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Abstract 
This paper proposes a parameterized nonlinear model-based predictive con-
trol (NMPC) strategy to tackle the oxygen excess ratio regulation challenge of 
a proton exchange membrane fuel cell. In practice, the most challenging part 
regarding NMPC strategies remains the on-line implementation. In fact, NMPC 
strategies, at least in their basic form, involve heavy computation to solve the 
optimization problem. In this work, a specific parameterization of control ac-
tions has been designed to address this limitation and achieve on-line imple-
mentation. To assess the effectiveness and relevance of the proposed strategy, 
the controller has been implemented on-line, experimentally validated on a 
real fuel cell and compared to the built-in controller. Performance of the pa-
rameterized NMPC controller in terms of setpoint tracking accuracy, distur-
bances rejection and computational cost, have tested under several control sce-
narios. Experimental results have shown the excellent tracking capability, dis-
turbances rejection ability and low computational cost of the NMPC control-
ler, regardless of the operating conditions. Moreover, compared to the built-in 
controller the proposed strategy has demonstrated better disturbances rejec-
tion capability. Overall, the proposed parameterized NMPC controller ap-
pears as an excellent candidate to address the oxygen excess ratio regulation 
issue. 
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1. Introduction 

For the last decade, to reduce greenhouse gas emissions and fossil fuel depen-
dence, numerous renewable energy technologies have been studied. In regard to 
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renewable energies, one of the primary drawbacks is the variability of the supply 
flows, which raises the key issue of energy storage to counteract the intermittent 
nature of their conversion. In this context, the hydrogen vector represents a prom-
ising alternative, as long as the hydrogen is produced from a renewable energy 
technology (e.g. electrolytic hydrogen obtained using photovoltaic energy), and 
stored to optimize potential gaps and surplus of intermittent production. Down-
stream the hydrogen chain, electricity is generated from fuel cells, genuine ze-
ro-emission power generators. Due to their high power density and low operat-
ing temperature, proton exchange membrane fuel cells (PEMFC) have proved to 
be the most suitable fuel cell technology for both transportation and stationary 
applications [1] [2] [3]. 

However, several bolts still remain to be removed to improve their reliability 
and energy conversion, reduce their cost or extend their lifetime. Among them, 
one of the most important is related to their control. Indeed, global efficiency 
improvement, optimal hydrogen and air consumption, and reliable and accurate 
power response remain challenging control goals. 

Numerous control strategies have been reported in the literature for PEMFC 
systems, ranging from PID controllers [4] [5] [6], state feedback linearizing or 
differential flatness approaches [7] [8], dynamic neural network controllers [9] 
[10], linear quadratic Gaussian (LG) controllers [11], to model predictive control 
strategies [12]. Due to its ability to take into account dynamic nonlinearities of 
the process, to handle just as well state and input constraints as economical con-
straints, nonlinear model-based predictive control (NMPC) strategy appears as a 
promising candidate regarding PEMFC control.  

Several works dealing with benefits of predictive control strategies regarding 
PEMFC control have been reported. Wu et al. [13] proposed a multi-loop non-
linear predictive control strategy using a reduced order model to regulate oxygen 
excess ratio and stack temperature of a fuel cell. However, the controller has only 
been tested in simulation environment, and as emphasized by authors some de-
vices and design, such as hydrogen storage or power management, have not been 
considered. Shokuhi-Rad et al. [14] designed an approximate predictive control 
strategy to regulate the output voltage of a PEMFC. This approach, based on an 
instantaneous linearization of a neural network model, has been tested in simula-
tion environment, and appeared to be an interesting alternative to achieve real-time 
control. Gruber et al. [15] developed a model based predictive strategy to regu-
late the oxygen stoichiometric ratio using compressor motor voltage as manipu-
lated variable. Experimental results showed that the designed controller stabi-
lized the oxygen stoichiometric ratio around the target value five times faster 
than the built-in controller. Ziogou et al. [16] proposed a nonlinear model-based 
predictive control (NMPC) approach to track variable load demands while mi-
nimizing hydrogen consumption and avoiding oxygen starvation. To achieve 
on-line application, these authors developed a tailor-made optimization strategy 
that discretizes control variables and state variables. The proposed approach has 
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been experimentally confirmed and exhibited good performance in terms of track-
ing capability and computational time efficiency. 

