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Abstract 
We study the evolution in time of the quantum Mathieu oscillator (QMO), 
according to the motion of a charged particle in a radio frequency Paul trap. 
We adopt non-perturbative treatment based on the quantized Floquet for-
malism together with the resonating averages method (RAM). We prove that 
we can develop solutions of the time-dependent Schrödinger equation of such 
a system, in terms of the simple harmonic oscillator wave functions. Numeri-
cal simulations of the analytical results are performed to show the coherence 
and the squeezed proprieties of the wave-packet of this system. 
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1. Introduction 

Numerous mathematical and physical studies have been devoted to the con-
struction of robust framework for solving the time-dependent Schrödinger equ-
ation of quantum systems [1] [2]. In this regard, several approaches were devel-
oped, among them there are the usual perturbation theory [3], Lie algebraic me-
thod, generalized invariant operator and path integral methods [3] [4] [5] [6], 
which have been applied to some special cases of time-dependent quantum sys-
tems, to find the time evolution operator, which in turn enables to write the ex-
plicit expressions of the wave functions and the correspondent energies of these 
systems. In particular, in the regime of strong laser-matter interaction problems, 
a non-perturbative approach, based on the quantization version of the Floquet 
theorem has been established and applied to schemes of physical systems with 
periodic Hamiltonians [7] [8] [9]. Notably, this was used to give explanation of 
multiphoton processes in intense laser fields [10], selective excitation of molecu-
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lar vibrational states using short laser pulses [11]. It is worth noticing that ma-
thematical contributions of the above-mentioned researches and physical chal-
lenge are dealing with the interpretation of experimental results and the descrip-
tion of the nature of various physical phenomena such as quantum optic, quan-
tum chemistry, cosmology [1] [4] [6], etc. 

Our motivation consists to the application of this non-perturbative approach, 
especially to a system driven by a periodic time-varying frequency. Such a sys-
tem has already been studied by Lemos to give a theoretical approach of the ex-
pansion of the universe [12], and by Paul to describe the motion of a charged 
particle in an oscillating electric field [13] [14] [15]. Floquet theory is an effi-
ciency tool for strong time-periodic interaction, and consequently for which the 
usual stationary states, solutions to the time-dependent Schrödinger equation 
when no external field acts, disappear. The adiabatic invariance principle for-
mula established by Breuer and Holthaus [16], is then used to give a physical in-
terpretation to the derived quantum states. These quantum steady states or Flo-
quet states constitute the most probable states, and provide a useful dynamical 
description induced by the time-periodic interaction. 

In previous works, we have applied our non-perturbative method, to the cases 
of the forced harmonic oscillator, and to some driven anharmonic potentials 
models [17] [18]. Indeed, the RAM [19] provides a useful tool for constructing 
the evolution operators in a whole resonance zone, which enabled us to obtain 
readily the wave functions and the associated quasi-energies of these systems. 
Therefore, some physical properties of these results were explored and exploited. 
The aim of the present paper is to apply this approach, to first and second ame-
liorated orders approximation, to the quantum Mathieu oscillator (QMO) mod-
el. We have determined the time-evolution operators, the Floquet states, the 
wave functions and the corresponding energies, and we have shown that the 
Floquet states of the same parity are coupled in the presence of the interaction 
Hamiltonian. Moreover, we have verified the Heisenberg uncertainty principle 
for all time and we have performed numerical evaluations, for the operational 
parameters that appeared in the analytical expressions. 

The paper is structured as follows. In Section 2, we give a review of the theo-
retical strategy of our method. Section 3, is focused its application to the QMO, 
and gives the established analytics results, as well as the numerical simulations 
for the parameters values. In Section 4, we give the conclusions and outlook. 

2. Theoretical Strategy [17] [18] 

The Schrödinger equation of a quantum system with a time-dependent Hamil-
tonian ( )H t  can be written in terms of the time-evolution operator ( ),0U t  
such as, 

( ) ( ) ( )
d ,0

i ,0
d

U t
H t U t

t
=                      (1) 

( ) ( )0H t H H tλ ′= +                        (2) 
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where 0H  is the Hamiltonian of the unperturbed system, and ( )H t′  the inte-
raction Hamiltonian, which amplitude λ  is taken as being very small, and 
( ),0U t  is such that  

 ( ) ( ) ( ),0 0t U tψ ψ=                       (3) 

where ( )tψ  describes the system state at the time t, and ( )0ψ  is an arbi-
trary initial state. 

