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Abstract 
In this paper, we study a drive-response discrete-time dynamical system 
which has been coupled using convex functions and we introduce a synchro-
nization threshold which is crucial for the synchronizing procedure. We pro-
vide one application of this type of coupling in synchronized cycles of a ge-
neralized Nicholson-Bailey model. This model demonstrates a rich cascade of 
complex dynamics from stable fixed point to periodic orbits, quasi periodic 
orbits and chaos. We explain how this way of coupling makes these two chao-
tic systems starting from very different initial conditions, quickly get syn-
chronized. We investigate the qualitative behavior of GNB model and its 
synchronized model using time series analysis and its long time dynamics by 
the help of bifurcation diagram. 
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1. Introduction 

Traditionally, the study of long time behavior of a dynamical systems was based 
on the examples of ordinary differential equations with regular solutions and 
those solutions which remained in a bounded region of the phase space could be 
divided into two different types based on their local behavior: first, a stable equi-
librium point and second, a periodic (or quasi-periodic) oscillation. Edward Lo-
renz in 1961, by working on a simplified version of atmospheric transfer model 
which was consisting of three nonlinear ordinary differential equations, numer-
ically observed that a very small changing in the initial conditions of the system 
equations makes a huge difference on the long term behavior of their solutions 
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[1]. Indeed, his finding was due to one of the major properties of chaotic dy-
namical systems which later called as sensitive dependence on initial conditions 
or butterfly effect. 

Chaos is a complex nonlinear phenomenon that has been increasingly studied 
in the last three decades. During those years, many fields of science and engi-
neering have been affected by chaos studies. One of the most important 
achievements in nonlinear and complex dynamics is the discovery of synchro-
nized chaos. Synchronization happens when two events take place in synchrony 
at the same time and when time approaches infinity, the error between solutions 
of the first system and its synchronized one vanishes and approaches to zero. 
The synchronization between two dynamical systems is a well-known pheno-
mena occurring in Physics, Biology or Engineering and refers to a phenomenon 
that may occur when two or more oscillators are coupled. For the first time, 
Christiaan Huygens discovered synchronization of coupled pendulum clocks in 
1665 [2]. Occurrence of synchronization in coupled chaotic system composed of 
identical chaotic oscillators has been detected for the first time by Fujisaka and 
Yamada [3] and [4] and after that it has been reported by Pecora and Carroll [5]. 

The dynamics of coupled chaotic systems show properties which we cannot 
detect in the behavior of the individual elements [6]. Someone can find the same 
spatial synchronized fluctuations in biology, ecology and epidemiology [7] [8] 
[9] [10] [11]. Synchronization of complex population oscillations in natural sys-
tems has been examined widely by some researchers [12]. Bernd Blasius and Le-
wi Stone worked on a chaotic UPCA foodweb model and they claimed that the 
spatio-temporal structures associated with phase synchronization have impor-
tant implications for conservation ecology. They proposed that even though 
perturbation of a local patch population can bring them to the brink of extinc-
tion, the periodicity of spatial phase synchronization can help to buffer the en-
dangered population by colonizers. They also asserted that unlike this thought 
that population synchronization can cause global population extinction [13], 
however, phase synchronization can be useful for maintaining species persis-
tence. Their finding indicated that synchronization can shape the distribution 
and abundance of species even in continental scale. 

As we have already discussed, there are many varieties of synchronization. In 
this research, instead of exploring all of these different types of synchronization 
which have been proposed for different purposes and with various applications, 
we simply focus on the most fundamental case, and we will develop our new ap-
proach based on a basic mathematical concept. Indeed, the purpose of this paper 
is that after defining and setting the fundamental concepts which we need to es-
tablish the basis of our study, to demonstrate such configurations under a suita-
ble coupling method is possible. Moreover, we explore the dynamical and eco-
logical effects of synchronization of a host-parasitoid model which is a generali-
zation of Nicholson-Bailey model (GNB). The GNB model demonstrates regular 
and irregular or chaotic oscillations. We define a lift function which is techni-
cally a convex function and maps the orbits of the drive system into the orbits of 
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the response system. Using this convex function, we drive the response system 
which inherits all the complex qualitative dynamics of GNB model and mimics 
that certain properties of the motion which is shared between them. We investi-
gate numerically that this method of coupling, synchronizes completely the sta-
ble and periodic cycles and even the chaotic motions of GNB model and to do 
that, we need to adjust the synchronization constant to be closer to zero. We 
demonstrate the complex dynamics of GNB model and its coupled system by 
conducting some time series and bifurcation analysis. 

2. Drive-Response System Derivation 

In this section, we derive the coupled system corresponding to the drive system 
by defining a convex link function. We consider the following drive system:  

( )1 ,n nX g X+ =                         (2.1) 

where n
nX ∈  is the state vector of a general discrete-time drive system and 

: n ng →   is continuous. To find an appropriate response system, we provide 
the following definition [14]:  

Definition 2.1. Assume , nX Y ∈  are the state vectors of two non-linear 
discrete-time dynamical systems and a constant 0 1s< ≤ . Then, a continuous 
function ( ) ( ), , : 1h X Y s s X sY= − +  where 2 1: n nh + →   is called a link 
function which maps the orbits of first system keeping the same qualitative dy-
namics to the orbits of second system.  