Regarding nonlinear model-based predictive control strategies, the modeling 
step remains essential and mandatory for the control design. In the literature, 
a wide variety of models, either mechanistic or black-box, with different levels 
of complexity, can be consulted. Regarding mechanistic approaches, numerous 
one-dimensional and multi-dimensional models have been proposed [17]-[28]. 
However, due to their complexity and high computational time, most of these 
models are not suitable for real-time control purposes. In this context, black-box 
approaches appear as a promising option to model the PEMFC system. Several 
works dealing with the benefits of artificial neural network (ANN) regarding 
PEMFC modeling have been reported. Saengrung et al. [29] investigated the re-
levance of ANNs as predictive models of a commercial PEMFC system (1.2 kW). 
The authors developed and compared the performance of back-propagation (BP) 
and radial basis function (RBF) algorithms in terms of speed and accuracy to pre-
dict the stack voltage and current, using the air flow rate and the stack tempera-
ture measurements as inputs. Sisworahardjo et al. [30] developed an ANN model 
of a portable PEMFC (100W) considering stack temperature and current as in-
puts, and the hydrogen flow rate, the stack voltage and power as outputs. The 
authors reported that, except the transient voltage response of the ANN model, 
which is faster than the actual fuel cell, the performance of the ANN model in 
terms of speed and accuracy are quite satisfactory. In Chavez-Ramirez et al. [31], 
the authors proposed an ANN model of a high power PEMFC (5 kW) using 
seven inputs to predict the cell voltage and the cathode temperature. The authors 
reported a maximum prediction error of 9.4% in the stack voltage and 5.6% in 
the stack temperature measurements.  

To ensure optimal performance of PEMFC, one parameter, namely oxygen 
excess ratio, requires special attention. The oxygen excess ratio or stoichiometric 
ratio represents the ratio of inlet oxygen flow to reacted oxygen flow and is widely 
used to guarantee safety and to reach a high performance. Arce et al. [32] showed 
that the oxygen excess ratio has a fundamental influence on the efficiency and 
the safety of the fuel cell system. A Poor control of this variable can increase the 
starvation phenomenon probability. The oxygen starvation phenomenon occurs 
when the oxygen partial pressure falls below a critical level at any location at the 
cathode [33]. It has been experimentally demonstrated that the oxygen starva-
tion phenomenon can cause damages to the electro-catalyst of the fuel cell, as 
well as reducing its performance [34]. In this context, preventing oxygen starva-
tion to ensure optimal conversion efficiency and avoid performance deteriora-
tion remains a challenging control goal.  

In this paper, a real-time implementable nonlinear model-based predictive con-
trol (NMPC) strategy is developed to tackle the oxygen excess ratio regulation 
issue. In practice, the most challenging part regarding NMPC strategies remains 
the on-line implementation. In fact, NMPC strategies, at least in their basic form, 
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involve heavy computation to solve the optimization problem. In this work, a 
specific parameterization of control actions is designed to address this limitation 
and achieve on-line implementation. This parameterization allows to significantly 
decrease the optimization problem dimension and so the computational time re-
quired to solve the optimization problem. Regarding real-time control goal, and 
according to its short computational time compared to classical mechanistic mod-
el and its low sensitivity to noise, an artificial neural network (ANN) model is 
used as internal model to predict the PEMFC behavior. 

The rest of this paper is organized as follows: The experimental setup of the 
fuel cell unit is presented in Section 2. Section 3 is dedicated to the control de-
sign—the ANN model predictor is designed and experimentally validated—and 
the real-time implementable NMPC scheme dedicated to PEMFC oxygen excess 
ratio control is detailed. Experimental validation of the proposed control strate-
gy is presented in Section 4. Eventually, conclusions and prospects are drawn in 
Section 5. 

