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Abstract 
The goal of tomography is to reconstruct a spatially-varying image function 
( ),s x m , where x  is position and m  is a finite-length vector of parame-

ters. Many reconstruction methods minimize the total 2L  error TE ≡ e e , 
where individual errors ie  quantify misfit between predictions and observa-
tions, to quantify goodness of fit. So-called adjoint state methods allow the 
gradient iE m∂ ∂  to be computed extremely efficiently from an adjoint field, 
facilitating image reconstruction by gradient-descent methods. We examine 
the structure of the differential equation for the adjoint field under the ray 
approximation and find that it has the same form as the transport equation, 
whose solution involves the well-known geometrical spreading function R.  
Consequently, as R is routinely tabulated as part of a ray calculation, no extra 
work is needed to compute the adjoint field, permitting a rapid calculation of 
the gradient iE m∂ ∂ . 
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1. Introduction 

Acoustic, electromagnetic and seismic waves are routinely used to probe the 
media through which they propagate, and especially to image the spatial-
ly-varying velocity field. A fundamental property of these waves that commonly 
is exploited is their travel time T, defined as the time between the generation of a 
wave at its source to its detection by a distant observer. In many cases, travel 
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times can be computed under the ray approximation of the exact wave equation, 
which is valid at high-frequencies when the scale length of heterogeneities in the 
medium is much larger than the wavelength of the waves. Since the 1970’s, the 
simplicity of ray calculations has underpinned the use of travel time tomography 
in a variety of disciplines, including seismology [1] [2], oceanography [3], petro-
leum exploration [4], geotechnical engineering [5] and cosmology [6]. In some 
disciplines, ray-based tomography is being superseded by full wavefield methods 
[7] [8]; nevertheless, it remains an important part of a tomographer’s toolbox on 
account of its computational efficiency. 

Over the last several decades, the development of the so-called adjoint state 
method [9] has allowed tomographic imaging to be applied in cases where it was 
hitherto fore infeasible, because of vastly reduced computational effort. To date, 
this efficiency mainly has used to enable computationally-intensive forms of 
tomography, and especially to full wavefield tomography [7] [8]. Nevertheless, 
adjoint state methodology is very widely applicable. It has the potential for sig-
nificantly speeding up even computationally-light problems, including ray-based 
tomography. The feasibility of using adjoint state methods in this form of tomo-
graphy was first investigated by [10], who demonstrate its effectiveness. In this 
paper, we further explore it application. We study the mathematical structure of 
the differential equation that arises out of the adjoint state method (the equation 
for the so-called adjoint field) and show that it is very closely related to and in 
important cases identical to the transport equation of ray theory. This relation-
ship provides an intuitive understanding of the adjoint field and suggests further 
ways of obtaining further computational efficiency. 

Our analysis is divided into four sections: first, we review how the adjoint 
state method is used to streamline the computation of a critical quantity need to 
perform tomography; second, we review the concept of the geometrical spread-
ing of rays and its connection to the transport equation; third, we use the ad-
junct state method to derive and solve the differential equation for the adjoint 
field; and lastly, we show that the adjoint equation is very closely related to the 
transport equation and that its solution can be trivially constructed when the 
solution to the transport equation (the geometrical spreading function) is known. 

2. The Adjoint State Method for Computing the Error  
Derivative 

The main purpose of this section is to define the error derivative, discuss its 
usefulness and review how the adjoint state method is used to compute it, in the 
special case where the unknown image is linked to the observed data via the 
source term in a linear differential equation. 

Many types of tomography involve a set of observations { }, 1, ,obs
jT j N=  , 

each associated with a spatial position ( )jx , which are related to an unknown 
image function ( )s x  by the possibly-nonlinear map ( )j jT g s= . Here, 