Using the definition (2.1), we develop a new system which inherits the qualit-
ative features of the system (2.1) and has the following form  

( )( )1 1n n nY g s X sY+ = − +                   (2.2) 

and it is called response system. Now, for the following non-linear discrete-time 
dynamical system, we are going to develop a theorem which helps us to find the 
synchronization threshold. We consider the following drive-response system:  

( )
( )( )

1

1

,

1 .
n n

n n n

X g X

Y g s X sY
+

+

=


= − +
                 (2.3) 

where , n
n nX Y ∈  are the state vectors of drive system (2.1) and response sys-

tem (2.2) respectively, g is a mapping from n  to itself and a constant 
0 1s< ≤ . The Jacobian matrix for drive-response system (2.3) has the following 
form:  

( )

( ) ( )

0
:

g X
XJ

g h g h
X Y

∂ 
 ∂ =
∂ ∂ 

 ∂ ∂ 

                   (2.4) 

Definition 2.2. We say that the drive system (2.1) and response system (2.2) 
are in complete synchronization if  

lim 0n nn
Y X

→∞
− =                       (2.5) 
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Here, we imply to a general definition in synchronization theory which is cru-
cial for proposed coupling method.  

Definition 2.3. Let E be a Banach space. Then, the map :g E E→  is called a 
contraction mapping if there exists a constant 0 1α≤ <  such that for every 
pair of points ,X Y E∈ , we have ( ) ( )g X g Y X Yα− ≤ − , where α  is 
called a contraction constant of g on E [15].  

Now, we have the following result for drive-response system (2.3).  
Proposition 2.4. For drive-response system (2.3) if g is a contraction function, 

then the solutions eventually evolve identically in time and  

( )lim 1 0
n

e n
→∞

+ =  

where ( ) 1 11 n ne n Y X+ ++ = −  is the error between the solutions of the system 
(2.3).  

Proof. For drive-response system (2.3), we have:  

( ) ( )( ) ( )1 11 1n n n n ne n Y X g s X sY g X+ ++ = − = − + −  

We can easily see that for 0 1s< ≤ :  

( )( )1 n n n n ns X sY X s Y X− + − ≤ −  

for 0 1α≤ <  and since g is a contraction mapping, we can write:  

( ) ( )( ) ( ) ( )1 1 n n n n ne n g s X sY g X Y X e nα α+ = − + − ≤ − =  

That is to say  

( ) ( )1e n e nα+ ≤  

It is obvious that  

( )lim lim 0n nn n
e n Y X

→∞ →∞
= − =  

Therefore;  

( )lim 1 0
n

e n
→∞

+ =  

To obtain our rigorous results for complete synchronization, we need to find 
the normal form for drive-response system (2.3), we need to perform a few li-
near coordinate transformations that will put (2.3) into a form which is easier to 
work with [16]. First we transform the fixed point ( )* *,X Y  of the system (2.3) 
to the origin by the translation *X X X= +  and *Y Y Y= +  under which 
drive-response system (2.3) becomes  

( ) ( )
( )( ) ( )( ) ( )

* *
1

* * *
1

,
:

1 , .

n n n

n n n n n

X g X X X G X
F

Y g s X X s Y Y Y G X Y

+

+

 = + − ≡= 
= − + + + − ≡

    (2.6) 

The Jacobian matrix for drive-response system (2.6) has the following form: 

( )

( ) ( )

0
:

, ,

G X
XJ

G X Y G X Y
X Y

 ∂
 

∂ =
 ∂ ∂
 

∂ ∂ 

                  (2.7) 
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Then, we split off the linear part of the system (2.6) and write  

( )

( ) ( )
( )
( )

( ) ( )
( ) ( ) ( )

0

, , ,

, ,
,

G X
G XX XX

Y YG X Y G X Y G X Y
X Y

G X
X G X

X
G X Y G X Y

X Y G X Y
X Y

 ∂
      ∂   = +      ∂ ∂      

∂ ∂ 
 ∂

+ 
∂ =

 ∂ ∂
 + +

∂ ∂ 









        (2.8) 

where  

( )
( )

( )
( )

( )

( ) ( )

0

, , , ,

G X
G X G X XX

YG X Y G X Y G X Y G X Y
X Y

 ∂
      ∂    = −       ∂ ∂       

∂ ∂ 





      (2.9) 

Let Q be the matrix that transforms the matrix J  into (real) Jordan canoni-
cal form which has the following form  

( ) ( )

( )

( ) ( )

( )

( ) ( )

1

1 0
,

,
0

, ,
,

1 1
,

G X Y G X
G X Y G X

Y X
Y XQ Q G X Y

G X Y
X

X G X G X Y
X Y

−

 
 ∂ ∂  ∂ ∂ −

−  ∂ ∂ 
∂ ∂   = = ∂  ∂

   ∂
∂    ∂ ∂ −

 ∂ ∂ 

 

Then, under the transformation  

( ) ( )

( )

,
0

,
1

G X Y G X
UX Y X
VY G X Y

X

 ∂ ∂
−    ∂ ∂ =    ∂     

∂ 

             (2.10) 

(2.8) becomes  

( )
( )

1ˆ
,

U U G U
J Q

V V G U V
−     

= +     
     





                (2.11) 

where 1Ĵ Q JQ−=  . We remark that the transformation (2.10) has simplified the 
linear part of (2.8) as much as possible. One can continue the task of simplifying 
the nonlinear part. However, for our purpose, we only need to focus on the li-
near part of the system. The schematic representation of the procedure of com-
plete synchronization in a general discrete-time drive-response dynamical sys-
tem has been demonstrated in Figure 1. 