2. Experimental Setup 

In the present study, a 50 cm2 single home fuel cell assembling, with a commer-
cial membrane electrode assembly (MEA) from Paxitech, is used. The fuel cell is 
assembled with Teflon glass fiber as seal joints and clamped at 11 Nm bolt torque. 
MEA used for this work is composed of symmetric electrodes (0.5 mgPt·cm−2, Pt 
40 wt%/C) with a Nafion® N115 membrane. Air and pure hydrogen are used as 
oxidant and fuel, respectively. All experiments are performed on a Fuel Cell Test 
Station (FCTS) manufactured by Fuel Cell Technologies, Inc. 

The FCTS provides control of temperature, flow rate, pressure and humidity 
for both feed gases. The bench integrates an AC-Impedance measurement sys-
tem and a programmable DC electronic load. Inlet gas flow rates are controlled 
using two mass flow controllers, located before the humidifier. Humidification 
and fuel cell temperatures are controlled using temperature controllers. Reactant 
gases are humidified through external water tanks, and desired gas humidifica-
tion value is reached through the regulation of the water temperature in the hu-
midifiers. Output pressures are regulated using backpressure controllers de-
signed to operate between 0 and 400 kPa. An electronic load measures cell out-
put voltage and current (Figure 1). 

The Supervisory Control and Data Acquisition (SCDA) system relies on a 
proprietary graphical user interface composed of a set of modular virtual in-
struments (VI) developed with LabViewTM graphical software. This makes the 
experimental unit a flexible environment, allowing to perform a wide range of 
tests based on various configuration settings. Since VI’s can easily be modified 
and/or replaced, alternative monitoring and control strategies can be integrated 
to the SCDA system. As regards to innovative control strategies, a set of VIs 
makes it possible to replace the original built-in controller by model-based ap-
proaches. 
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Figure 1. Simplified process and instrumentation diagram of the FCTS system. 

3. Controller Design 

Regarding NMPC control strategies, the first step is to design a model of the sys-
tem. This model is expected to predict the system behavior several steps ahead. 
Among the various PEMFC models that can be consulted in the literature, a very 
few are dedicated to control purposes. In real-time control context, most of com-
plex and heavy computations mechanistic models cannot be considered. Re-
cently, several works emphasize the interest of ANN to model PEMFC systems. 
Here, due to its short computational time, its low sensitivity to noise and its re-
liability an ANN model is designed and used as predictive model. 

3.1. ANN Control Oriented Model 

The proposed control strategy involves an ANN model of the PEMFC used to 
predict the system output several steps ahead. 

The oxygen excess ratio, namely 
2Oλ , denotes the ratio of oxygen supply to 

oxygen consumed in the cathode. 
2Oλ  is a function of the inlet air flow rate at 

the cathode airm , the load current I, the pressure ,ca inP , the temperature ,ca inT , 
the relative humidity ,ca inφ , the number n of cells of the fuel cell stack, the Fa-
raday constant F, the oxygen mole fraction 

2 , ,O ca iny  and the molar masses 

2OM , 
2NM  and vM  of oxygen, nitrogen and vapor, respectively. 
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( )2 2 2 2, , , , ,, , , , , , , ,air
O ca in ca in ca in O ca in O N v

m f P T n F y M M M
I

λ φ=


       (1) 

However, del Real et al. [35] and Gruber et al. [15] showed that 
2Oλ  mainly 

depends on the inlet air flow rate at the cathode airm  and the load current I. 
Therefore, regarding control purposes, a simplified model of 

2Oλ  based only on 
these two main variables can be written as: 

( )
2

,O airf m Iλ =                             (2) 

In this paper, an ANN model is designed to predict 
2Oλ  several steps ahead, 

once the load current I and the inlet air flow rate airm  are available. In practice, 
the load current is a measured disturbance, whereas the inlet air flow rate is the 
manipulated variable. 

Regarding real-time implementation goal, the computational speed of the model 
is a key component. The model is expected to predict the system output with suffi-
cient accuracy, while avoiding heavy computations. To address this problem, sev-
eral ANN architectures have been investigated to determine which one provides 
the best trade-off between prediction accuracy and computational speed. Finally, 
a fully connected three layers network is designed. The hidden layer has five 
neurons with a tangent sigmoid activation function 1ϕ , whereas the output 
layer has one neuron using a linear activation function 2ϕ .  

