a solution to the BSPDE is defined as the pair of progres-
sively measurable random fields ( ),u β . Clearly, when the coefficients are de-
terministic, we must have 0β =  and the BSPDE (7) is reduced to a quasilinear 
PDE. 

We next introduce the notion of the weighted Sobolev space. We begin by 
considering a function ( )φ ∞∈   that satisfies the following conditions:  

( ) ( )

( )

0 1, d 1;

e for large enough.x

x x x

x x

φ φ

φ −

 < ≤ =


=

∫                   (9) 

We shall call such a smooth function φ  the weight function. One can easily 
check that if φ  is a weight function, then one has  

( ) ( ) ( )2sup .
x

K D x D x xφ φ φ φ
∈

+ < ∞


                  (10) 

Now for a given weight function φ , we denote ( )0 ;Hφ    to be the space of all 
Lebesgue measurable functions :h →   such that ( ) ( )22

0 dh h x x x
φ

φ < ∞∫ . 
When the weight function and the dimension of the domain and range spaces 
are clear from the context, and there is no danger of confusion, we often drop 
the subscript φ  and the spaces in the notation, and denote simply as 0H . 
Clearly 0H  is a Hilbert space equipped with the following inner product:  

( ) ( ) ( )1 2 1 2
0

, d .h h h x h x x xφ∫ 
                  (11) 

We can now define the Weighted Sobolev spaces as usual. For example, we 
shall denote 1 1 0H H Hφ= ⊂  to be the subspace of 0H  that consists of all those 
h such that its generalized derivative, still denoted as xh , is also in 0H . Clearly, 

1H  is a Hilbert space with the inner product 1 2 1 2 1 2
1 0 0

, , ,x xh h h h h h+ , 
where 1 2 1,h h H∈ . One can easily prove the integration by parts formula: for 
any ( )1 1 ,h H∈    and ( )2 1 ,h H∈   ,  

1 2 1 2 1 2
0 0

0

, , , .x
x xh h h h h h φ

φ
= − −                   (12) 

Similarly, we denote 2 2 1H H Hφ= ⊂  to be the subspace of 1H  that contains 
all 0h H∈  such that 1

xh H∈ . Thus, 2H  is again a Hilbert space with inner 
product 1 2 1 2 1 2

2 0 1
, , ,x xh h h h h h+ , where 1 2 2,h h H∈ . Moreover, let 1H −  
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be the dual space of 1H , endowed with the dual product 1,
−

⋅ ⋅ . Then 1H −  is 
equipped with the following norm: { }1

1 1 1sup , : , 1h h Hϕ ϕ ϕ
− −

∈ =
. Clearly, 

0 1H H −⊂  in the sense that for any 0Hα ∈ , it holds that  
1

1 0, , , .Hα ϕ α ϕ ϕ
−
= ∀ ∈                   (13) 

Furthermore, for any ( )0 ,h H∈   , in light of (12), we have 1
xh H −∈  in 

the following sense: for any ( )1 ,Hϕ ∈   , 1 0
0

, , , x
x xh h h φϕ ϕ ϕ

φ−
− − . 

Remark 2.2. It is worth noting that 
1) For any two weight functions 1 2,φ φ  satisfying (9), there must exist con-

stants 0 c C< <  such that 1 2 1c Cφ φ φ≤ ≤ . So the norms defined via 1φ  and 2φ  
are equivalent, and therefore, the spaces iH , 1,0,1,2i = − , are independent of 
the choices of φ . 

2) It is readily seen that the weight function belongs to the class of the 
so-called Schwartz functions, and consequently any functions with polynomial 
growth are in 0H .  

We conclude this section by introducing some spaces of stochastic processes 
that will be useful for the study of the BSPDEs. First, for any sub-σ-field ⊆  , 
and 0 p≤ ≤ ∞ , we denote ( )pL   to be the spaces of all  -measurable, pL
-integrable random variables. Next, for any generic Banach space  , we denote 

[ ]( )0, ;pL T   to be all  -valued,  -progressively measurable random fields 
(or processes) [ ]: 0,h T    such that  

[ ]( ) ( ){ }1

0, ; 0
, d .p

pT p

L Th h s s⋅ < ∞∫ 



              (14) 

In particular, if iHφ= , where φ  is a given weight function, we denote 
[ ]( )2 0, ;i iL T Hφ φ= H , 1,0,1,2i = − , respectively. Again, we often drop the sub-

script φ  from the notations when the context is clear. Finally, the spaces of 
Banach-space-valued processes such as [ ]( )0, ;Tα

  , for 1α ≥ , are defined in 
the obvious way. 