Hartman (1960) and Grobman (1959) proved that the orbit structure near a 
hyperbolic fixed point has the same qualitative structure of associated linearized 
system [17] [18] [19]. According to Hartman-Grobman theorem, the dynamical  
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Figure 1. The schematic diagram for complete synchronization in a discrete-time 
drive-response dynamical system. 
 
systems behave similar to their linearization part around the fixed point. How-
ever, this theorem needs the linearization part without eigenvalues with real part 
zero for continuous-time system and for discrete-time systems, it needs the ab-
solute value of the eigenvalues of linearized part not become one.  

Remark 1. Because of the nature of the contraction mapping theorem and 
therefore the proposed coupling method, the Hartman-Grobman theorem can 
be applied directly into our problem.  

Lemma 2.5. Using Hartman-Grobman theorem, to find the condition under 
which the drive-response system (2.11) achieves complete synchronization, we 
only need to look at the linear part of (2.11) which is  

( ) 1,L U V Q JQ−≡                         (2.12) 

Theorem 2.6. Given Jacobian matrix 1Ĵ Q JQ−=  , for which the following 
inequality holds: 

ˆ
ˆ : max 1iJJ ρ λ α= = ≤ <                   (2.13) 

where α  is the contraction constant, Ĵρ  is the spectral radius of Ĵ  and iλ  
for 1, ,i n=   are the eigenvalues of Jacobian matrix Ĵ . Then, the mapping G 
is a contraction and the drive-response system (2.11) satisfies the complete syn-
chronization properties, i.e. 

( ) 1 1lim 1 lim 0n nn n
e n Y X+ +→∞ →∞

+ = − =  

Proof. Using the contraction mapping theorem [20].  
In dynamical system point of view, it is possible for a point arbitrarily close to 

fixed point ( )* * *,Z U V=  of system (2.11) to generate an orbit which stays ar-
bitrarily close to *Z . An orbit which could circle around the equilibrium *Z  
staying within the proposed bounded region, for initial conditions sufficiently 
close to *Z , could eventually approach *Z . In this case, *Z  and all invariant 
set of points which demonstrating the same attractive property called attractor. 
Using this statement, we define an attractor of drive-response system (2.11):  

Definition 2.7. Let nΛ ⊂   such that Λ  is invariant under the function G; 
i.e., ( )G Λ ⊆ Λ . We define the distance between Λ  and a point Z, as  
( ), min zd Z Z z∈ΛΛ = − . If there exists an 0>  such that ( ),d ZΛ <   im-

plies ( )( )lim , 0d G Z→∞ Λ =



, then Λ  is called an attractor for drive-response 
system (2.11). 
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For a stable fixed point, it is of special interest to determine the set of initial 
conditions whose subsequent orbits end up at this fixed point and we call this set 
as the basin of attraction of stable fixed point which achieves by the following 
definition: 

Definition 2.8. Given 2 1 2: n nG + →   a continuously differentiable map, 
then, the compact and invariant set Γ  is called the attracting set of drive-response 
system (2.11) if there exists an open neighborhood B of Γ  such that ( )G B B⊂  
and ( )0G B∞

=
= Γ





. The largest such B is called the basin of attraction for sys-
tem.  

Stable Threshold for Synchronization in Discrete-Time Dynamical 
Systems 

We continue this section by defining a new concept in synchronization theory of 
discrete-time dynamical systems. The concept of stability in this study is similar 
to the one that we have in contraction mapping theorem which is different from 
the relative stability of equilibrium point and some nominal motion. We say that 
a system is stable if the final state of the system is independent on initial condi-
tions and we call a system is attracting if the orbits of that system get pulled in or 
converge towards each other [21]. In general, stability can be interpreted as a 
property of solutions of a dynamical system which means all solutions converge 
towards each other [22]. 

Definition 2.9. A variable response system to the dynamical system  

0 1, , , nX X X , with the map : n nD DΦ ⊆ → ⊆   with respect to the se-
quence ( )0 1, , , ns s s s=   where 0 1is< ≤  is the sequence  

( ) ( )( )0 1 1, , , , n
n

s
n n nXY Y Y Y Cont Y+= = Φ 

   where the map :s n n
uCont →   can 

be represented via ( ) ( )1s
uCont v s u sv= − +

  .  
Definition 2.10. The threshold for the coupled dynamical system with drive 

system 0 1, , , nX X X , with the map : n nD DΦ ⊆ → ⊆   is s if given any 
s s<  and any 0Y , there exists a sequence ( )0 1, , , ns s s s=   with 0 1is< ≤  
and is s=   for 0i   such that  

lim 0n nn
Y X

→∞
− =                      (2.14) 

Using the definitions (2.9) and (2.10), we state the main results of this section.  
Theorem 2.11. Consider a linear discrete-time dynamical system (drive-response 

system) as following form:  

1 .n nX AX+ =                         (2.15) 

( )( )1 1 .n n nY A s X sY+ = − +                   (2.16) 

where matrix A is similar to a diagonal matrix. For the values 
( )1
1s s
Aρ

< =  
where 1s  represents the synchronization threshold, we have  

lim 0n nn
Y X

→∞
− =  

and passing this threshold decreases the stability of synchronization and conse-
quently, the drive-response system (2.15) and (2.16) lose the complete synchro-
nization properties.  
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Proof. Considering the drive system (2.15) and (2.16), we have  