Identification (training phase) and validation of the ANN model are performed 
on two different sets of data collected on the PEMFC system presented in Section 2 
and sampled with a 3 seconds period. Regarding the poor extrapolation perfor-
mance of ANN models, the data set used for the training phase has to be chosen 
wisely. In this aim, the training data set, used to identify the ANN model, covers the 
whole operating conditions and ranges from minimum to maximum inputs/outputs 
values. Experiments are performed for different values of load current (ranging 
from 5A to 20A) and inlet air flow rate (ranging from 500 sccm to 2800 sccm), 
which leads to oxygen excess ratio values ranging from 5 to 11. 

The adjustable parameters of the ANN model (so-called weights) are specified 
by the vector θ  and are determined from the training data set NZ : 

( ) ( ){ }, | 1, ,NZ u t y t t N= =                        (3) 

where ( )u t  and ( )y t  are the set of inputs and the corresponding desired out-
puts, respectively. 

The training phase aims to determine a mapping from the set of training data 
to the set of possible weights, so that the ANN model produces predictions ( )ŷ t :  

ˆNZ θ→                              (4) 

The prediction error approach, which is the strategy applied here, is based on 
the introduction of a measure of closeness in terms of a mean square error criterion:  

( ) ( ) ( ) ( ) ( )T

1

1 ˆ ˆ, | |
2

NN
N tV Z y t y t y t y t

N
θ θ θ

=
= − −      ∑         (5) 
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The weights are then found as: 

( )ˆ arg min , N
NV Zθθ θ=                        (6) 

The training phase is performed using Levenberg-Marquart algorithm with an 
error goal of 0.001. The validation results are presented in Figure 2. 

Two criteria, namely root mean square error ( ( )2
1

ˆRMSE n
i ii y y n

=
= −∑ ) 

and absolute maximal error ( ( )ˆAME max i i iy y= − ), are considered to assess 
the one step ahead prediction performance of the ANN model. n represents the 
number of data, y and ŷ  denote experimental and simulated data, respectively. 

With an RMSE of 0.003 and an AME under 0.1 the predictive performance 
accuracy of the ANN model is more than sufficient, especially since it is dedi-
cated to control purposes (Table 1). 

3.2. Parameterized Nonlinear MPC for PEMFC 

In this study, a parameterized NMPC controller is used to control the PEMFC 
oxygen excess ratio (

2Oλ ), once the manipulated variable is the air inlet flow rate 
( airm ) and the load current (I) is a measured disturbance. 

NMPC is an optimization-based multivariable constrained control method that 
uses a nonlinear model to predict the future behavior of the process. Classical  
 
Table 1. Training and validation results of the ANN model. 

 Training Validation 

RMSE 4.726 × 10−4 0.003 

AME 0.079 0.98 

 

 
Figure 2. PEMFC ANN model validation. 
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NMPC is defined by solving on-line an optimization problem that leads to an op-
timal sequence of future control actions that minimizes a given cost function over 
a certain prediction horizon. NMPC offers a great flexibility since it can handle 
input/state constraints, process nonlinearities, and even economical or operating 
constraints [36]. However, in their basic form, NMPC strategies involve heavy 
computations, which could become a bolt to reach on-line implementation. 

In this work, to address this problem and reach real-time control goal, a pa-
rameterized NMPC strategy is designed. When dealing with classical NMPC strate-
gies, the predictive horizon sets the optimization problem dimension, which could 
lead to huge problem dimension. The main feature of parameterized NMPC strat-
egy consists in decreasing the optimization problem dimension using a particu-
lar parameterization of the control sequence u: 

( )( ) ( )( )( )1: , , yk k Nu u p u p+ +=                      (7) 

where ( )( )1ku p +  is the control action at time k + 1, Ny the predictive horizon 
and p a set of parameters. 