In the case of a time-periodic interaction, the Floquet theorem proves the ex-
istence of a couple of operators ( )( ),R T t , where R is a constant Hermitian op-
erator, and ( )T t  is a periodic unitary operator of the same period as ( )H t′  so 
that the formulation of the time-evolution operator ( )U t , solution of Equation 
(1), is given in the form [7] [8] [9]  

 ( ) ( )
i

e
Rt

U t T t
−

=                          (4) 

and the initial condition ( )0 1U = . 
Replacing the unitary transformation ( )T t  on Equation (1) gives rise to the 

usual time-independent Schrödinger equation of the operator R (so-called the 
reduced representation of the system), such as  

 
( )

( )
d

i
d
n

n

t
R t

t
φ

φ=                     (5a) 

 ( )
i

e
nE t

n t nφ
−

=                        (5b) 

where ( )n tφ  are the eigenvectors of the operator R, corresponding to the ei-
genvalues nE , and where n  are the eigenstates of the Hamiltonian 0H . 

The resolution of Equation (5) leads to obtain the Floquet states, which are 
canonical solutions of the time-dependent Schrödinger equation of the system 
[8]; they are defined as being  

 ( ) ( ) ( )n nt T t tψ φ=                      (6) 

These derive quantum states constitute a complete set of bound states of the sys-
tem, and do not depend on the choice of the couple ( )( ),R T t . One shows oth-
erwise that these are the invariant adiabatic states. Then, the global state ( )tψ  
describing the quantum system can be expanded in terms of a linear combina-
tion with time-independent coefficients of the ( )n tψ . 

But, no general method is valid to calculate the operators R and ( )T t . To de-
termine these two operators, we used the technique based on the resonating av-
erages method (RAM) elaborated by Lochak [19]. This method is applied in the 
interaction picture of ( )H t′  which is written with the summation of the  

averaging term ( )IH t  and the oscillating term ( )d
d
IH t
t



. It permits to find an  

approximate solution of Equation (1), to a certain order in power of λ . This 
method may be compared to the customary rotating wave approximation [20]. 

Determination of first and second orders ameliorated solutions and a com-
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parison with the formulation of Equation (4), enable us to obtain the first and 
second orders of Floquet operators couples, thence we can use Equation (5) and 
Equation (6) to set up Floquet states, and the correspondents quasi-energies re-
spectively.  

3. Application to the Quantum Mathieu Oscillator 
3.1. Analytical Results 

The differential equation of motion without damping of the spatial coordinates 
(in one dimension), for a charged particle submitted to a time varying electric 
field is given in classical mechanics in the general form [13] [15] [21]  

 ( )2 0q t q+Ω =                            (7) 

By choosing the potential function (or time varying frequency ( )tΩ ) such that,  
 ( ) ( )( )2 2

0 cos 2t tω δ λ ωΩ = +                     (8) 

where 0ω  is the unperturbed oscillator frequency, ω  is the driven oscillation 
frequency, and where λ  is the perturbation amplitude taken as been very small. 

This model supposes that a charged particle is governed by a Mathieu equa-
tion also called Mathieu oscillator, is a particularly important case, which 
enables to describe the motion of a charged particle in a linear radio frequency 
Paul trap device [13]. 

Without loss of generality of the model, we adopt the parameter of the trap 
1δ = . 