1 1 .n n n nY X sA Y X+ +− ≤ −                  (2.17) 

To have a complete synchronization, at first we need to clarify the concept of 
the norm of a matrix. To find the behavior of the sequence of { }A , we need to 
look at the modulus of the largest eigenvalue of A. But, for the initial value 

0 0X = , we have 0 1 2 0nX X X X= = = = = . So, (2.16) can be written as  
( )1n nY A sY+ = . Thus, for n  to be the direct sum of 

1 2 n

n V V Vλ λ λ= ⊕ ⊕ ⊕  
where iλ  are the eigenvalues of the matrix A, we have 1n nY sAY+ = . For the se-
quences 1 2, , , nY Y Y , we have:  

( ) ( )

( )

1 0
2

2 1 0 0

0
n

n

Y sAY
Y sAY sA sA Y sA Y

Y sA Y

=
= = =

=


 

we need to find minimal k where 
1 20 i i ik

Y V V Vλ λ λ∈ ⊕ ⊕ . So, for 0 1
k

jjY v
=

= ∑  
and for all 

i jjv Vλ∈ , we have ( )1 j

nk
n i jjY s vλ

=
= ∑ . So, for 

ji i iAv vλ=  , we can 
write, lim 0n nY→∞ =  if and only if ( )lim 0

j

n

n i js vλ→∞ =  which gives us 1
jisλ <   

if and only if 1

ji

s
λ

≤ . If 0Y  is generic, we get 1s
λ

≤  for all λ  which gives 

( )
1s
Aρ

< , where, ( )Aρ  is the spectral radius of A and can be written as  

( )( ) max iA nρ λ= . Therefore, the threshold for (2.15) and (2.16) to be completely  

synchronized is 
( ) 1
1s s
Aρ

< =  . When we pass this threshold, two systems (2.15) 

and (2.16) cannot be completely synchronized anymore.  
Now, for the non-linear discrete-time dynamical system, we are going to de-

velop a theorem which helps us to find the synchronization threshold.  
Theorem 2.12. Given the non-linear coupled dynamical system (2.3), where 

the map : n ng D D⊆ → ⊆  , for the values 2
1

A

s s
ρ α

< =
+

 , we get  

lim 0n nn
Y X

→∞
− =  

means that passing the synchronization threshold 2s  makes the drive-response 
system (2.3) lose the complete synchronization properties.  

Proof. Suppose the following rC  maps which have a fixed point at the origin:  

( )1
ˆ ,n n nX AX F X+ = +                     (2.18) 

( )( ) ( )( )1
ˆ1 1 ,n n n n nY A s X sY F s X sY+ = − + + − +          (2.19) 

and the ( ) ( ) ( ) ( )( )2 1
ˆ ˆ ˆ r

n n r n nF X F X F X O X−= + + +
 which including the 

vector-valued homogeneous polynomials of degree 2, ,r . Consider the fol-
lowing equation for the error:  

( )
( ) ( )( ) ( )

( ) ( )( ) ( )

1 11
ˆ ˆ1 1

ˆ ˆ1

n n

n n n n n n

n n n n n

e n Y X

s AX sAY AX F s X sY F X

sA Y X F s X sY F X

+ ++ = −

= − + − + − + −

= − + − + −
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By triangular inequality we can write:  

( ) ( ) ( )( ) ( )

( ) ( )

ˆ ˆ1 1n n n n n

A n n n n

A

e n sA Y X F s X sY F X

s Y X s Y X

s e n s e n

ρ α

ρ α

+ = − + − + −

≤ − + −

= +

 

where, Aρ  is the spectral radius of A which is equal to maxA iρ λ=  where λ  
is the root of characteristic polynomial or eigenvalue for A and 0 1α≤ <  and 
0 1is< ≤  (to find the behavior of the sequence of { }A , we need to look at the 
modulus of the largest eigenvalue of A). So,  

( ) ( ) ( )1 Ae n s e n s e nρ α+ ≤ +  

We know that  

( )lim lim 0n nn n
e n Y X

→∞ →∞
= − =  

Therefore,  

( ) ( ) ( )1 Ae n s e nρ α+ ≤ +  

Thus, for ( ) 1As ρ α+ <  we have  

lim 0n nn
Y X

→∞
− =  

for which, 2
1

A

s s
ρ α

< =
+

 . Here, 2s β= , which we discussed in the beginning  

of this section. After passing 2s , we lose the complete synchronization in system 
(2.3).  

Lemma 2.13. If drive system (2.15) becomes periodic. Then, for the values 
1

3
1 :

k

A

s s
ρ α

 
< = + 

 , where 3s  implies to the synchronization threshold, the  

non-linear coupled dynamical system (2.3) becomes completely synchronized. 
In other word,  

lim 0n nn
Y X

→∞
− =  

3. Synchronized Cycles in Generalized Nicholson Bailey  
(GNB) Model: Description of the Model 

Generalized Nicholson Bailey (GNB) model is a generalization of the work pre-
sented by Beddington, Free and Lawton in 1975 [23]. They have investigated the 
complex dynamics of a host-parasitoid model which was an extension work of 
Nicholson-Bailey model in 1935 [24]. This model depends on three biological 
parameters a, k and r and has the following form  

( ) ( )
( ) ( )

( ) ( ) ( )( )
1

1 e , 1 1 e
H n

r aP n
k aP nH n H n P n H n

 
− −   − + = + = −      (3.1) 

where ( )H n  presents the host population after being attacked by the parasito-
id and ( )P n  implies to the parasitoids population before they die because of 
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biological reasons like shortage of food and or some other natural biological 
reasons at the end of the season n. k is the carrying capacity and shows maxi-
mum population size that can be supported by availability of all the potentially 
limiting resources. It is usually limited by the intensity of light and space. The 
fractions of hosts not parasitized is ( )( )exp aP n−  where a is called the search-
ing efficiency which is the probability that a given parasitoid confronts a host 
whole of the lifetime. 