[ ]T, ,x y z≡x  are real spatial coordinates and [ ]T.  denotes transpose. Usually, 
the data, spatial coordinates and image function are presumed to be real. Be-
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cause no finite number of observations can define a continuous function, the 
image is usually approximated with a finite number of parameters; that is, as 
( ),s x m  with { }, 1, ,jm j M=  . For example, the image might be divided into 

voxels, each with a value jm . A common approach to image reconstruction is to 
define individual errors, obs

j j je T T≡ −  and total 2L  error TE ≡ e e  and then 
to find the m  that minimizes 2E sεΦ = +   ([11]; see also [12] [13] [14]). 
Here, ε  is an empirically-chosen constant and   is a linear operator that 
embodies prior information, such as smoothness. Among the many optimization 
procedures put forward for solving this problem, several commonly-used ones, 
based on the linearized least-squares method (e.g. [14] [15]), employ the partial 
derivative jk j kG T m≡ ∂ ∂  to compute the data perturbation jT∆  associated 
with the image perturbation ∆m  via ∆ = ∆T G m . Alternatively, other com-
mon-used procedures, based on the gradient-descent method (e.g. [16]), use the 
partial derivative j jH E m≡ ∂ ∂  to compute the error perturbation E∆  asso-
ciated with the image perturbation ∆m  via TE∆ = ∆H m . 

The error derivative jH  can be computed from the data derivative jkG : 

T
1 12 or 2N N

j k k kj kk k
j j

EH e e G e
m m = =

∂ ∂
≡ = = − = −
∂ ∂ ∑ ∑ H G e          (1) 

However, recent advances in tomography have followed the realization that 

jH  often can be computed without first computing jkG , giving gra-
dient-descent methods tremendous computational advantage over least-squares 
methods. The underlying idea of these adjoint state methods [9] [17] is to pro-
mote the error to a field ( )e x , with the assumption that the data have been 
measured everywhere, so that ( ),E e e=  and: 

( ), 2 , 2 ,j
j j j j

E e TH e e e e
m m m m

   ∂ ∂ ∂ ∂
≡ = = = −      ∂ ∂ ∂ ∂   

           (2) 

Here ( ).,.  is the inner product over spatial coordinates. Now, consider the 
simple case in which the data solves the linear differential equation T s=  
(together with some appropriate boundary condition). Here, the image ( ),s x m  
is the source term in the differential equation. By differentiating the differential 
equation, we obtain an expression for jkG : 

( )
with

j
jk

k k k

T T sG
m m m
∂ ∂ ∂

= =
∂ ∂ ∂x

                      (3a) 

The partial derivative of total error jH  is computed by differentiating 
1T s−=   to yield 1

j jT m s m−∂ ∂ = ∂ ∂  and inserting into (2): 

( )†1 12 , 2 , 2 ,j
j j j

s s sH e e
m m m

λ− −     ∂ ∂ ∂
= − = − = −          ∂ ∂ ∂     

           (3b) 

Here †  denotes adjoint and ( ) ( ) 11 † †e eλ
−−≡ =   is an adjoint field that 

satisfies the so-called adjoint equation † eλ =  (with appropriate boundary 
conditions). Note that the error ( )e x  plays the role of the source term in the 
adjoint equation. 
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Cases in which the error is known everywhere are uncommon, since they 
imply observations within the medium, as contrasted to on its boundary. More 
typical are the cases where error is at discrete points ( )jx  on the boundary. 
These cases are handled by writing defining a partial adjoint field ( )λ x  and 
error density ( )e x : 

( ) ( ) ( ) ( ) ( )3 3, d and de eλ λ δ′ ′ ′ ′ ′= = −∫∫∫ ∫∫∫x x x x x x x x x

        (4) 

Here, ( ).δ  is the Dirac impulse function. The resulting equation  
( ) ( )† eλ δ′ ′= −x x x

  is then solved only for those points ( )j′ =x x  at which 
the error is known and adjoint field λ  is taken to be the sum of the sλ . This 
procedure is equivalent to solving the original adjoint equation with error: 

( ) ( )( )
1

N
j

j
j

e e δ
=

= −∑x x x                         (5) 

3. The Transport Equation of Ray Theory 

The main purpose of this section is to review the geometrical interpretation of 
the transport equation and to highlight its link to ray divergence. However, in 
order to provide some background for readers unfamiliar with ray theory, and to 
establish nomenclature, we also present an abridged derivation of the equation. 