The Hamiltonian of such oscillator according to Equation (7) and Equation (8) 
is given as follows,  

 ( ) ( )
2

2 21
2 2
pH t m t q
m

= + Ω                      (9) 

By using the SU(1, 1) generators group elements 1J  and 3J , which are ex-
pressed in terms of the conjugate variables q and p and in terms of the creation 
and the annihilation operators according to  

 ( ) ( )
2 2 2

0 2 2
1

0

1
4 4

m q p
J a a

m
ω

ω
+−

= = +


               (10a) 

 ( )2 2 2
0

3
0

1 1
4 2 2

m q p
J a a

m
ω

ω
++  = = + 

 

              (10b) 

Leads to write the Hamiltonian ( )H t  of this system under the form [22]  

 ( ) ( )[ ]0 3 0 1 32 cos 2H t J t J Jω λ ω ω= + +               (11) 

where q and p satisfy the commutation relation [ ], iq p =  . 
Using Equation (10) and Equation (11), yields to write ( )H t′  in Equation (2) as  

 ( ) ( )( )2 20 cos 2 2 1
4

H t t a a a a
ω

ω + +′ = + + +
            (12) 

Note that the expression of ( )H t′  is similar to that published by Profilo et al. 
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[5] by doing the first order development of ( )tΩ  given in Eqution (8), and us-
ing the invariant operator method in the framework of the Lie Group. 

The RAM applied to the interaction picture form [17] [18] of ( )H t′  gives  

 ( ) 0IH t =                              (13a) 

 ( ) ( )( ) ( ) ( )0 02 22 2
0 1 12 1 e ei t i t

IH t t a a t a t aω ωη η η −+ += + + +

          (13b) 

where  

 ( ) ( )0
0

sin 2
8

t
t

ω ω
η

ω
=


                       (14a) 

 ( ) ( ) ( )00
1 2 2

0

sin 2 cos 2
8

t i t
t

ω ω ω ωω
η

ω ω
−

=
−



              (14b) 

and where ( )1 tη   is the complex conjugate of ( )1 tη .  
Using the expressions of the evolution operator given by the (RAM) [17] [18], 

enabled us to obtain the first and second ameliorated solutions terms of qua-
si-energies, Floquet states and wave-functions as  

 ( )1
0

1
2

a
nE nω  = + 

 
                          (15) 

( ) ( )
( )

( ) ( )

( ) ( ) ( )( ) ( )

1i
1

0

1 1

ie 2 1

1 2 1 2 2

a
nE t

a
n t n n t n

n n t n n n t n

λψ η

η η

−
= −  +

+ − − + + + + 







    (16) 

( )

( )
2 2

2 0
0 2 2

0

1 1
2 16

a
nE n

λ ω
ω

ω ω

    = + +   −   
                  (17) 

( ) ( )
( )2i

2
4 2 0

2 4

e 4 2

2 4

a
nE t

a
n t k n k n k n

k n k n

ψ
−

− −

+ +

=  − + − +
+ + + + 



          (18) 

( ) ( )
( )

( ) ( ) ( )
( ) ( )

2i
2

4 4 2 2 0

2 2 4 4

, e
a

nE t
a

n n n n

n n

q t k q k q k q

k q k q

ψ ϕ ϕ ϕ

ϕ ϕ

−

− − − −

+ + + +

= + +
+ + 



       (19) 

The different coefficients ik±  are given by  

 ( ) ( )( )( )
2

2
4 12 1 2 3

2
k t n n n nλ η−

−
= − − −


               (20a) 

 ( ) ( ) ( ) ( ) ( )( ) ( )
2

2 1 2 0 12

i 2 2 1 1
2

k t t n t t n nλ λη η η η−

 
= − + − − − 
  

   (20b) 

 
( ) ( )

( ) ( ) ( ) ( )

0 0

2
2 22 2

3 0 1 12

i1 2 1

1 32 1 2 1
2 22

k n t

n t n t

λ η

λ η η η η

= − +

  + + − + + −    





    (20c) 
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 ( ) ( ) ( ) ( ) ( )( ) ( )( )
2

2 1 2 0 12

i 2 2 3 1 2
2

k t t n t t n nλ λη η η η+

 
= − − + + + + 
  

     (20d) 

 ( ) ( )( )( )( )
2

2
4 12 1 2 3 4

2
k t n n n nλ η+

−
= + + + +


              (20e) 

where  

 ( )
( ) ( ) ( ) ( ) ( )

( )( )

2 2 2 2 2 2
0 0 0 0 0

2 2 2 2 2
0 0

3 cos 4 4 i 2 sin 4

32 4

t t
t

ω ω ω ω ω ω ω ω ω ω ω
η

ω ω ω ω ω

 − − − + + =
− −



(21a) 

 ( ) ( ) ( )
2 3

0
3 2 2

0

i
sin 4

64
t t

ω
η ω

ω ω ω
−

=
−

                    (21b) 

( ) ( )
2

1
24 e

2 !

q

n nn
q H q

n

α

αϕ α

−

 =  π 
                   (22) 

( )n qϕ  is the wave function of the simple oscillator, ( )nH qα  are the Hermite 

polynomials and the parameter 0mω
α =



. 