Here, we focus on the above model including a new parameter b which has 
the following form  

( ) ( )
( ) ( )

( ) ( ) ( )( )
1

1 e , 1 1 e
H n

r bP n
k aP nH n H n P n H n

 
− −   − + = + = −     (3.2) 

Without loss of generality, we assume b r=  and follow the same model as-
sumptions as Asheghi in 2014 [25]. Therefore, (3.2) can be written as the form:  

( ) ( )
( ) ( )

( ) ( ) ( )( )
1

1 e , 1 1 e
H n

r rP n
k aP nH n H n P n H n

 
− −   − + = + = −     (3.3) 

The local dynamics of system (3.3), have been studied by different authors 
numerically and analytically [25] [26]. We replace ,H P  in (3.3) with ,x y  re-
spectively and re wright (3.3) as the following form  

( ) ( )
( ) ( )

( ) ( ) ( )( )
1

1 e , 1 1 e
x n

r ry n
k ay nx n x n y n x n

 
− −   − + = + = −       (3.4) 

Now, we apply this coupling method on the system (3.4). Consider the fol-
lowing drive-response system:  

( ) ( )
( ) ( )1

11

1 11 e
x n

r ry n
kx n x n

 
− −  

 + =                 (3.5) 

( ) ( ) ( )( )1
1 11 1 e ay ny n x n −+ = −                  (3.6) 

( )
1

2 1 e
pr rq
kx n p

 − − 
 + =                     (3.7) 

( ) ( )2 1 1 e aqy n p −+ = −                    (3.8) 

where  

( ) ( ) ( )1 21p s x n sx n= − +                   (3.9) 

( ) ( ) ( )1 21q s y n sy n= − +                  (3.10) 

Here, 2:p →   and 2:q →   are two continuous functions. So, if we 
consider the drive system ( ) 2 2

1 1 1, :G x y →  , the synchronized system would 
be ( ) 4 2

2 , :G p q →  , where ( )1 2,p x x=  and ( )1 2,q y y= . The local stabili-
ty results for the drive system (3.5) - (3.6) and (3.7) - (3.8) are the same. To in-
vestigate the qualitative dynamics of the solutions of system (3.5) - (3.8), we use 
several dynamical systems tools.  

Synchronized Cycles in GNB Model without Parasitoid 

Here, we show that in system (3.4), when the parasitoid populations go extinct 
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(because of severe intraspecific competition or due to external factors), the dy-
namics of (3.4) inherits all different behaviors of Ricker curves from stable fixed 
point to cascade of period doubling bifurcations and then chaos [27] [28]. We 
rewrite the drive-response system (3.5) - (3.8) in one dimension as the following 
form:  

( ) ( )
( )11

1 11 e
x n

r
kx n x n

 
−  

 + =                   (3.11) 

( )
1

2 1 e
pr
kx n p

 − 
 + =                     (3.12) 

where 

( ) ( ) ( )1 21p s x n sx n= − +                   (3.13) 

Here, 2:p →   is a continuous function. So, if we consider the drive sys-
tem ( )1 1 :R x →  , the synchronized system would be ( ) 2

2 :R p →  , 
where p is a function of 1x  and 2x .  

We have demonstrated the time-series corresponding to the solution of the 
drive-response system (3.11) - (3.12) in Figure 2. As we can see, with increasing 
the growth rate r, the behavior of system changes from stable equilibrium point 
to periodic behavior and then to irregular and chaotic dynamics which was ex-
pected since the system (3.11) - (3.12) has the same form and so dynamics of 
Ricker model. 

Also, we performed a one co-dimensional bifurcation analysis for system 
(3.11) - (3.12) with respect to growth rate r in Figure 3(a) to discover the long 
term behavior of the system and we have compared the solution of drive system 
(3.11) with the response system (3.12) by showing the error between the solu-
tions in Figure 3(b). As we will discuss also in Section 4, when synchronization 
constant s is larger, the drive-response system cannot be synchronized com-
pletely. Moreover, we have shown the Lyapunov Exponent corresponding the 
drive-response system (3.11) - (3.12) in Figure 3(c) which is the best place to  
 

 
Figure 2. Evolution of host population 1x  and its coupled 2x  in time for for drive-response 
system (3.11) - (3.12) when 0.95s = , 10k = . 
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Figure 3. (a): bifurcation diagram for drive-response system (3.11) - (3.12) when 

0.95s = , 10k = , red (drive system) and black (response system); (b): the error between 
the solutions of drive system and response system receptively; (c): the Lyapunov 
Exponent corresponding to drive-response system (3.11) - (3.12) when 0.95s = , 10k = , 
red (drive system) and black (response system). 
 
investigate the stability or chaotic behavior of system (3.11) - (3.12). As we 
know, the negative Lyapunov Exponent implies to stable behavior and when it is 
positive, we expect to see chaotic behavior. 

