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Abstract 
In this paper, we continue to examine the role of algebra underlying geome-
try. The mathematics that we examine are abstract and are quite far removed 
from applications. Those who may wish to examine the possible uses of ab-
stract geometry in physics might well begin by reading (Schlichenmaier, 2007; 
Bub, 1997). The method of research that we apply is to use the logic of H. S. 
Leonard to extract the underlying algebra of mathematical proofs and then 
use the results for the purpose of finding the algebra that underlies mathe-
matical results. 
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1. Introduction 

In a previously published paper (Jones, 2014), we emphasized the use of a system 
of logic devised by Henry Siggins Leonard to facilitate the analysis of logical and 
mathematical structures. In this paper we shift the emphasis from that logic, 
upon which we continue to rely, to the use of algebra in mathematics. We wish 
to particularly draw the reader’s attention to recent literature in closely related 
subject areas, e.g. (Murphy, 1990) is highly recommended as a textbook of this 
subject. 

1.1. Algebraic Structures 

Here we examine several fundamental algebraic structures that frequently are 
used in mathematical writing and proofs. 

1.2. Some Preliminaries 

A certain theorem, named after Bézout (Bézout, 2006), is a criss-cross point of at 
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least three of mathematics. These are algebraic geometry, polynomials, and pro-
jective geometry. We wish to examine the underlying algebra involved in this 
result. In doing so, we follow the original reasoning published by Bézout, but we 
mention several mathematical developments, that have appeared in the mean-
time, that are relevant to his result.  

1.3. Elementary Algebraic Structures 

A group consists of a set G and an operation  . If for all elements x and y of G, 
the item z x y=   is also an element of G, then G is said to be closed with re-
spect to  . 

There are three conditions that define a group. 
1): If x, y, and z, are elements of G, then ( ) ( )x y z x y z=    .   is associa-

tive. 
2): There is an element e of G such that e x x e x= =   There is an identity 

element e in G. 
3): For every element x of G there is an element 1x−  of G such that 

1 1x x x x e− −= =  . Each element of the group has an inverse. 
David Hilbert made a fundamental suggestion that has since permeated ma-

thematics. He suggested first-order logic with a set theory for the formulation of 
the foundations of mathematics (Moore, 2002). We introduce some of the nota-
tions of Hilbert’s initiative, although we do so with a somewhat different pur-
pose than he had. 

Universal and existential quantifiers, and set theory membership, 

x∀ ∈ , y∃ ∈  

Conjunction, disjunction, negation, implication, ∧ , ∨ , ¬ , →  
The notation of the above definition of a group can now be augmented. A 

group consists of a set G and an operation  . Three conditions define a group. 
e G x y z∃ ∈ ∧∀ ∈ ∧∀ ∈ ∧∀ ∈     

1) ( ) ( )x y z x y z=      
2) e x x e x= =    
3) 1x G−∃ ∈ , 1 1x x x x e− −= =    
We introduce here notational conventions of set theory and logic in the style 

of Hilbert and proof structure in the natural deduction style of Gentzen. These 
gentlemen provide us with an assemblage of methods for bringing to light the 
underlying algebraic structure of the mathematical results to which these me-
thods lend proofs. The interested reader may wish to consult (Pelletier, 1999) for 
the history of these techniques. 

Another elemental algebric structure that is of central importance for under-
standing geometry is that of a ring. A ring R contains two opertors: multiplica-
tion ∙ and addition +. 

0 R x y z∃ ∈ ∧∀ ∈ ∧∀ ∈ ∧∀ ∈     

1) x y y x+ = +   
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2) ( ) ( )x y z x y z+ + = + +   
3) 0x x+ =  
4) ( )x R∃ − ∈ , ( ) ( ) 0x x x x+ − = − + =   
5) ( ) ( )x y z x y z⋅ ⋅ = ⋅ ⋅  
6) ( )y z x y x z x+ ⋅ = ⋅ + ⋅  
7) ( )x y z x y x z⋅ + = ⋅ + ⋅  
The axioms for a ring can be usefuly thought of as falling into three sets. 