We note that the correction effects on quasi-energies appear only from the 
second order term of the approximation and depend on the quantum number n 
and the parameters (λ  and ω ) of the variable frequency ( )tΩ . Therefore, the 
Floquet states expression shows that the transitions between these Floquet states 
( ( )n tψ  and ( )k tψ ) are suppressed when the levels do not have the same 
parity (i.e. 1n k= + ). 

The difference between two adjacent second order Floquet levels is given by,  

 ( ) ( )

( )
2 2

2 2 0
1 0 2 2

0

1
16

a a
n nE E E

λ ω
ω

ω ω+

 
 ∆ = − = +
 − 

         (23) 

The Equation (23) shows that all levels are shifted equally; therefore the energy 
levels of the system remain equidistant. 

By using some identities and Equation (18), we can easily compute the expec-
tation values of q, p, 2q  and 2p  for any level. Neglecting the coefficients of 
( 3λ  and 4λ ), permits to write the corresponding fluctuations in q and p as fol-
lows,  

 ( ) ( ) ( ) ( ) ( ) ( )( )
1

22 22
1 1 2 0 1

0

2 1
1 4 8 2 4

2
a n

q Im t Re t t Re t
m

λ η λ η η η η
ω
+  ∆ = − + − +    



(24) 

( ) ( ) ( ) ( ) ( ) ( )( )
1

22 20 2
1 1 2 0 1

2 1
1 4 8 2 4

2
a n m

p Im t Re t t Re t
ω

λ η λ η η η η
+  ∆ = + + + +    



(25) 

Then one deduce the second order uncertainty relation such as  

 ( ) ( ) ( )
( )

( )
2 2 2

2 20
2, 2 2

0

2 1 1 sin 2
2 8

a
n nq p n t

λ ω ω
ω

ω ω

 
 ∆ ∆ = + +
 −  

        (26) 

It is easily seen that the fluctuation q∆  and p∆  product shows that for all 

https://doi.org/10.4236/jamp.2020.84054


M. J. Idrissi et al. 
 

 
DOI: 10.4236/jamp.2020.84054 704 Journal of Applied Mathematics and Physics 
 

times t and for any level, the Heisenberg uncertainty principle is satisfied, as well 
as presents an oscillating correction term due to the form of ( )tΩ .  

3.2. Numerical Results  

As an illustration we carried out numerical simulations of the established ana-
lytical expressions, for different values of the parameters. From Equation (19), 
we can compute the expressions of the probability density associated to the 
wave-packet of the system. As an example, for the values of the parameters taken 
to be: 0.01λ = , 2 1mΠ = =

 and 0 8ω ω= . 
We give on Figure 1 and Figure 2, the plots of the wave-packet, in the case 

where the number state are 0n =  and 7n = . 
On Figures 3-5, we give the simulation plots of ( )( )2

0
aq q∆ , ( )( )2

0
ap p∆  and 

( ) ( )2
7,7

2 a q p∆ ∆


 as functions of t, for diferent values of 0ω
ω

,  

( 0 1.1;1.15;1.2;1.4
ω
ω

= ), where the constants factor 0q  and 0p  are given by 

0
0

2m
q

ω
=



 and 0
0

2p
mω

=


. 

Figure 1 and Figure 2 show that, when departing from an initial coherent 
state, the wave-packets ( ) ( )

22
0 ,a q tψ 

 
 

 and ( ) ( )
22

7 ,a q tψ 
 
 

 propagate with 
small displacement of the maximums for different instants, keeping its form and 
that the curve presents the regular nodal character. Therefore, the dynamic loca-
lization of the wave-packet is verified. 