In many cases, the imaging problem involves a field ( ),u tx  that is a function 
of time t as well as spatial coordinates x  and that satisfies a wave equation of 
the form ( ) ( ) ( )( )02 2

0u t u t tδ δ∂ ∂ − = − −m x x . Here, the differential opera-
tor   contains only spatial derivatives and depends on parameters m . The 
equation reduces to the spatial equation ( ) ( )( )02 ûω δ− − = −m x x  after 
Fourier transformation of time t to angular frequency ω , where   denotes a 
transformed variable. The ray approximation is the solution to this equation in 
the limit ω →∞ , and is achieved by postulating that the solution can be writ-
ten as a Laurent series of the form [18]: 

( ) ( ) ( ){ } ( ) ( ) ( ) ( )
0

ˆ , , exp with , k k

k
u A i T A i Aω ω ω ω ω

∞
−

=

= = ∑x x x x x       (6) 

Here i is the imaginary unit. The travel time function ( )T x  represents the 
time needed for a fluctuation in u to propagate from ( )0x  to x , and ( ),A ωx  
represents its amplitude. The details of the ray solution depend on ( )m ; we 
consider the simple (and common) case ( ) 2 2s= ∇m , where ( ),s x m  is a 
slowness function; that is, a material property that is inversely proportional to 
the local propagation velocity. Inserting (4) into the differential equation and 
equating equal powers of ω  lead to the Eikonal equation for ( )T x : 

( )( )02 with boundary condition 0T T s T∇ ⋅∇ = =x             (7) 

and a sequence of equations for ( )kA , the lowest order of which is the transport 
equation [19]: 

( ) ( )0 0 22 0T A A T∇ ⋅∇ + ∇ =                       (8) 
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The unit normal to a surface of equal travel time is ( ) 1t̂ s T−= ∇x . A sequence 
of these vectors connecting surfaces of increasing travel times defines a ray; that is, 
a parametric curve ( )x   with arclength   and tangent ( )t̂   (Figure 1(A)). 
The volume enclosed by a group of rays is called a ray tube. The Eikonal equation, 
written as two coupled first order equations in ( )x   and ( )t̂   is: 

( )1ˆd dˆ ˆ ˆand
d d
x tt t s s t−= = × ∇ ×
 

 

with boundary conditions  

( ) ( )00 =x x  and ( ) ( )0ˆ ˆ0t t=                     (9) 

The ray’s starting point is ( )0x  and its take-off direction is ( )0t̂ . Travel time 
is then the path integral of the slowness along the ray, as can be seen by mani-
pulating the formula for the directional derivative 0̂d d t= ∇⋅ : 

( )( ) ( ) ( )
0 0

ˆ d dT t T s′ ′⋅ ′= ∇ =∫ ∫x
 

                  (10) 

The transport equation, written in terms of ( )t̂  , is: 

( )( )20ˆ ˆ witht t s A∇
− ⋅ = ∇ ⋅ ≡





                 (11) 

 

 
Figure 1. (A) Basic ray theory nomenclature. Wave propagates outward from a source at 

( )0x  (black circle), through the medium, to the surface Sx  (with normal n̂ ). Surfaces 
of equal travel time (wave fronts, grey curves) are labeled with their travel times 1T , 2T , 

etc., Normals to wave fronts define rays (blue curves) with tangents t̂ . Neighboring rays 
enclosing a solid angle dΩ  at the source define a ray tube. (B) Relationship between ray 
tangents t̂  and ray tube cross-sectional area S. Gauss’s theorem is applied to a small vo-
lume V along the ray tube, with the shape of a section of a cone, whose cross-sectional 
area S changes with arc-length   and whose volume is dV S=  . The tangent t̂  is pa-
rallel to the sides of the section and normal to its ends. See text for further discussion. 
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The quantity t̂∇⋅  has a simple geometric interpretation, as can be seen by 
applying Gauss’ theorem (e.g. [20]) to a volume V along a ray tube, which has 
the shape of a section of a cone (Figure 1(B)). The cross-sectional area of the ray 
tube increases from S on the end nearest to the source, to dS S+  at a distance 
d  further away. For small volumes, the integral in Gauss’ theorem is ( )t̂ V∇⋅  
where dV S=  . The surface integral in Gauss’ theorem has contributions only 
from the two ends of the cone, of S−  and ( )dS S+  respectively, which sum 
to dS. Consequently, Gauss’s theorem implies ( ) 1ˆ d dt S S−∇ ⋅ =   and the trans-
port equation becomes: 