We now define the notion of Sobolev weak solutions to BSPDE (7).  
Definition 2.1. We say that the pair of random fields ( ) 1 0,u β ∈ ×H H  is a 

weak solution to BSPDE (7) if ( )( ), , ,D s x u s xσ  is uniformly bounded and, for 
any 1Hϕ ∈ , it holds that  

( ) ( ) ( ) ( )
0 1 0

d , , , , d , d , ,  . .u s s s s W s a sϕ α ϕ β ϕ
−

⋅ = ⋅ + ⋅          (15) 

We say that ( ) 1 0,u β ∈ ×H H  is a regular weak solution to BSPDE (7) if 
( ),u β  is a weak solution such that Du  is uniformly bounded.  

3. A Priori Estimates and a Stability Result 

Proposition 3.1. Assume Assumption 2.1. Let ( ) 1 0,u β ∈ ×H H  be a weak 
solution to the BSPDE (7). Then there exists a constant 0C > , depending only 
on the bounds in Assumption 2.1, the duration T and the constant Kφ  for the 
given weight function (10), such that  

https://doi.org/10.4236/am.2020.114024


Y. Hong 
 

 

DOI: 10.4236/am.2020.114024 333 Applied Mathematics 
 

[ ]
( ) ( ) [ ]2 2

00 000,
sup , , d 1 .

T

s T
u s s s C Iγ

∈

 
⋅ + ⋅ ≤ + 

 
∫              (16) 

Proof. For simplicity, let us denote xφφ
φ



 . Also let us denote ( ), , ,f s x u γ  

as f. By integration by parts formula and a general Itô formula (see [13]), one 
has,  

( ) { }
( ) ( )

[ ]

2 2
1 0 00

2 2
0

2 2
0

2 2 2
0

d , 2 , d 2 , d

2 2 2 d d 2 , d

2 2 2 d d 2 , d

= 2 12 2 2 d d 2 , d .

x xxx

x x x x x

x xx

u s x u s u W

u u u uu b uf x s u W

u uu uu b uf x s u W

u u uu b uf x s u W

α β β

σ φ β σφ φ φ β φ β

γ φ σ φ σφ γ σ φ φ φ β

γ σ σφ γ σ φφ φ φ β

−
= − + +

 = + − − + + 
 = + + − − − + 

    + + + − − +    

∫
∫
∫  







(17) 

There is only one troubled term in the above equality needs special treatment, 

2 xuu bφ . For this purpose, we define ( ) ( )
0

, , d .
z

B x z yb x y y∫  Taking the deriv-

ative with respect to x to get ( ) ( ) ( )
0

, , d ,
u

x xB x u yb x y y uu b x u
x
∂

= +
∂ ∫ . Hence  

( ) ( )

( )

( )

0

0

2
0

2

2 d 2 , d 2 , d d

2 , d d d

2 , d d d

d ,

u
x x

u
x

u
x

uu b x B x u x yb x y y x
x

B x u x C y y x

yb x y y x C u x

C u x

φ φ φ

φ

φ

∂
− = − +

∂

≥ −

≥ −

≥ −

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫
∫

  

 

 



 

where C is the generic constant described in the statement of the Proposition. 
Thus (17) becomes  

( )
( )

( )
( ) ( ){ }

( )
( ){ }

2 2 2 2
2 00

22 2 2
2

0

2 2 2 2 2 2
2

0

1d , 12 d d 2 , d
16 1

112 , ,0,0 , ,0,0 d d
8 1

2 , d

1 112 , ,0,0 2 d d
48 1

2 , d

u s x Cu f x s u W
K

Cu f s x f f s x x s
K

u W

Cu f s x K u x s
K

u W

γ φ β

γ φ

β

γ γ φ

β

 
≥ − − + 

+  
 

≥ − − + − 
+  

+

 
≥ − − + − 

+  
+

∫

∫

∫







  (18) 

The proof can be completed by integrating the above inequality from s to T, 
and applying the Gronwall inequality.  

Proposition 3.2. Let ( ), , ,b f gσ  and ( ) ( ) ( ) ( )( ), , ,l l l lb f gσ , 1,2,l =   be a 
sequence of coefficients of BSPDE (7) satisfying Assumption 2.1 uniformly. As-
sume that 

1) ( ) ( ) ( )
0 1 0

2 2 2
lim 0l l l

l
b b g gσ σ

→∞

 − + − + − =  H H H
; 

2) For any fixed ( ), ,x y z , ( ) ( ){ }2

0
lim , , , d 0

T l

l
f f s x y z s

→∞
− =∫ ; 
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3) For each l, BSPDE (7) with coefficients ( ) ( ) ( ) ( )( ), , ,l l l lb f gσ  has a weak so-

lution ( ) ( )( ),l lu β . The solutions ( )lu  are uniformly bounded in supremum 

norm and ( )l
xu  are uniformly bounded in 0H , uniformly in l; 

4) There exists 0u∈H  such that ( )
0

2
lim 0l

l u u→∞ − =
H

. 

