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Abstract 
In this article, we consider subclasses of functions with bounded turning for 
normalized analytic functions in the unit disk, we investigate certain condi-
tions under which the partial sums of the modified Caputo’s fractional deriv-
ative operators of analytic univalent functions of bounded turning are also of 
bounded turning. 
 
Subject Areas 
Mathematical Analysis 
 
Keywords 
Analytic Functions, Close-to-Convex, Bounded Turning, Univalent 

 

1. Introduction and Definitions  

Let   denote a class of all analytic functions of the form 
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k
k

k
f z z a z

∞

=

= + ∑                       (1.1)  

which are analytic in the open unit disk { }: 1U z z= <  and normalized by 
( ) ( )0 0 1 0f f ′= − =  
Definition 1. 
Let ( ),0 1B µ µ≤ <  denote the class of functions of the Form (1.1) then if 
{ }f µ′ℜ > , that is the real part of its first derivative map the unit disk onto the 

right half plane, then the class of functions in ( )B µ  are called functions of 
bounded turning.  
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By Nashiro Warschowski, see [1], it is proved that the functions in ( )B µ  are 
univalent and also close to convex in U. In [2], it was also shown that the partial 
sums of the Libera integral operator of functions of bounded turning are also of 
bounded turning. For more works on bounded turning see [3] [4]. 

Definition 2. 

If ( )
0
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f z a z
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=

= ∑  and ( )
0
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g z b z
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= ∑  are analytic in U, then their Hadamard 

product *f g  defined by the power series is given by: 
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Note that the convolution so defined is also analytic in U. 
For ƒ of the Form (1.1) several interesting derivatives operators in their dif-

ferent forms have been studied, here we consider (1.1) using the modified Ca-
puto’s derivative operator ( ),J f zη λ , see [5] [6], stated as follow: 

For f ∈ , ( ) ( )
( ), 10

2 d
z f

J f z z
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where η  is a real number and 1 2η λ η− < ≤ < . Notice that (1.3) can also be 
express as: 
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and its partial sum given as: 
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We determine conditions under which the partial sums of the operator given 
in (1.4) are of bounded turning. We shall use the following lemmas in the sequel 
to establish our result. 

Lemma 1. [7]  
For z U∈ , we have 
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1 ,
2 3
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z z U
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ℜ > − ∈ + 
∑                   (1.6) 

Lemma 2. [1]  

Let P(z) be analytic in U, such that P(0) = 1, and ( )( ) 1
2

P zℜ >  in U. For  

function Q analytic in U the convolution function *P Q  takes values in the 
convex hull of the image U under Q. 

We shall implore lemmas 1 and 2 to show conditions under which the m-th 
partial sum (2.1) of the modified Caputoes derivative operator of analytic univa-
lent functions of bounded turning is also of bounded turning. 

2. Main Theorem  

Let ( )f z ∈  be of the Form (1.1), if 
1 1
2

µ< <  and ( ) ( )f z B µ∈ , then 
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( ) ( )( )( )( )3 2 2 1
3MP z B

η λ η µ − + − − −
∈   

 
, 1 2η λ η− < ≤ < . 

Proof. 

Let ( )f z  be of the Form (1.1) and ( ){ } 1, 1,
2

f z z Uµ µ′ℜ > < < ∈ . This im-

plies that  
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Now for 
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µ< <  we have 
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Applying the convolution properties to ( )P z′ , where 
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with recourse for Lemma 1 and 1J m= −  we have 
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Then for 1 2η λ η− < ≤ <  
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Hence  
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Relating Lemma 1 and with ( )Q z , a computation gives 
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Recall the power series 
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satisfies ( )0 1p =  and ( )( ) 1
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by Lemma 2 we have  
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This proves our results.  
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