4. Numerical Simulations 

In chaotic systems, it seems to not being possible to reproduce exactly the same 
initial conditions and parameters and force the orbits converge. However, in this 
section, we will numerically show that by using a sufficiently strong coupling 
method, we can change the track of the orbits to converge. Therefore, there ex-
ists a possible way to get a complete synchronization in chaotic systems whereas 
they have been coupled by a suitable coupling method.  

In this section, we demonstrate some numerical simulation to describe the 
qualitative behavior of drive-response system (3.5) - (3.8). The orbits of the sys-
tem (3.5) - (3.8) in chaotic regime can be considered as chaotic oscillations. Now 
we want to study the evolution of the dynamic variables 1 2,x x  corresponding to 
the host population of drive system and response system, and 1 2,y y  which are 
corresponding to the parasitoid population of drive system and response system 
respectively. All analysis and numerical simulations which have been conducted 
in this section, are expected to reveal the type of attractor from equilibrium 
point, periodic and quasi-periodic orbits, and chaotic attractors for which the 
dynamics will eventually settle down and remain forever.  

In Figure 4, we can see the evolution of the attractors of drive system (red 
color) and response system (black color) when we change the growth rate r. As 
we see, as long as we are increasing r, the dynamics of the system change from 
the stable equilibrium point which loses stability and arises to a limit cycle. This 
figure demonstrates that the drive and response system with different initial 
conditions, and for the smaller value of the synchronization constant s, become 
completely synchronized. 
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Figure 4. Attractors for drive-response system (3.5) - (3.8) when 0.5s = , 40a = , 

10k = , from up left side 1.08,1.087,1.095r = , and from down left side 1.099,1.1,1.15r = . 
 

In Figure 5, we increase the value of the synchronization constant s and we 
notice that two systems keep the same qualitative behavior from stable equili-
brium point to limit cycle but they are not completely synchronized. 

In Figure 6, we demonstrated the evolution of host population for drive-response 
system (3.5) - (3.8) (The interested parameters values have been selected from 
the given bifurcation diagram). For fixed parameter values 0.5s = , 40a = , 

10k = , and different growth rate r, we can easily see how the time series for 

1 2,x x  change from stable and periodic oscillations to chaotic motions. However, 
as we discussed before, for smaller synchronization constant s, both 1x  and its 
coupled 2x  are completely synchronized. With previous illustration about the 
chaotic synchronization, we conclude that using this method of coupling, we can 
expect to get a complete synchronization in chaotic regime for smaller synchro-
nization constant s which this has been demonstrated for growth rate 3.8r =  
in Figure 6. 

However, when we compare Figure 6 with Figure 7, the coupling method 
which has been explained in Section 2, is successful when the synchronization 
constant s has smaller values and is closer to zero. With increasing the synchro-
nization constant s, we noticed that two convex functions (3.9) and (3.10) which 
we introduced in Section 2 cannot make a complete synchronization between 
the drive and response systems (3.5) - (3.8). For different growth rate r, bifurca-
tion diagrams for drive system (3.5), (3.6) and response system (3.7), (3.8), have 
been demonstrated for fixed synchronization constant 0.5s =  in Figure 8 and 
for fixed synchronization constant 0.95s =  in Figure 9. The one-co-dimensional 
bifurcation diagram helps us to know about the dependence of the drive-response 
dynamical systems (3.5) - (3.8) on the certain parameter which here is the 
growth rate r. Here, we are expecting to get completely synchronization for 

0.5s =  (Figure 8) and we do not expect to get a complete synchronization 
phase for 0.95s =  (Figure 9). 

As it can be easily seen in Figure 8 and Figure 9, the dynamics of host popu-
lation for drive-response system (3.5) - (3.8), for some range of parameter values  
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Figure 5. Attractors for drive-response system (3.5) - (3.8) when 0.99995s = , 40a = , 

10k = , from up left side 1.08,1.087,1.095r = , and from down left side 1.099,1.1,1.15r = . 
 

 
Figure 6. Evolution of host population 1x  and its coupled 2x  in time for drive-response 
system (3.5) - (3.8) when 0.5s = , 40a = , 10k = . 
 

 
Figure 7. Evolution of host population 1x  and its coupled 2x  in time for drive-response 
system (3.5) - (3.8) when 0.5s = , 40a = , 10k = . 
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Figure 8. Up: bifurcation diagram for drive-response system (3.5) - (3.8) for 40a = , 

0.5s = , 10k = . Down: the error between the solutions of drive system and response 
system receptively. 
 

 
Figure 9. Up: bifurcation diagram for drive-response system (3.5) - (3.8) for 40a = , 

0.95s = , 10k = , red (drive system) and blue (response system). Down: the error 
between the solutions of drive system and response system receptively. 
 
r and when ( ) ( )1 2, 0,0y y =  (without parasitoid), is similar to classical bifurca-
tion diagram of Ricker model where the routes to chaos happen through the 
cascade of period-doubling bifurcations and crisis corresponding to the extinc-
tion of parasitoid for drive and response system. However, for smaller values of 
growth rate r, the host and parasitoid in both systems can coexist through the 
periodic and quasi-periodic cycles of the Neimark-Sacker bifurcation of interior 
steady states. We also can easily observe that the sudden changes of attractors 
(crisis) happen frequently when we increase the parameter values of r. 