Then 1u∈H  and there exists 0β ∈H  such that ( ),u β  is a weak solu-
tion to BSPDE (7) with coefficients ( ), , ,b f gσ .  

Proof. By the definition of 0H , φ  and condition 3), ( )l
xu  are uniformly 

bounded in 0H . So there exists 0v∈H  such that ( )l
xu v→  weakly in 0H . 

It is clear that v is bounded. Moreover, the differential operator with respect to x 
is a closed operator, that is, for any 1h∈H ,  

( ) ( )
0 00 0

, lim , lim , , .l l
x x xl l

v h u h u h u h
→∞ →∞

= = =            (19) 

This implies that xu v= . Hence 1u∈H  and xu  is bounded in 0H . Next, 
denote ( ) ( ) ( ) ( )l l l l

xuγ β σ+ . By Proposition 3.1, we know ( )
0

l Cγ ≤
H

 un-
iformly in l for some constant C. Thus we can extract a subsequence, still in-
dexed by (l), such that  

( )
0

lim , 0l

l
hγ γ

→∞
− =

H
                    (20) 

for some 0γ ∈H  and any 0h∈H . Note that by the boundedness of ( )l
xu  

and ( )lσ , we know that ( )
0

l Cβ ≤
H

 uniformly in l. We now define 

xuβ γ σ− . Note that, for any 0h∈H ,  

( )

( ) ( ) ( )

( ) ( ) ( ) ( ){ }

0

0

0 0 0

0 0

0

lim ,

lim ,

lim , , ,

, , 0

, ,

l

l

l l l
xl

l l l l
x xl

x

h

u h

h u h u h

h u h

h

β

γ σ

γ σ σ σ

γ σ

β

→∞

→∞

→∞

= −

 = − + − 

= − 〈 〉 +

=

H

H

H H H

H H

H

 

where the second convergence is due to (19) and the boundedness of σ , and 
the third convergence is due to the uniform boundedness of ( )l

xu . That is, ( )lβ  
converges to β  weakly in 0H . It remains to show that ( ),u β  is a weak so-
lution to BSPDE (7) with coefficients ( ), , ,b f gσ . 

It suffices to check (15). We fix 1 2t t t T≤ < ≤  and a smooth function ϕ  
with compact support. For each l, since ( ) ( )( ),l lu β  is a weak solution to the 
corresponding BSPDE, we have  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

1 1

2 2

1 1

2 1 0

1 0

0

, , ,

, , d , d ,

, d d , d ,

l l

t tl l

t t

t tl l

t t

u t u t

s s s W s

s x x x x s s W s

ϕ

α ϕ β ϕ

α ϕ φ β ϕ

−

⋅ − ⋅

= ⋅ + ⋅

= + ⋅

∫ ∫

∫ ∫ ∫
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( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){

( ) ( )( ) ( ) ( ) [ ]

( ) ( ) ( ) } ( ) ( ) ( )

2

1

2

1

2

1

2

1

2

0

2

0

1 d d
2

, d ,

1
2

d d , d , .

t l l l l l l l
x xt xx

t l

t

t l l l l l l
x x x yt

l l l l
x x x

tl l l l
x t

u u b f x s

s W s

u u

u

u b f x s s W s

σ ϕφ β σ ϕφ ϕφ ϕφ

β ϕ

σ β σ σ ϕφ

σ β σ ϕ φ ϕφ

ϕφ β ϕ

    = + − −      

+ ⋅

   = + +   

 + + +  

 − + + ⋅ 

∫ ∫

∫

∫ ∫

∫




  (21) 

Note that since the boundedness and the convergence properties of all the in-
volved terms, and thanks to Assumption 2.1, there is only one term left to check, 

( ) ( )2

1
d d

t l l
xt

u b x sϕφ∫ ∫ . To this end, we define ( ) ( )
0

, , d
z

B x z b x y y∫  and 

( ) ( ) ( ) ( )
0

, , d
zl lB x z b x y y∫ . Clearly ( ) ( ),lB x z  and ( ),B x z  are continuous and 

( ) ( ),lB x z  converges to ( ),B x z  pointwise. Since ( ) ( ), ,l lb b u  are bounded, say, 
by a constant 0M > , we have  

( ) ( )( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( )

0 0

0

, ,

, d , d

, , d , d

, , d d .

l

l

l

l

l l

u ul

u ul

u

M ul

M u

B x u B x u

b x y y b x y y

b x y b x y y b x y y

b x y b x y y M y
−

−

= −

≤ − +

≤ − +

∫ ∫

∫ ∫

∫ ∫

 