( )( )( )ˆ arg min pp J u p=                       (8) 

where the optimal solution p̂  is the set of parameters that minimizes the cost 
function J while meeting the problem constraints. 

In this context, as the problem dimension depends on the dimension of p, itis 
straightforwardly linked to the parameterization choice and decoupled from the 
predictive horizon Ny. In this manner, a well-structured parameterization scheme 
may significantly decrease the optimization problem dimension, which is a quite 
important feature to fulfilreal-time requirements [37]. However, it is important 
to highlight that there is no universal parameterization that can be applied to any 
problem. Each problem must be represented using a specific parameterization. 
More details about parameterized NMPC strategies can be consulted in [38] [39]. 

Here, since the system is open-loop stable, an approximation of the steady 
control action is used in the parameterization of the control profile to decrease 
the degree of freedom of the control profile. 

In the first step, several experiments with the fuel cell in open loop are carried 
out. Even if 

2Oλ  depends on several variables, Gruber et al. [15] showed that 
the stationary behavior of the system mainly relies onair inlet flow rate ( airm ) 
and load current (I). Therefore, during these experiments the stationary beha-
vior is tested with different values for the air inlet flow rate ( airm ) and the load 
current (I). 

In a second step, these data are gathered to generate a stationary map corre-
lating the load current, the inlet air flow rate and the oxygen excess ratio. 

In a last step, based on this stationary map a simplified model is identified to 
approximate the steady state control action as a function of the oxygen excess 
ration and the load current: 

2

*
1 Ou a Iλ=                             (9) 
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1a  is a constant parameter that has to be determined off-line. 
In this work, a specific parameterization of the control actions based on the 

approximation of the steady state control action *u  and a single scalar para-
meter p is proposed: 

( )( ) ( ) ( ) { }for 1, ,k i k i k i
yu p u pE i N+ ∗ + ∗ += + ∈               (10) 

[ ]1,1p∈ −  is a scalar parameter, ( ) ( ) ( )
1

k i k i k i
spu a y I∗ + + +=  is the approximation of the 

steady control action obtained in stationary steady regime for ( )
2

k i
Oλ

+  and ( )k iI + , 
and ( )k iE∗ +  is the trajectory tracking error obtained using ( )k iu∗ + . Specifically, 

( ) ( ) ( )ˆk i k i k i
sp ANNE y y∗ + + ∗ += −  and ( )ˆ k i

ANNy∗ +  is the ANN model output using ( )k iu∗ +  and 
( )k iI +  as inputs. 
In this manner, the control action ( )( )k iu p +  can be seen as a dynamic correc-

tion of the approximation of the control action in steady state. In the present case, 
this is a simple but efficient way to significantly reduce the degree of freedom of 
the control action profile and so to reduce the computation effort required to 
solve the optimization problem. 

Here the cost function is written to minimize the setpoint tracking error and 
to limit the variations of the control variable: 

( )( ) ( ) ( ) ( )( )( ) ( )( ) ( )( )( )22 1
1 1

ˆy u k i k iN Nk i k i k
sp ANN mi iJ u p y y e u p u pγ β + + −+ +

= =
= − + + −∑ ∑ (11) 

( )k i
spy +  and ( )ˆ k i

ANNy +  denote the desired value of oxygen excess ratio and the oxy-
gen excess ratio estimated by ANN model, respectively. ( )( ) ( )( )k i k i

airu p m p+ +=   
is the control action at time k + i, and γ  and β  are two weighting parameters. 
Ny and Nu are the control horizon and the predictive horizon, respectively. The 
prediction horizon corresponds to the future time interval used to compute the 
process output predictions with the process model. The control horizon corres-
ponds to the time interval when present and future control actions are computed. 
The control horizon is shorter or equal to the prediction horizon. For time in-
tervals between uN  and yN  the control actions are constant and set equal to 
( )( )uk Nu p + . 
Note that to improve the robustness of the approach against plaint/model 

mismatch, the error modeling ( ) ( ) ( )ˆk k k
m ANNe y y= −  at time k is used over the pre-

dictive horizon to correct the ANN model outputs ( )ˆ k i
ANNy + . ( )ky  represents the 

oxygen excess ratio measured at time k. Indeed, the cell performance changes 
along its life, which necessary involves plant/model mismatch. Therefore, to assure 
an optimal control of the PEMFC along its life, the controller robustness against 
plant/model mismatch is crucial.  