1 d 1 d
d d

S
S

− =
 




                         (12) 

According to the transport equation, the fractional decrease in  , measured 
along a ray, is equal to the fractional increase in area S of the ray tube. In many 
cases, the quantity   has the interpretation of the energy density, so the transport 
equation embodies conservation of energy. Conventionally, the area of the ray 
tube is written ( ) ( )2 dS R= Ω  , where ( )2R   is the geometrical spreading 
function and dΩ  is the solid angle subtended by the ray tube at the source (e.g. 
[19]). Consequently, ( ) ( )2cR−=   where c is a constant. Ray-tracing algo-
rithms that solve (9) typically tabulate both T and R (e.g. [21] [22]). 

4. Adjoint Equation for Travel Time Tomography 

The main purpose of this section is to derive and solve the adjoint equation 
needed to compute the quantity jH , the derivative of the total travel time error 
with respect to a model parameter controlling the slowness of the medium. Our 
derivation focuses on expressing the equation in terms of quantities that vary 
along rays, so that it can be readily compared to the transport Equation (11). 
Our derivation is equivalent to, but different than, the one by [10], being a direct 
application of perturbation theory, as contrasted to one that employs Lagrange 
multipliers. 

In travel time tomography, travel time observations ( )( )jT x  are considered 
to be the data, and the slowness ( )s x , or rather its approximation ( ),s x m , is 
the image function. In order to apply the adjunct methodology as outlined in the 
Introduction, the non-linear Eikonal equation must be linearized about a “back-
ground” solution. Let the slowness equal a background slowness 0s  plus a 
small perturbation 1sε , where ε  is a small parameter, and the corresponding 
travel time equal a background travel time 0T  plus a small perturbation 1Tε . 
Then to first order in ε , the Eikonal equation becomes: 

( ) ( ) ( )2 2
0 1 0 1 0 1 0 0 12T T T T T T s s s s sε ε ε ε∇ ⋅∇ = ∇ + ⋅∇ + = + ≈ +     (13) 

Equating terms of equal order in ε  yields equations for the background tra-
vel time 0T  and the perturbation in travel time 1T : 

2
0 0 0 0 1 1

ˆandT T s t T s⋅ ⋅∇ ∇ = ∇ =                   (14a,b) 
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Equation (14b) indicates that the component of 1T∇  in the direction of the 
background ray direction 0̂t  is 1s . Since 1s  plays the role the source term in 
the differential equation, the formulation in (3) is applicable. If we define d  to 
be an increment of arc length along the unperturbed ray, then this is just an eq-
uation involving the directional derivative 0̂d d t= ∇⋅ : 

( ) ( )1
1 1 10

d which has solution d
d
T s T s ′ ′= = ∫



  



             (15) 

The perturbation in travel time is the integral of the perturbation in slowness 
along the unperturbed ray. We rewrite the equation for 1T  as: 

1 1 0 0 0
1 1 0 0 0where

x
T T T

T s s T s y
x y z

z

− −

∂ ∂ 
∂ ∂ ∂   = = ∇ ∇ =⋅ ∂ ∂   ∂ ∂ ∂   ∂ ∂ 

      (16) 

Using the rules ( ) T T
1 2 2 1=† † †    and ( )†d d d dx x= −  (e.g., [23]) we ob-

tain an expression for the adjoint equation: 

( ) ( )
0

† 1 1
0 0 0 0 0 0

0

ˆ
T x
T s T s t e

x y z
y
zT

λ λ λ λ− −

∂ ∂ 
 ∂ ∂ ∂    = − ∂ ∂ = −∇ ⋅ ∇ = −∇ ⋅ =      ∂ ∂ ∂   ∂ ∂ 

 (17) 

As is typical of first-order equations, the “left hand” boundary condition asso-
ciated with   implies a “right hand” boundary condition for †  (e.g. [14]); 
that is, while 0T =  at the source 0, 0λ= =  at as the end point of the ray 

B=   (where it touches the boundary of the medium). 
The adjoint Equation (17) can be further manipulated: 

( ) ( )

( ) ( )

0
0 0

0

dˆ ˆ or
d

1 dwith and
d

et t P Q

SP Q e
S

λ λ λ
λ λ
∇

− ⋅ − = ∇ ⋅ + =

= = −

 



 



              (18) 

The formal solution to (17) is well-known (e.g. [24]): 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )with exp d and

C v
P v Qλ µ µ

µ
+  

′ ′ ′ ′ ′= = = 
 
∫ ∫
 



       



 (19) 

Here the constant C is chosen to enforce the boundary condition ( ) 0Bλ = . 