From this it is easy to see that ( ) ( )( ),l lB x u  converges to ( ),B x u , and the 
limit is uniform in ( ),s x  on any compact subset of [ )0,T × . Using similar 
argument one can show that  

( )
( ) ( ) ( )

0 0
, d d , d d .

lu ul
x xb x y y x b x y y xϕφ ϕφ→∫ ∫ ∫ ∫ 

 

Similar to Proposition 3.1, one gets  
( ) ( ) ( )( )

( ) ( )( )
( )

( ) ( )

( ) ( )( )[ ]
( )

( ) ( )

( )[ ] ( )

( ) ( ) ( )

0

0

0

0

lim , d

lim , , d

lim , d lim , d d

, d , d d

, , d d , d ,

l

l

l l l
xl

ul l l
xl

ul l l
xxl l

u
xx

u
x x

u b x u x

B x u b x y y dx
x

B x u x b x y y x

B x u x b x y y x

B x u b x y y x u b x u x
x

ϕφ

ϕφ

ϕφ ϕφ

ϕφ ϕφ

ϕφ ϕφ

→∞

→∞

→∞ →∞

∂ = − ∂ 

= − −

= − −

∂ = − = ∂ 

∫

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫





 

 

 

 

and this completes the proof.  

4. Weak Existence 

Parallel to the Itô-Krylov formula ([14], Theorem 2.10.1), we provide a general 
version of Itô-Ventzell formula which requires weaker regularity conditions. The 
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proof can be easily produced similarly to the proof of Itô-Krylov formula. The 
key point in the proof is the utilization of the boundedness and non-degeneracy 
assumptions of the coefficients. We refer the readers Theorem 2.10.1 of [14], and 
omit the proof.  

Lemma 4.1. Consider the process  

( ) ( ) ( )
0 0

d d .
s s

rs x a r r h r Wξ = + +∫ ∫  

Let Q be a bounded region in [ ]0,T ×  and Qτ  be the first exit time of the 
process ξ  from the region Q. Let τ  be some Markov time such that Qτ τ≤ . 
Assume further that there exist positive constants 1C  and 2C , such that 

1s sa h C+ ≤  and 2sh C≥  for all ω  and t τ< . Then for any Itô process F 
such that ( )1,2F W Q∈  for  -a.s. ω , and  

( ) ( ) ( )d , , , , d , , d ,sF s x A s x s H s x Wω ω ω= +  

where 0A∈H  and 1H ∈H , the following holds:  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }

2

, ,

1, , , , d
2

, , d .

x x xxs

x rs

F F s

A r a r F r h r H r h r F r r

H r h r F r W

τ

τ

τ ξ ξ

ξ ξ ξ ξ

ξ ξ

−

 = + + + 
 

+ +

∫

∫

 

Now we are ready to show the weak existence of FBSDE (2). Let us first in-
troduce some notations. For any N ∈ , let 0 1 Nt t t t T= < < < =  be the par-

tition on [ ],t T  where ( )
2i N

i T t
t t

−
= + , 0, ,2Ni =  . For any  

( )1 2, , , N
Nx x x= ∈ x , and 1,2, ,k N=  , we denote  

( ) ( ) ( ) ( )11, , and , , .
k

k k
k s t s t sx x W W W∧ ∧   x  

Let ( ) ( ), , , , , , | N
N sb s x y E b s x yω  ⋅   , where N

s  is the filtration generat-
ed by ( )N

sW , and clearly for fixed ( ), ,s x y ,  

( ) ( ), , , , 0 -a.s., as .Nb s x y b s x y N− → →∞  

Similarly we define Nσ , Nf , and Ng . Clearly Nb  can be written in terms 
of ( )( ), , ,N

ss W x y  in the canonical space. Let us denote  
( )( ) ( ), , , , , , .N

N s Nb s W x y b s x yω

  

Then ( )( ), , ,N
Nb s x y x  is a deterministic function from [ ] 20, NT +×  to  . 

Similarly, we define Nσ , Nf , and Ng . 
Proposition 4.2. Under Assumption 2.1, the FBSDE (2) admits a weak solu-

tion.  
Proof. Step 1 (Weak Existence of the BSPDE): In Step 1 and Step 2, we as-

sume that for all N, Nb , Nσ , Nf  and Ng  are smooth functions except for 
the y component of Nb . We consider the following FBSDE:  

( ) ( ) ( )

( ) ( ) ( )

, , , , ,
, 0 , , , ,

, , , , , ,
, , , , , ,

, , d , , d ;