In this context, the optimal value p̂  is obtained by minimizing the cost func-
tion J, which is subject to constraints on manipulated variable:  

( )( )( )ˆ arg min pp J u p=                      (12) 

Subject to 

( )( ) [ ]min max, for 1, ,k i
yu p u u i N+ ∈ =                  (13) 
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Here, the optimization problem that lead to the sequence of future control ac-
tions relies entirely on a single scalar parameter, which dramatically reduces the 
computational effort compared to a classical NMPC strategy [40]. 

4. Experimental Evaluation of the Parameterized Nonlinear  
MPC 

To assess the performance of the proposed control strategy in terms of tracking 
capability, disturbances rejection, and robustness against plant-model mismatch, 
series of experiments are performed on the PEMFC system presented in Section 2. 
In this aim, several VI’s of the SCDA system are modified to replace the built-in 
controller by the parameterized NMPC controller. With this setup, the optimal 
control action, computed on-line in Matlab® environment, is sent through a spe-
cific VI to be applied to the experimental unit. 

Here, to exemplify the controller performance three control scenarios are con-
sidered: The first scenario illustrates the tracking capability of the controller for a 
constant value of load current. The second scenario is designed to study the con-
troller ability to cope with disturbances. Eventually, the third scenario evaluates 
the controller performance in terms of setpoint tracking accuracy in presence of 
disturbances. A comparison between the built-in controller and the proposed con-
trol strategy is made for the second scenario. Note that this comparison cannot 
be performed for the first and third scenario due to technical constraints. In fact, 
the built-in controller of the SCDA system, integrated by Fuel Cell Technologies, 
is designed to operate at constant oxygen excess ratio. In other word, when using 
the original setup, the oxygen excess ratio value has to be set before the experi-
ments and cannot be modified during the experiments. The built-in controller is 
a Proportional Integral (PI) controller. However, the SCDA system provided by 
Fuel Cell Technologies, Inc does not allow to access the controller parameters or 
to modify them. 

In the sequel, the inlet air flow rate is taken as manipulated variable, whereas 
the load current is a measured disturbance. It is assumed that all other variables, 
required to ensure safety operation of the fuel cell, are properly controlled. The 
cell temperature and the sampling period are set to 75˚C and 3 s respectively. 
The optimization problem is solved on-line using Levenberg-Marquardt algo-
rithm. All experiments are performed using control parameters listed in Table 2. 

 
Table 2. Control design parameters. 

Parameter Value 

a1 16.57 

yN  30 

uN  30 

γ  1 

β  1 
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4.1. First Case Scenario: Constant Load Current—Variable Oxygen  
Excess Ratio Setpoint 

The tracking capability of the controller is evaluated using an oxygen excess ratio 
setpoint that covers the whole operating condition. In this control scenario, the 
load current is set to 15A and kept constant during the entire experiments. Figure 
3 shows that the controller is able to track accurately a variable oxygen excess ratio 
setpoint, while offering an entirely suitable dynamic for the manipulated variable. 

4.2. Second Case Scenario: Step Changes on Load Current— 
Constant Oxygen Excess Ratio Setpoint 

To assess the controller performance in terms of disturbances rejection, a set of 
step changes on the load current is performed. The dynamics of the PEMFC is 
strongly correlated to the power level. Therefore, to verify that the controller per-
forms accurately whatever the power level, the current steps is chosen to cover 
the whole operating conditions. Several experiments, with different sets of step 
changes in load current and different oxygen excess ration values, are carried out 
to compare the performance of the original built-in controller and the proposed 
NMPC strategy. 

In each and every case, the NMPC controller performed better than the built-in 
controller. Figure 4 illustrates one of these experiments with the oxygen excess 
ratio set to 6. 