5. Analysis of the Role of the Geometrical Spreading 

The main purpose of this section is show that the solution to the adjoint equa-
tion can be constructed from the geometrical spreading function, and to interp-
ret this result. 

In any region in which 0 0e = , the adjoint Equation (18) has the same form as 
the transport Equation (12). Since the error ( )e x  is rarely known within the 
medium, but rather only on its boundary Bx , this restriction is satisfied by all 
commonly-encountered cases. As we will show below, the similarity of form 
provides considerable insight into the behavior of the adjoint field λ . 

Ray divergence enters into the adjoint equation through the 0̂t∇⋅  term. In 
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order to highlight its contribution, we first examine a solution in which this term 
is zero. Consider a plane wave propagating in the z-direction through a homo-
genous layer with 0 Bz z≤ ≤  (Figure 2). The background travel time is 

0 0T s z= , the ray direction is 1
0 0

ˆ ˆt s T z−= ∇ =  and z= . The plane wave satis-
fies the background Eikonal equation (14a),since ( )2 2

0 0 0 0ˆ ˆT T s sz z∇ ⋅∇ = =⋅ . 
Since the rays of a plane wave do not diverge, 0̂ 0t∇⋅ = .  

Now consider the case where the background slowness is everywhere too 
small by an amount b, so that the background error 0 0

obse T T= −  grows li-
nearly with distance z; that is, ( )0 , ,e x y z bz= . We will assume that this error is 
known only on the boundary Bz z= . Following (5), the adjoint equation is 

( )d d B Bz bz z zλ δ= − − . Because of the Dirac impulse function, the boundary 
condition for λ  requires some scrutiny. We will consider that the error is de-
fined just below the boundary, at 2

Bz≡ −  , where 2
Bz . In order to satisfy 

both the boundary condition of ( ) 0Bzλ =  and the adjoint equation, the solu-
tion must be discontinuous at Bz− ; and in the immediate vicinity of Bz−  must be 
( ) ( )B Bz bz H z zλ − −= − . Effectively, the boundary condition is ( ) ( )0 , ,S Sz e x y zλ = . 

The solution of the adjoint equation is ( ) Bz bzλ = ; note that it does not depend 
upon z.  

Now consider a slowness perturbation in the form of a very thin rectangular 
prism, centered at Hz , of thickness D, and having sides at 1x  and 2 1x x L= + , 
and 1y  and 2 1y y L= +  (so that its volume is 2DL ). Since the prism is very 
thin, it can be approximated as a Dirac impulse function in depth z: 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 1 2

1 2 1 2

, , , , , ,

with , ,
Hs x y z m W x x x W y y y D z z

W x x x H x x H x x

ε δ= −

≡ − −
          (20) 

Here, ( ).H  is the Heaviside function, which is unity when its argument is 
positive and zero otherwise. The partial derivative of total error is: 

( )

( ) ( ) ( )

1
1

1

1 2 1 2

2

d
2 ,

d

2 , , , , d d d

2
H B

B

s
H

m

D W x x x W x y y z z bz x y z

bz DL

ε
λ

δ

 
= −  

 
= − −

= −

∫∫∫       (21) 

An expected, 1 0H < , since increasing 1m  lowers the error. Also as expected, 

1H  is proportional to the area 2L  of the prism, since the larger its area, the 
larger the region to which the slowness perturbation is applied. Interestingly, 

1H  is independent of the position Hz  of the prism; that is, the prism can be 
moved up or down without affecting the error. As we will show below, this in-
sensitivity to position is due to the absence of ray divergence in this plane wave 
case. 