, , , d d ,

s st x t x t x t x t x
N s N N r N s N N r N st t

T Tt x t x t x t x t x t x
N s N N T N N r N r N r N rs s

X X b r X Y r r X Y W r

Y g X f r X Y Z r Z W r

σ = + +

 = + −

∫ ∫

∫ ∫



     (22) 
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where  

( )

( )

( )

{ }

{ }

( )

1

0

100

, , , and , ,
100

, , , ,
N

s t

N N
s t

N N

X b s y s y

b s yx s y

σ

σ

≤

≤

       
   
   
          




  





x x

x x

 

for any ( ) [ ] 2, , 0, Ns y T +∈ ×x . Because of the assumption of smoothness, 
FBSDE (22) is a deterministic FBSDE, and by Theorem 5.1 in [3], FBSDE (22) 
admits a unique strong solution ( ), , ,

, , ,, ,t x t x t x
N s N s N sX Y Z . Indeed, ( )( ), ,

, ,,Nt x t x
N s s N sX W X= , 

where ( ), , ,
, , ,, ,t x t x t x

N s N s N sX Y Z  is the unique strong solution (again by Theorem 5.1 in 
[3]) of  

( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

, , , , ,
, , , , ,

, , , , , ,
, , , , , ,

, , , d , , , d

, , , , , d d .

s sN Nt x t x t x t x t x
N s N r N r N s N r N r N st t

T TN Nt x t x t x t x t x t x
N s N T N T N r N r N r N r N rs s

X x b r W X Y r r W X Y W r

Y g W X f r W X Y Z r Z W r

σ = + +

 = + −

∫ ∫

∫ ∫









 

Now let us define a function Nu  piecewisely, and this function is essential in 
finding the decoupling field of FBSDE (2). First for any ( )N N∈x  and x∈ , 
define  

( )( ) ( )( ), , , , .N N
N N Nu T x g x= x x  

Secondly, for each , 1, ,1k N N= −  , we consider the FBSDE (22) on 

[ )1,
k

k kt t− × ×  . By Theorem 5.1 in [3], for any ( )( ) [ )1, , ,k k
k ks x t t−∈ × × x , 

there exists a deterministic decoupling field ( )( ), ,k
Nu s x x , which is a weak solu-

tion to the corresponding PDE, such that  
( )( ), ,

, , ,, , .kt x t x
N s N k s N sY u s W X=   

Furthermore, let us patch functions ,N ku ’s together by defining the following 
function Nu :  

( )( ) ( )( )
( )( ) ( ) ( )( ) [ )

,

1
, 1

1

, , , , ;

, , , , , , , , , , if , .

N N
N N N

N k k
N N k k N k k k

N k

u T x u T x

u s x u s x x x u s x s t t−
−

− +



  

≡ ∈     


 


  
 

x x

x x x
(23) 

Thus on [ ],t T , we have  
( )( ), ,

, ,, , .Nt x t x
N s N s N sY u s W X=                    (24) 

For any [ ]0,s T∈ , denote ( )( ), ,N
s ss W xθ   and ( )( ),

, ,, ,Nt t x
N s s N ss W XΘ  . Note 

that since all coefficients are bounded, we know that second derivatives of 
1,2

2Nu W∈  (see [15]). Here { }1,2 2
2 : , , ,t x xxW u u u u u L= ∈ . By the Itô-Krylov for-

mula, for [ )1,k ks t t−∈  and fixed x, one has  

( ) ( ) ( ) ( ) ( )
1 1

1d d d .
2 i i i

k k

N s Ns s Nx x s Nx s
i i

u u u s u W sθ θ θ θ
= =

 = + + 
 

∑ ∑         (25) 

Thus we define  
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( )( ) ( )( ) ( )( ) [ )

( )( ) ( ) ( )( ) [ )

( )( ) ( )( ) [ )

( )( ) ( )

, 1
1

1
, 1

1

, 1
1

1

1, , , , , , , for , ;
2

, , , , , , , , , , if , ;

, , , , , for , ;

, , , , , ,

i i

i

k
k k k

N k Ns Nx x k k
i

N k k
N N k k N k k k

N k

k
k k

N k Nx k k
i

N k
N N k k

N

s x u s x u s x s t t

s x s x x x s x s t t

s x u s x s t t

s x s x x

α

α α α

β

β β

−
=

−
−

− +

−
=

−

−

+ ∈

 
 ≡ ∈
 
 

∈

≡

∑

∑

  


  
 








 



x x x

x x x

x x

x x ( )( ) [ ), 1

1

, , , , if , .k
N k k k

k

x s x s t tβ −

+












 
  ∈    







x

(26) 