The NMPC controller demonstrates that it can maintain the oxygen excess ra-
tio to the desired level, even in presence of disturbance. Moreover, compared to the 
built-in controller, the proposed controller exhibits significantly better disturbances 
rejection capability. Indeed, for five steps in current (t = 48 s, t = 138 s, t = 351 s, 
t = 438 s and t = 528 s) an important overshot is observed with the built-in con-
troller, whereas the proposed controller efficiently rejects the disturbances. 
 

 
Figure 3. Experimental tracking capability of the proposed controller: (a) oxygen excess ratio; (b) air flow rate.
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Figure 4. Experimental tracking capability of the proposed controller: (a) oxygen excess ratio; (b) air flow rate. 

4.3. Third Case Scenario: Step Changes on Load Current—Variable  
Oxygen Excess Ratio Setpoint 

This control scenario is designed to assess the controller performance when the 
oxygen excess ratio setpoint is modified on-line according to the load current. 
This control scenario, which is a common working scenario in automotive ap-
plications, is significantly important. Indeed, several works demonstrated that 
updating the oxygen excess ratio reference according to the load current could 
significantly increase the PEMFC efficiency while avoiding oxygen starvation 
[16] [41] [42]. 

The proposed controller demonstrates excellent tracking capability even in 
presence of disturbances (Figure 5). The ability of the controller to track effi-
ciently an oxygen excess ratio setpoint, calculated according to a variable load 
current, is a quite important feature. Indeed, this control scenario appears as one 
of the most promising options to improve the overall PEMFC efficiency, while 
ensuring safety operation of the fuel cell. 

4.4. Computational Cost 

In order to highlight the benefits of the proposed parameterized NMPC scheme 
compared to a classical NMPC strategy, both strategies are implemented in Matlab 
environment and their performance are evaluated in simulation. In this aim, a 
mechanistic model, which has been presented and validated in a previous work 
[43], is used as process simulator. To truly highlight the effect of the parametri-
zation of the control sequence, the same ANN model, the same cost function 
and the same Levenberg-Marquardt algorithm are used for both NMPC control-
lers. The computational time efficiency is evaluated on the third case scenario 

https://doi.org/10.4236/eng.2020.122010


C. Damour et al. 
 

 

DOI: 10.4236/eng.2020.122010 111 Engineering 
 

 
Figure 5. Experimental tracking capability with step changes on load current: (a) oxygen excess ratio; (b) measured disturbances. 

 
(step changes on load current—variable oxygen excess ratio setpoint) for differ-
ent values of the control horizon uN  and the predictive horizon yN : test 1: 

10y uN N= = , test 2: 20y uN N= =  and test 3: 30y uN N= = . 
The computational effort is evaluated using the mean computational time (MCT) 

and the maximal computational time ( CT∞ ). This last criterion represents the 
worst case in terms of computational time.  

( )
1

n i
i CT

MCT
n

== ∑                            (14) 

( )( )max i
iCT CT∞ =                           (15) 

where n is the number of data and ( )iCT  the time in second required to solve 
the control problem at time t i= . Note that all simulations are run in Matlab 
environment on a computer (2.7GHz, RAM@32Go). 

Table 3 summarizes the computational time efficiency of both NMPC con-
trollers for all three tests. In all cases, and for similar accuracy performance, the 
parameterized approach turns out to be significantly faster than the classical 
NMPC strategy. Whereas the computational time of the classical approach dras-
tically increases with the dimension of the control horizon, the computational 
time of the parameterized NMPC strategy remains quite the same. The parame-
terized NMPC approach allows to decouple the optimization problem dimen-
sion from the control horizon dimension, which turns out to be quite important 
feature when dealing with real-time implementation. Considering a control ho-
rizon set to 30, which appears to be reasonable regarding a sampling period of 3s, 
the parameterized approach is almost 30 times faster than the classical NMPC 
strategy. Obviously, the computational time depends on what hardware is used 
to solve the optimization problem. However, the comparison performed here be-
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tween both NMPC approaches clearly demonstrates that the parameterized NMPC 
controller has a significantly better computation efficiency than the classical NMPC 
controller. 