5. Conclusion 

In this paper, we developed a drive-response system by defining a convex conti-
nuous link function which maps the orbits of the drive system into the orbits of 
its coupled system and keeps the same qualitative dynamics. We found an ap-
propriate normal form for drive-response system and we obtained the condi-
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tions under which the solutions of drive and response system become complete-
ly synchronized. We provided a new concept in chaos synchronization, called, 
synchronization threshold, which means that the solutions of drive and response 
system diverge from each other and lose the complete synchronization proper-
ties when they pass the threshold. Also, we studied a coupled discrete-time 
two-dimensional host-parasitoid model which is a generalization of famous Ni-
cholson-Bailey model. One of our objectives in this paper was to investigate the 
rich dynamics of drive-response system (3.5) - (3.8) around its equilibrium 
points and achieving the chaos synchronization. We developed a new 
drive-response system by defining a convex continuous link function which 
maps the orbits of the drive system keeping the same qualitative properties such 
as stability and periodicity into the orbits of its coupled system. We observed 
that this coupling method can be successful for drive-response system (3.5) - 
(3.8) to get a complete synchronization when the synchronization constant has 
smaller values, closer to zero. Moreover, numerical verification is performed to 
show the existence of wide range of dynamics of drive-response system (3.5) - 
(3.8) around the positive equilibrium point. We also changed the values of syn-
chronization constant s in its range between (0, 1) and we observed that the re-
sponse system (3.7) - (3.8) for smaller values of synchronization constant s is 
completely synchronized with its original drive system (3.5) - (3.6) and when we 
increased the values of synchronization constant s, we noticed that the qualita-
tive behaviors of both systems remain the same, however, we do not get a com-
plete synchronization between the solutions of drive and response system (3.5) - 
(3.8). In chaotic regime, for larger values of synchronization constant s, closer to 
one, we could not get a complete synchronization. But, for smaller synchroniza-
tion constant s, closer to zero, we have shown that two systems are in complete 
synchronization when the dynamic is chaotic.  

Acknowledgements 

This work was supported by the Institute of Computational Comparative Medi-
cine (ICCM) and Department of Mathematics of Kansas State University. With a 
special thanks to Dr. Majid Jaberi-Douraki for his full support. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Lorenz, E.N. (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric 

Sciences, 20, 130-141.  
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 

[2] Pikovsky, A., Kurths, J., Rosenblum, M. and Kurths, J. (2003) Synchronization: A 
Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge, 
12. 

https://doi.org/10.4236/ajcm.2020.101009
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2


T. Azizi, G. Kerr 
 

 

DOI: 10.4236/ajcm.2020.101009 163 American Journal of Computational Mathematics 
 

[3] Fujisaka, H. and Yamada, T. (1983) Stability Theory of Synchronized Motion in 
Coupled-Oscillator Systems. Progress of Theoretical Physics, 69, 32-47. 
https://doi.org/10.1143/PTP.69.32 

[4] Yamada, T. and Fujisaka, H. (1983) Stability Theory of Synchronized Motion in 
Coupled-Oscillator Systems. II: The Mapping Approach. Progress of Theoretical 
Physics, 70, 1240-1248. https://doi.org/10.1143/PTP.70.1240 

[5] Pecora, L.M. and Carroll, T.L. (1990) Synchronization in Chaotic Systems. Physical 
Review Letters, 64, 821. https://doi.org/10.1103/PhysRevLett.64.821 

[6] Balmforth, N.J., Jacobson, A. and Provenzale, A. (1999) Synchronized Family Dy-
namics in Globally Coupled Maps. Chaos: An Interdisciplinary Journal of Nonli-
near Science, 9, 738-754. https://doi.org/10.1063/1.166448 

[7] Moran, P.A.P. (1953) The Statistical Analysis of the Canadian Lynx Cycle. Austral-
ian Journal of Zoology, 1, 291-298. https://doi.org/10.1071/ZO9530291 

[8] Bulmer, M.G. (1974) A Statistical Analysis of the 10-Year Cycle in Canada. The 
Journal of Animal Ecology, 47, 701-718. https://doi.org/10.2307/3532 

[9] Korpimäki, E. and Krebs, C.J. (1996) Predation and Population Cycles of Small 
Mammals: A Reassessment of the Predation Hypothesis. BioScience, 46, 754-764. 
https://doi.org/10.2307/1312851 

[10] Ranta, E., Kaitala, V. and Lundberg, P. (1997) The Spatial Dimension in Population 
Fluctuations. Science, 278, 1621-1623.  
https://doi.org/10.1126/science.278.5343.1621 

[11] Gurney, W.S.C., Crowley, P.H. and Nisbet, R.M. (1992) Locking Life-Cycles onto 
Seasons: Circle-Map Models of Population Dynamics and Local Adaptation. Journal 
of Mathematical Biology, 30, 251. https://doi.org/10.1007/BF00176151 

[12] Blasius, B. and Stone, L. (2000) Chaos and Phase Synchronization in Ecological 
Systems. International Journal of Bifurcation and Chaos, 10, 2361-2380. 
https://doi.org/10.1142/S0218127400001511 

[13] Earn, D.J.D., Rohani, P. and Grenfell, B.T. (1998) Persistence, Chaos and Synchrony 
in Ecology and Epidemiology. Proceedings of the Royal Society of London. Series B: 
Biological Sciences, The Royal Society, 265, 7-10. 
https://doi.org/10.1098/rspb.1998.0256 

[14] Azizi, T. and Kerr, G. (2020) Chaos Synchronization in Discrete-Time Dynamical 
Systems with Application in Population Dynamics. Journal of Applied Mathematics 
and Physics, 8, 406-423. https://doi.org/10.4236/jamp.2020.83031 

[15] Kolmogorov, A.N. and Fomin, S.V. (1957) Elements of the Theory of Functions and 
Functional Analysis. 