Again by the Itô-Krylov formula,  

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , ,
, , , , , ,

,
, , , , ,

1

, 2 ,
, , , , , ,

1

,
1

d , , d d d

1,
2

1, , d
2

(

i i

i

i

t x t t t x t x t
N s N N s N N s N s N s N N s

k
t t t t x t

Ns N s Nx N s N N s N s Nx x N s
i

k
t t t x t t t x

Nx x N s N N s N s Nxx N s N N s N s
i

k

Nx N
i

Y f u Z s Z W s u

u u b Y u

u Y u Y s

u

σ σ

=

=

=

= − Θ Θ + = Θ

= Θ + Θ Θ + Θ


+ Θ Θ + Θ Θ 


+ Θ

∑

∑

∑



 



  

   

 ( ) ( ) ( ),
, , ,) , dt t t t x

s Nx N s N N s N su Y W sσ + Θ Θ 
 

 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ){ } ( )

, ,
, , , , , , ,

2 ,
, , ,

,
, , , ,

, ,

1 , d
2

, d .

t t t t x t t t x
N N s Nx N s N N s N s Nx N s N N s N s

t t t x
Nxx N s N N s N s

t t t t x
N N s Nx N s N N s N s

u b Y Y

u Y s

u Y W s

α β σ

σ

β σ


= Θ + Θ Θ + Θ Θ


+ Θ Θ 


+ Θ + Θ Θ

 

  

 



 

 (27) 

Hence  

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

, ,
, , , , , , ,

, 2 ,
, , , , , ,

, , ,

1, , .
2

t t t t x t t t x
N N s N N s N N s N s Nx N s N N s N s

t t t x t t t x
Nx N s N N s N s Nxx N s N N s N s

f u Z u b Y

Y u Y

α

β σ σ

Θ = − Θ Θ − Θ Θ

− Θ Θ − Θ Θ

 

  



  

(28) 

Note that ,
,

s x
N sX x= , ,

s
N s sθΘ =  and ( ),

,
s x

N s N sY u θ=  . Thus (25) and (28) imply  
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

2

d

1 , , ,
2

, , , d d .

N s

Nxx s N s N Nx s N s N Nx s N s N

N s N s N s Nx s N s N N s

u

u u u b u u

f u u u s W s

θ

θ σ θ θ θ β θ σ θ

θ θ β θ θ σ θ β θ

= − + +



+ + +





 

      

  

   

(29) 

Denote  

( ) ( ) ( ) ( ) ( ) ( ), , , , , and , , .N N s N N s N N su s x u s x s xω θ α ω α θ β ω β θ


    

Suppressing the variables ( ), , , Ns x uω  , one has  

( )

( ) ( )

21d d d ;
2

, , , ,

N Nxx N Nx N Nx N N N

N N

u u u b f s W s

u T x g x

σ β σ β

ω ω

  = − + + + + 
 

 =

    (30) 

and ( ),N Nu β  is a weak solution to BSPDE (30). By the regularity argument in 
[3], we know that Nu  are uniformly bounded in supremum norm on every 
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compact subset of [ ]0,T ×Ω× , and Nxu  are uniformly bounded in 0H . 
Thus we can extract a subsequence (still indexed by N) such that it converges to 
some 0u∈H . By Proposition 3.2, 1u∈H  and there exists β  such that 
( ),u β  is a weak solution to BSPDE (7) with coefficients ( ), , ,b f gσ . 

Step 2 (Weak Existence of the FBSDE): Now we use the decoupling field u 
to decouple FBSDE (2). Let us consider the following forward SDE:  

( )( ) ( )( ), , , , ,, , , d , , , d .
s st x t x t x t x t x

s r r r r rt t
X x b r X u r X r r X u r X Wσ= + +∫ ∫     (31) 

Without loss of generality in what follows we assume 0t = . We claim that 
this SDE possesses a weak solution. Indeed, on any given probability space 
( ), ,Ω   on which is defined a standard Brownian motion W, consider the 
following SDE:  

( )
0

, d .
t

t r rX x r X Wσ= + ∫                   (32) 

Note that the function [ ]( )1,2
2 0,u W T∈ ×  actually has a bounded spatial 

derivative xu . Combining with (A.1), it is readily seen that the coefficient 
( ),t xσ  is uniformly Lipschitz in x. Thus the SDE (32) admits a unique strong 

solution, denoted by 0,xX X= . 
Next, define 

bθ
σ

= , which is bounded, thanks to (A.1) and (A.2). Thus  

( ) ( ) 2

0 0

1exp , d , d , 0,
2

t t
t s s sM s X W s X s tθ θ − ≥ 

 ∫ ∫       (33) 

is a martingale under  . Now define d
d

t

tM=

 