We now consider a spherical wave propagating in the r-direction in through a 
homogenous sphere with 0 Br r≤ ≤  (Figure 3), described by spherical polar 
coordinates ( ), ,r θ ϕ . The background travel time is 0 0T s r= , the ray direction 
is 1

0 0
ˆ ˆt s T r−= ∇ =  and r= . The spherical wave satisfies the background Ei-

konal Equation (14a), since ( )2 2
0 0 0 0ˆ ˆT T s sr r∇ ⋅∇ = =⋅ . The area of a ray tube is  
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Figure 2. Rays (blue) of a plane wave cross a layer with bottom and top surfaces at 0z =  
and Bz z= , respectively. A prismatic slowness perturbation (red rectangle) is placed 
within the layer, with left and right edges at 1x x=  and 2x x= , respectively. The travel 

time error ( ), Be x z , measured on the upper surface (top plot), is reduced in the region 

1 2x x x< <  where the rays project the prism. Because the rays do not diverge, the size of 
this region is independent of the depth of the perturbation. 
 

 
Figure 3. Rays (blue) of a spherical wave start at a source at the center of the sphere at 

0r =  and propagate outward through the sphere to its surface at Br r= . A slowness 
perturbation with the shape of a spherical cap (red cap) is placed within the sphere at ra-
dius Hr , with left and right edges at polar angle Hθ−  and Hθ+ , respectively. The travel 

time error ( ), Be rθ , measured on the upper surface, is reduced in the region where the 

perturbation is projected by the rays (graph at top). 
 

2dS r= Ω , from whence we conclude that the geometrical spreading function is 
( )2 2R r r=  and the ray divergence is 1

0̂ d d 2t S S r−∇ ⋅ = = . As in the plane 
wave case, the background slowness is everywhere too small by an amount b, 
leading to a background error ( )0 , ,e r brθ ϕ = . We will assume that this error is 
known only on the boundary Br r= . The adjoint Equation (18) reduces to: 

( )d 2 0 with boundary condition , ,
d B Hr br
r r
λ λ λ θ ϕ+ = =          (22) 

https://doi.org/10.4236/am.2020.112009


W. Menke 
 

 

DOI: 10.4236/am.2020.112009 93 Applied Mathematics 
 

The solution is ( ) ( )( )2 2, , B Br br r rλ θ ϕ = . As is asserted in the Introduction, 
the solution to this transport-like equation is related to the geometrical spread-
ing function by ( ) 2, ,r Rλ θ ϕ −∝ . 

Now consider a slowness perturbation in the form of a very thin spherical cap 
of fixed thickness D, centered at Hr  and 0Hϕ =  and subtending a variable 
polar angle area Hθ  such that its area is fixed as ( )2 22 1 cosH HL r θ= −π : 

( ) ( ) ( )1 1, , H Hs x y z m H D r rε θ θ δ= − −                  (23) 

For a position Hr  away from the origin where a spherical cap of thickness D 
and area 2L  is possible, the partial derivative of total error is: 

( )

( ) ( )
( ) ( )

( ) ( ) ( )

( )
( )

1
1

1

3 2 2

3

3 22
3

2 2

2 2
2 2

2

d
2 ,

d

2 sin d d d

2 sin d d d

2
2 2 1 cos

2 2

B H H

B H H

BH
B H

H H

BB
B B

H H

s
H

m

br D H r r r r r

br D H r r r

br D LrbDr
r r

R rrbr DL br DL
r R r

ε
λ

θ θ δ θ θ ϕ

θ θ θ θ ϕ δ

θ

−

 
= −  

 
 = − − −    

= − − −

−
= − − =

 
= − = − 

 

π

∫∫∫
∫∫ ∫       (24) 

The spherical wave solution (24) differs from the plane wave solution (21) by 
a factor that involves the ratio of geometric spreading functions, ( ) ( )B HR r R r , 
evaluated at the heterogeneity and the surface. The area, on the surface of the 
sphere, subtended by the prism decreases with its radius Hr , decreasing the er-
ror ( ), ,Se r θ ϕ  over wider region (Figure 4). This example illustrates the im-
portance of geometric spreading on the amplitude of the adjoint field and on the 
effectiveness of a given perturbation to reduce the error E. Given several pertur-
bations of equal size, the most effective is one whose projection on the boundary, 
by rays interacting with it, is the largest. 