Axioms 1 to 4, for the addition operator, characterize the set R as a group. The 
group operator is commutative and is, for this reason, often called Abelian. 
Axiom 5 asserts that multiplication is associative. The third, and last, subset of 
axioms for a ring are 6 and 7. These axioms relate the two ring operators to each 
other, and are often called distribution operators. 

A subring of a ring R is a nonempty subset S of R that is also a ring with the 
same operators for multiplication and addition as R. 

Next, we need the concept of an ideal. A subring A of a ring R is said to absorb 
elments of R if the product of any element a of R and any element b of A is in A. 
As an example, the even integers are a subring of the integers that absorb ele-
ments of the ring of integers. This is so, because the product of any integer with 
an even integer is an even integer. An ideal is a subring that absorbs elements of 
the ring.  

1.4. The Concept of Coset 

Cosets: A concept that is very useful is that of a coset. If S is a subgroup of the 
group G and a is an element of G then the notation aS is written to indicate the 
set of all products of a with elements of S. 

The concept of a coset also lends itself to definition using a notation of algebra 
and set theory that is sometimes described as the circumflex notation. 

( ) ( )( )ˆ:aS x y y x a y= ∃ ∈ ∧ = ⋅S  

This definition is intended to be read as: the expression consisting of a lower 
case a concatenated with an upper case S is by definiton equal to the set of those 
x such that there is an element y of the subring S such that x is equal to the ring 
product of a with y. 

1.5. The Role of a Determinant 

We now can return to the proof of the Theorem of Bézout as documented in 
(Bézout, 2006), Although we intend, in what follows, to follow the methods of 
proof reasoning published by Bézout, we deviate from the assertions of that 
proof themselves. Many of those proof assertions, since his time, have been in-
corporated into the structure of matrices and determinants. We propose to use 
the latter structures to express the proof that we now continue to examine. 

At this point, we define and make use of a determinant. This determinant was 
discovered by James Joseph Sylvester (Sylvester, 1973). 
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The above determinant is useful because it illuminates a result first obtained 
by the French mathematician Étienne Bézout (Bézout, 2006). It does, however, 
replace explicit use of the underlying algebra of this result to bring that result to 
light, with the charming symmetry of the matrix of the determinant. The deter-
minant belongs to applied mathematics, in which the Theorem of Étienne 
Bézout, also has its place. The regularity of the array, in rows and columns, also 
lends itself to computer applications. 

This is determinant also plays a role in a part of the proof of the Theorem of 
Bézout. The most subtle part of that proof deals with a so-called multiplicity of 
the intersection points of curves. The above determinant will help us to deal with 
this problem. We must, however, postpone this part of our discussion until we 
have developed the needed preliminaries. 

For the reader who may wish to read a review of the considerations outlined 
above, we recommend (Sharpe, 1987). The Theorem of Bézout has many incar-
nations in many contexts. The preferred such context is not the classical Eucli-
dean plane, but rather the projective plane. The reader may take a look at what is 
to come by examining this geometric context in (Apéry, 1987). This beautiful 
book first describes the geometry of the projective plane, then shows diagrams of 
the geometric constructs, and then offers color plates of those geometric constructs.  

1.6. Algebraic Geometry 

Having called the reader’s attention to these matters, we wish now to continue to 
examine the underlying algebra of the fundamental result of Étienne Bézout. 
This examination will lead us in the direction of algebraic geometry. 

We hope to continue this line of inquiry in another paper. The plan of our 
exposition is to discuss this very large field of mathematical work in a series of 
consecutive papers, each of which constitutes a small part to a larger discussion 
of the many aspects of the Theorem of Étienne Bézout. We also look forward to 
discussing the applications of algebra to physics, as mentioned in the Abstract. 
We also look forward to describing the uses of algebra in Morse theory and to 
algorithms for the analysis of data. These are described in (Knudson, 2015).  

2. Conclusion 

We have begun to compare various approaches to proofs of the Theorem of 
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Étienne Bézout. Some of these approaches are in the following literature refer-
ences. (Gibson, 1998) offers a well-written formulation of a standard interpreta-
tion of the theorem. (Kendig, 2015) uses an interesting recursive approach to the 
proof. 

We are using the methods described in Section 1 to find shared underlying 
algebraic methods underlying these various approaches to the proof. 
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