, [ ]0,t T∈ . Then by the Gir-

sanov theorem ([16], Theorem 8.9.4), under   the process  

( )0,
0

, d
t x

t t sW W s X sθ= − ∫  is a Brownian motion, and X satisfies (31). Let us 

abuse the notation and denote W  by W again. In other words, we have shown 
that there exist a process ,t x

sX  and Wiener process, still denoted by W, such 

that ( ),, , ; , t x
sW XΩ   is a weak solution of (31). Let us define  

( )
( ) ( ) ( )

, ,

, , , , ,

,

, , , , .

t x t x
s s

t x t x t x t x t x
s s x s s s

Y u s X

Z s X u s X s X Yβ σ




+





 

We would like to show that ( ), , ,, , ; , , ,t x t x t x
s s sW X Y ZΩ   is a weak solution of 

FBSDE (2). Since Nu  are bounded in 1,2
2W , uniformly over N, we know 

1,2
2u W∈  for  -a.s. ω . By the construction of Nα  and Nβ , it is also clear 

that 0α ∈H  and 1β ∈H , where α  is defined in (8). Thus by Lemma 4.1, 
one has  

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( )

, ,

, , , , , 2 , ,

, , , ,

, , , ,

d d ,

1, , , , , , ,
2

, , , d d

, , , d d ,

t x t x
s s

t x t x t x t x t x t x t x
s x s s s xx s s s

t x t x t x t x
x s s s s s

t x t x t x t x
s s s s s

Y u s X

s X u s X b s X Y u s X s X Y

s X s X Y s Z W

f s X Y Z s Z W

α σ

β σ

=

= + +



+ +



= +
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which completes the proof of Step 2. 
Step 3 (The General Case): Now let us consider the general case, that is, we 

proceed without requiring the smoothness of Nb , Nσ , Nf  and Ng . For each 

N let us consider the standard smooth mollifiers ( ) ( ) ( ) ( ){ }
1

, , ,l l l l
N N N N l

b f gσ
∞

=

 

  . Based on 

standard BSPDE result, it is easy to check that the conditions 1) - 4) in Proposi-
tion 3.2 hold. Following closely to Step 1 and Step 2, utilizing the stability result 
from Proposition 3.2, we conclude that FBSDE (2) admits a weak solution. 

5. Weak Uniqueness 

Now we are ready to prove the main result of this paper. 
Theorem 5.1 Under Assumption 2.1, the FBSDE (2) admits a unique weak 

solution.  
Proof. The weak existence has been shown in Proposition 4.2. Now suppose 

there is another weak solution ( ), , ,ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , ,t x t x t x
s s sW X Y ZΩ   of (2). Applying the 

general Itô-Ventzell formula to get  

( ){ }
( ) ( ) ( )( )
( ) ( )( )}
( ) ( )( )
( )

, ,

, , 2 , ,

, , ,

, , ,

, , ,

ˆ ˆ,

1ˆ ˆ ˆ ˆ, , , , ,
2

ˆ ˆ ˆ, , , , d

ˆ ˆ ˆ ˆ, , , , d

ˆ ˆ ˆ ˆ, , d d

t x t x
s s

t x t x t x t x
t s xx s s s

t x t x t x
x s s s

t x t x t x
x s s s s

t x t x t x
s s s s

d u s X Y

u s X u s X s X u s X

u s X b s X u s X s

u s X s X u s X W

h s X Y s Z W

σ

σ

−

= +


+

+

− −

 

( )( ) ( ){ }
( ) ( )( ){ }

, , , ,

, , , ,

ˆ ˆ ˆ ˆ, , , , , d

ˆ ˆ ˆ ˆ ˆ, , , , d .

t x t x t x t x
s s s s

t x t x t x t x
x s s s s s

h s X u s X h s X Y s

u s X s X u s X Z Wσ

= −

+ −
 

Note that h is Lipschitz continuous with Lipschitz constant K. Thus by 
Itô-Krylov formula again, one has  

( ) ( ) ( )( )
( )( ) ( )( ) ( )( )
( )

22
, , , , , ,

, , , , , ,

2
, ,

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , d

ˆ ˆ ˆ ˆ ˆ ˆ2 , , , , , , d

ˆ ˆ2 , d .