Figure 3 and Figure 4 show that there is a decrease of q∆  at the expense of  

an increase of p∆ , as functions of time and for different values of 0ω
ω

 and in-

dicate that the maximum of these fluctuations varies as a function of 0ω
ω

. Thus 

the squeezing property of Floquet states ( )n tψ  is apparent here. Figure 5 also 

indicates that the uncertainty product is periodic in time and increases strongly 

to reach its maximums when 0 1
ω
ω

≈ . Thence, the trapped charged particles  

 

 
Figure 1. The probability density vs. q and 0t = , for 0n =  and 7n = . 
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Figure 2. The evolution of the probability density vs. q and t, for 0n =  and 7n = . 
 

 

Figure 3. The variation of ( )2
0

aq q∆  and ( )2
0

ap p∆  vs. t for 0n =  and for different values of 0ω
ω

.  

 

 

Figure 4. The variation of ( )2
0

aq q∆  and ( )2
0

ap p∆  vs. t for 7n =  and for different values of 0ω
ω

. 

 
oscillate harmonically along each spatial axis at the secular frequency ω . Our 
results are agreed with those published by other authors [3] [15] [23] [24].  
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Figure 5. The variation of ( ) ( )2

7,7

2 a q p∆ ∆


 vs. t for different values of 0ω
ω

.  

4. Conclusions and Outlook 

Floquet formalism and the RAM have been successfully used to solve the quan-
tum Mathieu oscillator problem. Floquet states and the corresponding eigens-
tates and eigenvalues have been expressed to first and second orders approxima-
tion. We have shown that the transitions are valid only between Floquet states 
with the same parity; this is due to the form of the interaction Hamiltonian 

( )H t′  of the system. This approach seems for us easier in constructing the 
quantum states of the studied system in comparison with others [3] [4] [5]. 
Moreover, we have expressed the uncertainty principle and verified its validity 
for all time. Numerical computations have also been performed to illustrate the 
dynamic localization of the wave packet of the system. 

Let us argue that our analysis indicates that the effect of the periodic variation 
of the interaction is to generate the coherence and the squeezed proprieties of 
the wave-packet of this system and that the effect of the periodic variation of 
( )tΩ  involves an oscillating correction of the uncertainty relation. In addition 

a divergent character of this correction at a primary resonance frequency 

0ω ω=  of the system is observed. 
Let us note that in the absence of the perturbation, we recover the uncertainty 

relation of the simple oscillator. Let us also note that if we consider the parame-
ter 0δ = , we recover the results established for the forced harmonic oscillator 
[17], signifying that the trapped charged particles can be seen as harmonic oscil-
lator with a time modulated frequency ( )tΩ . Our studies argued that the Paul 
trapped ions may constitute a good promising candidate for physical realization 
of a quantum computer.  

Comparisons of our results, with works published by other authors who have 
used different methods [3] [15] [23] [24] reveal a good concordance. Our results 
may play an interesting complementary role in the treatment of various har-
monically confined system. We project to apply our approach to a nonlinear 
driven Duffing oscillator. 
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Appendices 

 : Reduced Planck’s constant. 
( )n tϕ : Eigenstates of the operator R. 

nE : Eigenvalues of R (Quasi-energies). 
n : Sates of the unperturbed system. 

( )n tψ : Floquet states. 
p: Impulsion operator. 
q: Position operator. 
m: Mass of the particle.  
δ : Parameter of the trap chamber. 

0ω : Unperturbed oscillator frequency. 
a: Annihilation operator. 
a+: Creation operator. 

( )1Im tη : Imaginary part of ( )1 tη . 
( )2Re tη : Real part of ( )2 tη . 

1η : Modulus of ( )1 tη . 
( )2 tη  : Complex conjugate of ( )2 tη .  

 
 

https://doi.org/10.4236/jamp.2020.84054

	Non-Perturbative Treatment of Quantum Mathieu Oscillator
	Abstract
	Keywords
	1. Introduction
	2. Theoretical Strategy [17] [18]
	3. Application to the Quantum Mathieu Oscillator
	3.1. Analytical Results
	3.2. Numerical Results 

	4. Conclusions and Outlook
	Conflicts of Interest
	References
	Appendices