Although the adjoint field is singular at the source (ray starting point) 0r = , 
the partial derivative kH  is finite there, as can be seen by considering a spheri-
cal heterogeneity of radius Hr  centered on the origin of the form  

( ) ( )1 1, , Hs x y z m H r rε = − : 

( ) ( )

( )( )

1 3 2
1

1

3 3 3

0

d
2 , 2 d d sin d

d

2 sin d d d 2 4 8
H

B H

r

B B H B H

s
H br H r r r rr r

m

br r br r br r

ε
λ θ θ ϕ

θ θ ϕ

− 
 = − = − −      

 

= − = − = −π π

∫∫∫

∫∫∫
    (25) 

when the background slowness ( )0s x  is spatially varying, the rays have a com-
plicated spatial pattern and the background error ( )0 Be x , measured on the 
boundary Bx , is spatially varying. Suppose that the medium has a surface Bx  
with outward pointing normal ( )ˆB Bn x . A ray connecting an interior point x  
to Bx  can be labeled by Bx . Then, ( )Bx x  means the point on a boundary at 
which a ray passing through x  ends, and arc-length ( ), Bx x  means the dis-
tance at x  along a ray that ends at ( )Bx x . Similarly, the geometrical spreading  
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Figure 4. Rays (blue) of a spherical wave, as in Figure 3. One of two alternate slowness 
perturbations (green and red caps) are placed within the sphere, at radii 

1Hr  and 
2Hr , 

respectively, with 
1 2H Hr r< . These caps have equal area 2L  and equal thickness D. The 

travel time error ( ), Be rθ , measured on the surface of the sphere, is reduced in the region 

where the perturbation is projected by the rays (green and red curves in top plot). The 
reduction in error in this region is the same in both cases, because the thicknesses of the 
perturbations are equal. However, because the rays diverge, the size affected region is 
larger for the perturbation at 

1Hr . 

 
function can be written as ( ), BR x x ; that is, the geometrical spreading function 
at x  associated with the ray that ends at Bx . Then, the adjoint field is then: 

( ) ( )
( ) ( )

( )
( )

2
0

2

,
ˆ ˆ ,

B B B

B B B B

e R
t n R

λ =
⋅
x x x

x
x x x x

                  (26) 

Here, the dot product between the ray tangent and surface normal is intro-
duced to account for the increased surface area intersected by the ray tube, in the 
case (unlike the examples, above) where the ray tube obliquely impinges upon 
the boundary. Now, suppose that slowness perturbation is represented with vox-
els, where voxel k has volume kV , amplitude km , and centroid position ( )kx . 
When the adjoint field varies slowly compared to the length scale of a voxel (a 
requirement that excludes the source point) the error derivative is: 

( ) ( )
( ) ( )

( )
( )( )

2
1 0

2

d ,
2 , 2 ˆ ˆd ,

B B B
k k k

k B B B B

s e R
H V

m t n R

ε
λ

 
= − ≈ −  ⋅ 

x x x
x x x x

        (27) 

Here Bx  is the end point of the ray passing through ( )kx . This result em-
phasizes the link between the geometrical spreading function R and the partial 
derivative of total error E. (When the voxel is close to, or overlaps the origin, 

kH  is still well-defined and finite, but the inner product in (27) must be com-
puted appropriately). 

6. Conclusion 

The key result in this paper is the demonstration that the adjoint equation in 
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ray-based travel time tomography has the same form as the well-known trans-
port equation for ray theoretical amplitudes. Consequently, the spatial variation 
of the adjoint field λ  is completely controlled by the geometrical spreading 
function R. This result provides an intuitive understanding of the primary factor 
controlling the size of the partial derivative jH E m= ∂ ∂  of total 2L  error E 
with respect to the slowness jm  of a voxel. The partial derivative jH  is large 
when ray divergence causes the projection of the voxel on the measurement sur-
face to be large. Since this result provides an explicit formula for λ  in terms of 
R, it enables jH  to be calculated without resorting to the numerical solution of 
the adjoint equation. Only an inner product needs to be calculated, and in the case 
of a voxel parameterization of the slowness image, it can be calculated trivially. 
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