Tt x t x t x t x t x t x
s s x r r r rs

T t x t x t x t x t x t x
r r r r r rs

T t x t x
r rs

E u s X Y E u r X r X u r X Z r

E u r X Y h r X u r X h r X Y r

KE u r X Y r

σ− + −

= − − −

≤ −

∫

∫

∫

 

An application of the Gronwall inequality implies  

( ) ( ) ( )( ), , , , , ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ, and , , , , , -a.s.t x t x t x t x t x t x
s s s x s s su s X Y Z u s X s X u s X Pσ= =    (34) 

Thus we shall consider the following decoupled forward system:  

( )( ) ( )( ), , , , ,, , , d , , , d .
s st x t x t x t x t x

s r r r r rt t
X x b r X u r X r r X u r X Wσ= + +∫ ∫     (35) 

Step 3 (Forward Weak Uniqueness): From previous steps, clearly 

( ), ; , , ,t x
sX P WΩ   and ( ), ˆˆˆ ˆ ˆ; , , ,t x

sX P WΩ   are both weak solutions to (35). 
Let ( ) ( )( ), , , ,b s x b s x u s x

, ( ) ( )( ), , , ,s x s x u s xσ σ , and  
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( ) ( )
( )

,
,

,
b s x

s x
s x

θ
σ

  (note that the system is strictly non-degenerate). It is easy to 

see that  

( ) ( ) 2, ,1exp , d , d
2

s st x t x
s r r rt t

M r X W r X rθ θ − − 
 ∫ ∫  

and  

( ) ( ) 2
, ,1ˆ ˆ ˆ ˆexp , d , d

2
s st x t x

s r r rt t
M r X W r X rθ θ − − 

 ∫ ∫  

are martingales under probabilities P and P̂ , respectively. Define new probabil-
ities 1P  and 2P  by  

1 2d d ˆand .ˆd dT T
P PM M
P P
= =  

By the Girsanov theorem, ( )1 ,, d
s t x

s s rt
W W r X rθ+ ∫  and  

( )2 ,ˆ ˆ, d
s t x

s s rt
W W r X rθ+ ∫  are Brownian motions under ( )1, ,PΩ   and  

( )2
ˆˆ , ,PΩ  , respectively. Since strong uniqueness holds for  

( )( ), , ,, , , d ,
st x t x t x

s r r rt
X x r X u r X Wσ= + ∫  

and ( ), 1
1; , , ,t x

sX P WΩ   and ( ), 2
2

ˆˆˆ ; , , ,t x
sX P WΩ   are both weak solutions to 

the above equation, we know that the distribution of ( ), 1,t x
s sX W  under 1P  

coincides with the distribution of ( ), 2ˆ ,t x
s sX W  under 2P , i.e., for any bounded 

measurable functional [ ]( ) [ ]( ): 0, 0,f C T C T× →  ,  

( ) ( )1 2, 1 , 2ˆ, , .P Pt x t xE f X W E f X W⋅ ⋅ ⋅ ⋅
   =    (36) 

Now for any [ ]( ): 0,f C T →  , by (36),  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1

1

2

, , ,
1

1

2, , ,

2, , 1 ,

, , 2

d 1d
d

1exp , d , d
2

1exp , d , d
2

1ˆ ˆexp , d ,
2

PP t x t x t x

T

T TP t x t x t x
r r rt t

T TP t x t x t x
r r rt t

T TP t x t x
r rt t

PE f X f X P E f X
P M

E f X r X W r X r

E f X r X W r X r

E f X r X W r

θ θ

θ θ

θ θ

⋅ ⋅ ⋅Ω

⋅

⋅

⋅

   = =     
  = +    
  = −    

= −

∫

∫ ∫

∫ ∫

∫ ∫ ( )

( ) ( ) ( )

( ) ( ) ( )

2

2

2
,

2
, , ,

ˆ, , ,
2

2

ˆ d

1ˆ ˆ ˆ ˆexp , d , d
2

ˆ1 dˆ ˆ ˆd .ˆ d

t x
r

T TP t x t x t x
r r rt t

P t x t x P t x

T

X r

E f X r X W r X r

PE f X f X P E f X
PM

θ θ⋅

⋅ ⋅ ⋅Ω
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Thus we have shown that the distribution of ,t x
sX  under P coincides with the 

distribution of ,ˆ t x
sX  under P̂ . By [17], we know that the distribution of 

( ), ,t x
s sX W  under P coincides with the distribution of ( ),ˆ ˆ,t x

s sX W  under P̂ . 
Step 4 (Backward Weak Uniqueness): We know u is continuous, hence Le-
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besgue measurable. Note that  

( ), ,, ,t x t x
s sY u s X=  

( )( ) ( ), , , ,, , , , .t x t x t x t x
s s s x sZ s X u s X u s Xσ=  

Hence it is easy to conclude that the law of ( ), , ,, , ,t x t x t x
s s s sX Y Z W  under P coin-

cides with the law of ( ), , ,ˆ ˆ ˆ ˆ, , ,t x t x t x
s s s sX Y Z W  under P̂ . 

6. Conclusion 

The well-posedness in weak sense of a type of fully coupled FBSDE has been es-
tablished. The difficulty of the problem stems from the fact that the forward drift 
coefficient may be discontinuous. The existence and uniqueness of a strong so-
lution for such FBSDE remain to be an open problem. The author plans to attack 
this issue in his future research. 
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