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Abstract 
By applying the q-derivative, we introduce two new subclasses of p-valent 
functions with positive coefficients. By means of the well-known Jack’s lem-
ma, some inequalities related to starlike, convex and close-to-convex func-
tions are also obtained. 
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1. Introduction 

By ( )p n , we denote the class of functions of the type:  

 ( ) ( ), , ,p k
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which are p-valent and analytic in the open unit disk { }: 1z z= ∈ <  , see [1].  
Now, we introduce some basic definitions and related details of the q-calculus, 

see [2] [3] [4].  
The q-shifted factorial is defined for ,qα ∈  as a product of n factors by:  
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and according to the basic analogue of the gamma function, we get:  
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where the q-gamma function is given by:  
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If 1q <  the relation (2) is meaningful for n = ∞  as a convergent product de-
fined by:  

 ( ) ( )
0

; 1 .j

j
q qα α

∞

∞
=

= −∏                          (5) 

Further, we conclude that  
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For 0 1q< < , the q-derivative of a function f is defined by:  
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A simple calculation yields that for m∈  and 1λ > − ,  
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Also, in view of the following relation:  
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we note that the q-shifted factorial (2) reduces to the well-known Pochhammer 
symbol ( )nα  [5], which is defined by: 
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Differentiating (1) m times with respect to z (8), we conclude  
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A function ( ) ( )pf z n∈  is said to be in the subclass ( ),pX n m  if it satisfies 
the inequality:  
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where z∈ , p∈ , 0 1q< <  and { }0 0m∈ =   . Indeed ( ) ( )pf z n∈  
is said to be in the subclass ( ),pY n m  if it satisfies the inequality:  
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For details see [6].  
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2. Main Results 

To prove the main theorems related to ( ),pX n m  and ( ),pY n m , we need the 
following lemma due to Jack [7] [8].  

Lemma 1. Let ( )w z  e non-constant in   and ( )0 0w = . If w  attains its 
maximum value on the circle 1z r= <  at 0z , then ( ) ( )0 0 0z w z tw z′ = , where 

1t ≥  is a real number.  
A function ( ) ( )pf z n∈  is said to be in the subclass ( )p n   of p-valently 

close-to-convex functions with respect to the origin in   if  
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Also, ( ) ( )pf z n∈   is said to be in the subclass ( )p n   of p-valently star-
like functions with respect to the origin in   if  
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Further ( ) ( )pf z n∈  is said to be in the subclass ( )p n   of p-valently con-
vex functions with respect to the origin in   if  
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see [9] [10].  
Theorem 2. If ( ) ( )pf z n∈  satisfies the inequality:  
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then ( ) ( ),pf z X n m∈ .  
Proof. Let ( ) ( )pf z n∈ , we define the function ( )w z  by:  
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with a simple calculation we have ( )0 0w =  (in  ).  
For (14), we obtain:  
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or equivalently  
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From (14) and (15), we get:  
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Now, let for ∈0z , ( ) ( )
0

0max 1
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= = , then by using Jack’s lemma and 

putting ( )0 e 1iw z θ= ≠ −  in (16), we have:  
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which is a contradiction with (13). Thus we have ( ) 1w z <  for all z∈ , so 
from (14) we conclude:  
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and this gives the result.  
By letting 0m =  and ( 1, 1m q= → ), we have the following corollaries which 

are due to Irmak and Cetin [11].  
Corollary 3. If ( ) ( )pf z n∈  satisfies  
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Proof. Let the function ( ) ( )pf z n∈ , we define the function ( )w z  by  
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It is easy to verify that ( )w z  is analytic in   and ( )0 0w = . By (18), we have:  
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or by (18) we get  
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Now, let for a point 0z ∈ , ( ) ( )
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= = . By Jack’s lemma and 

putting ( )0 eiw z θ=  we conclude:  
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which is contradiction with (17). Thus for all z∈ , ( ) 1w z <  and so from 
(18), we have:  
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thus the proof is complete.  
By letting 0m =  and ( 1, 1m q= → ) we have the following corollaries that 

the first one is due to Irmak and Cetin [5].  
Corollary 6. If ( ) ( )pf z n∈  satisfies the inequality  
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3. Conclusion 

Studying the theory of analytic functions has been an area of concern for many 
authors. Literature review indicates lots of researches on the classes of p-valent 
analytic functions. The interplay of geometric structures is a very important as-
pect in complex analysis. In this study, two new subclasses of p-valent functions 
were defined by using q-analogue of the well-known operators and we gave 
some geometric structures like starlike, convex and close-to-convex properties of 
the subclasses. It is noted that the study is an extension of some previous studies 
as it is shown in corollaries 3, 4, 6. 
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