[16] Wiggins, S. (2003) Introduction to Applied Nonlinear Dynamical Systems and 
Chaos. Princeton University Press, Princeton, NJ, 2. 

[17] Grobman, D.M. (1959) Homeomorphism of Systems of Differential Equations. 
Doklady Akademii Nauk SSSR, 128, 880-881. 

[18] Hartman, P. (1960) On Local Homeomorphisms of Euclidean Spaces. Boletín de la 
Sociedad Matemática Mexicana, 5, 220-241. 

[19] Hartman, P. (1960) A Lemma in the Theory of Structural Stability of Differential 
Equations. Proceedings of the American Mathematical Society, 11, 610-620. 
https://doi.org/10.1090/S0002-9939-1960-0121542-7 

[20] Conrad, K. (2014) The Contraction Mapping Theorem, II. 

[21] Russo, G. (2010) Analysis, Control and Synchronization of Nonlinear Systems and 

https://doi.org/10.4236/ajcm.2020.101009
https://doi.org/10.1143/PTP.69.32
https://doi.org/10.1143/PTP.70.1240
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1063/1.166448
https://doi.org/10.1071/ZO9530291
https://doi.org/10.2307/3532
https://doi.org/10.2307/1312851
https://doi.org/10.1126/science.278.5343.1621
https://doi.org/10.1007/BF00176151
https://doi.org/10.1142/S0218127400001511
https://doi.org/10.1098/rspb.1998.0256
https://doi.org/10.4236/jamp.2020.83031
https://doi.org/10.1090/S0002-9939-1960-0121542-7


T. Azizi, G. Kerr 
 

 

DOI: 10.4236/ajcm.2020.101009 164 American Journal of Computational Mathematics 
 

Networks via Contraction Theory: Theory and Applications. University of Naples 
Federico II, Italy. 

[22] Angeli, D. (2002) A Lyapunov Approach to Incremental Stability Properties. IEEE 
Transactions on Automatic Control, 47, 410-421. https://doi.org/10.1109/9.989067 

[23] Beddington, J.R., Free, C.A. and Lawton, J.H. (1975) Host-Parasitoid Dynamics of a 
Generalized Thompson Model. Nature, 255, 719-732. 

[24] Nicholson, A.J. and Bailey, V.A. (1935) The Balance of Animal Populations Part I. 
Proceedings of the Zoological Society of London, 105, 551-598. 
https://doi.org/10.1111/j.1096-3642.1935.tb01680.x 

[25] Asheghi, R. (2014) Bifurcations and Dynamics of a Discrete Predator: Prey System. 
Journal of Biological Dynamics, 8, 161-186. 
https://doi.org/10.1080/17513758.2014.927596 

[26] Kapçak, S., Ufuktepe, Ü. and Elaydi, S. (2013) Stability and Invariant Manifolds of a 
Generalized Beddington Host-Parasitoid Model. Journal of Biological Dynamics, 
148, 233-253. https://doi.org/10.1080/17513758.2013.849764 

[27] Ricker, W.E. (1954) Stock and Recruitment. Journal of the Fisheries Board of Can-
ada, 11, 559-623. https://doi.org/10.1139/f54-039 

[28] Azizi, T., et al. (2015) Dynamics of a Discrete-Time Plant-Herbivore Model. Cas-
pian Journal of Mathematical Sciences, 4, 241-256. 

 

https://doi.org/10.4236/ajcm.2020.101009
https://doi.org/10.1109/9.989067
https://doi.org/10.1111/j.1096-3642.1935.tb01680.x
https://doi.org/10.1080/17513758.2014.927596
https://doi.org/10.1080/17513758.2013.849764
https://doi.org/10.1139/f54-039


T. Azizi, G. Kerr 
 

 

DOI: 10.4236/ajcm.2020.101009 165 American Journal of Computational Mathematics 
 

Appendix 

We have demonstrated different types of attractors of drive-response system 
(3.5) - (3.8) in Figures A1-A4 when we are changing the threshold s. 

 

 
Figure A1. Attractors for drive-response system (3.5) - (3.8) when 0.94s = , 5a = , 

1.5k = , from up left side 2.0,2.2,2.3r = , and from down left side 2.5,2.7,2.8r = . 
 

 
Figure A2. Attractors for drive-response system (3.5) - (3.8) when 0.95s = , 5a = , 

1.5k = , from up left side 2.0,2.2,2.3r = , and from down left side 2.5,2.7,2.8r = . 
 

 
Figure A3. Attractors for drive-response system (3.5) - (3.8) when 0.96s = , 5a = , 

1.5k = , from up left side 2.0,2.2,2.3r = , and from down left side 2.5,2.7,2.8r = . 
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Figure A4. Attractors for drive-response system (3.5) - (3.8) when 0.99s = , 5a = , 

1.5k = , from up left side 2.0,2.2,2.3r = , and from down left side 2.5,2.7,2.8r = . 
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