Note that due to its too high computation cost, the classical NMPC controller 
has not been experimentally tested on the real fuel cell. 

Table 4 summarizes the computational time efficiency of the parameterized 
NMPC controller for all three cases scenarios presented above in Sections 4.1 to 
4.3. These results are obtained experimentally on the real fuel cell. 

Regarding the sampling period of 3 seconds, the computational cost of the 
parameterized NMPC controller appears to be totally acceptable.  

It is important to emphasize that in addition to the presented examples, numer-
ous experiments have been carried out in the whole range of operating condi-
tions. In every case, the proposed NMPC controller demonstrated highly satis-
factory results in terms of tracking capability and disturbances rejection. More-
over, the computational time of the proposed parameterized NMPC controller is 
significantly lower than the one of a classical NMCP controller. 
 
Table 3. Comparison between proposed and classical NMPC strategy, in terms of com-
putational time efficiency (simulation results). 

 Classical NMPC Parameterized NMPC 

test 1: 10y uN N= =  0.804 0.102 

MCT (s) 1.394 0.122 

CT∞ (s)   

test 2: 20y uN N= =    

MCT (s) 3.723 0.201 

CT∞ (s) 4.918 0.215 

test 3: 30y uN N= =    

MCT (s) 9.158 0.301 

CT∞ (s) 11.446 0.322 

 
Table 4. Computational time efficiency (experimental results). 

 Classical NMPC Parameterized NMPC 

test 1: 10y uN N= =  0.804 0.102 

MCT (s) 1.394 0.122 

CT∞ (s)   

test 2: 20y uN N= =    

MCT (s) 3.723 0.201 

CT∞ (s) 4.918 0.215 

test 3: 30y uN N= =    

MCT (s) 9.158 0.301 

CT∞ (s) 11.446 0.322 
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5. Conclusions 

The oxygen excess ratio is considered as a performance variable of the system 
and its regulation is an important issue since this parameter determines the safety 
of the fuel cell. In this paper, to address oxygen excess ratio control challenge, a 
parameterized NMPC strategy has been developed. In a first stage, due to its 
short computational time and its low sensitivity to noise an artificial neural net-
work (ANN) model has been designed. The oxygen excess ratio is a function of 
inlet air flow rate, load current, relative humidity of air at the cathode inlet, stack 
temperature and inlet pressure at the cathode. However, regarding real-time con-
trol goal a simplified model has been proposed. This ANN model, used as pre-
dictor in the control strategy, is expected to predict the oxygen excess ratio of the 
PEMFC several steps ahead, once the load current and the inlet air flow rate are 
available. The validation procedure has been performed on experimental data 
and the model has shown good performance in terms of prediction accuracy. In 
a second stage, a parameterized NMPC approach has been designed. This ap-
proach, based on a particular parameterization of the control sequence, has led 
to a low-dimensional optimization problem. Indeed, the optimization problem 
that leads to the sequence of future control actions relies entirely on a single sca-
lar parameter, which dramatically reduces the computational effort compared to 
a classical NMPC strategy. 

Eventually, the controller has been implemented on-line and experimentally 
validated on a real fuel cell. Numerous control scenarios have been experimen-
tally conducted to evaluate the controller performance, especially in terms of 
setpoint tracking accuracy, disturbances rejection and computational cost. These 
control scenarios gather all the possible scenarios in which the system would 
have to work. In each and every case, the controller demonstrated highly satis-
factory results since it tracked efficiently the desired oxygen excess ratio value 
while compensating disturbances, regardless of the operating conditions. Besides, 
experimental comparison demonstrated that the proposed controller had much 
better disturbances rejection capability than the built-in controller. Eventually, 
to emphasize the benefit of the proposed controller in terms of computational 
time efficiency, a comparison has been performed between the proposed NMPC 
controller and a classical NMPC controller. In all case scenarios, the computa-
tional cost of the proposed parametrized NMPC controller was significantly 
lower than the one of the classical NMPC controller. 

Overall, the proposed parameterized NMPC controller appears as an excellent 
candidate to address the oxygen excess ratio regulation issue. 
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