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Abstract

This paper provides an estimation approach for the multi-equations’ systems
in panel data. Multi-equations systems are at the heart of economic modeling.
Researchers who want to establish causal links between two outcomes, often
need to consider simultaneity between the latter, to overcome endogeneity
issues (for instance when considering supply and demand equations). Diffi-
culties arise when considering linear and non-linear outcomes at the same
time and this is why Roodman [1] implemented the Stata module cmp for
multidimensional models. In this paper, we further develop this technique to
allow researchers to implement a simultaneous equations model in a panel
dimension setting. Implemented under Stata, our method, xtcmp, is a Full
Information Maximum Likelihood (FIML) estimator. This paper explains the
associated theory (derivation of the log-likelihood function, the associated
gradient and the Hessian matrices of the log-integrand function) and offers
an application of t xtcmp, while making comparisons with cmp.

Keywords
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1. Introduction

In empirical economics, a common approach is to consider a linear da-
ta-generating process. However, non-linear outcomes are often present and im-
portant in research questions. This is due to the structure of the database where
interviewers transcribe yes-no answers into binary outcomes. However, when
researchers point out a project, they often have to take into account different va-

riables, continuous and categorical, at the same time, while considering simul-
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taneous equations framework in a dynamic setting, in which each dependent va-
riable is endogenous in one (or more) equation(s) of the model. The advantage
of simultaneous equations model is to consider the correlation between the error
terms of each equation. More specifically, in a dynamic setup, such models allow
researchers to consider different individual effects (which are part of error
terms, the latter being decomposed into an individual effect fixed across time
and an effect which depends on time) across equations. This is of importance
since these terms are unobserved, specific to each outcome, and might imply
endogeneity issues. For instance in health economics, when investigating causal
relationship between health and income, this can run from income to health and
from health to income such that both are endogenous to each other [2]. In this
way, considering a dynamic simultaneous equation model allows to consider
unobserved individual effects such as physical maturity (thanks to genetics for
health) or intellectual abilities (for income).

The framework of multi-equations models has been widely used in the litera-
ture to address several issues including the case of an endogenous binary out-
come. Greene [3] has reformulated the estimation of the impact of an endogen-
ous treatment on a continuous outcome using a multi-equations model. This
reformulation has been extended to the analysis of endogenous binary outcome
by [4]. Thus, several papers have analyzed the effects of an endogenous treat-
ment on diverse types of outcomes including continuous and count outcomes
[5] [6] [7]. Also, some generalizations for the case of noncompliance and non-
response have been introduced by [8]. However, all these methods focus on
cross sectional data and do not account for panel data.

There is almost no automated estimation method in Stata software to estimate
parameters in this multi-equations model. An exception is the cmp command
which is the first general Stata tool for this class of models, and is written as a
Seemingly Unrelated Regressions (SUR) estimator [1]. However, this command
does not explicitly consider panel dimension of the data which might be an issue
due to the effervescence of databases with a temporal dimension. Moreover,
simple relationships among variables at a point in time do not capture ade-
quately the dynamic interaction of changing humans in changing environments.
Thus, there is a need to develop a command for simultaneous equations model
for panel database.

As a result, we offer an extension of the cmp framework, in a case where there
are either two equations (one linear and one binary outcomes) or three equations
(either two linear dependent variables with one binary, or one linear and two
binary dependent variables), while explicitly considering the panel dimension of
the data. In this way, our command xtcmp is a Full Information Maximum Like-
lihood (FIML) estimator, taking into account time dimension of the data, as well
as, linear and non-linear outcomes (which is not feasible with three-stage least
squares, because the latter only takes into account linear dependent variables).

As a result, the likelihood function is a multidimensional integral, such that

we use the adaptive Gauss-Hermite quadrature method as an approximation (as
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proposed by Liu and Pierce [9]). For the accuracy of the method and to reduce
computing time, we derive the gradient of the log-likelihood, and the Hessian of
the respective integrand. The estimation method of xtcmp has been imple-
mented using the dl method of Stata software (see [10] for further details).
Section 2 derives the likelihood for a FIML estimator in a general setting, as well
as, for three specific cases. Section 3 discusses the estimation requirements needed,
and details the Hessian matrices, as well as the gradient vector according to the
parameters. In Section 4, we give some examples on the use of xtcmp, while mak-

ing comparisons with Roodman’s [1] cmp results. Section 5 concludes the paper.

2. Likelihood for a FIML Estimator

Let Y denotes a d-dimensional vector of endogenous variables in a simultaneous
equations model. Roodman [1] specifically discusses conditions for consistency
and identification of such model. Let Y* denotes the & component of ¥ such
that the value of Y* for individual 7at period fis given by y!. We assume that
the first d, components of Y, where d, <d, are binary outcomes, and the
others, d, =d —d,, are continuous. Let ¢ denotes the vector of associated er-
ror terms. By assuming a panel random effects model, ¢ can be decomposed
into two terms such that €= u+v, where u is time-invariant. In this way, the
error term for individual i at period ¢ in the &“ equation is given by

€r = ' +vi . The full model can be written as follows:

Y=XpS+¢ (1)

where ¥ contains the related latent variables for the first d, equation and the
original continuous variables for the others. The explanatory matrix X is given
by X = diag(Zk) where Z*, with k =1,---,d, corresponds to the explanato-
ry variables for the A” equation. Similarly, the parameter vector is
/)’:(,Bl,---,ﬂd ), where % is the parameter vector of the &” equation. We
suppose that the classical hypotheses on independence between 1) error compo-
nents, and 2) the error components and explanatory variables, are satisfied.
Furthermore, let us assume that the error components are independent and
identically distributed with zero means and covariance matrices X, and X,

the latter being defined as follows:
DIND
= (2)
23 z:2

in which X, is a d, dimension matrix with 1 over the diagonal (which cor-
responds to the covariance matrix structure for simultaneous equations with
only binary outcomes), X, is a d, dimension matrix, and X; is a d, *d,

dimension matrix. Thus, the overall individual likelihood is given by:

T
L= Rd{Hf" (Vilr"”’vif |/ui1’”"#"d)}f” (/ullﬂ’/uld)d'uzldﬂzd (3)
t=1

-1
where fﬂ(yl.l,u-,yid): exp(;lu'flyl,u). The d, first equ-

(2n)"? (det(z,))
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ations being related to binary outcomes, if we define ¢, =2%y' —1, then, the
density function f, (v,.'[,---,vl.‘j' 7R y[d) is given by The density function is

denoted by ¢, for simplification:

1.1 di _dy
9itZit it Zit
1 d 1 d 1 d 1 d
4, zfv(viw"'avit | gy )= j I 9 (Vim""viz)dvf edv (4)
—o0 —00

koo
> with

where zil; :Z,.];ﬁk +,u,.k ,with k=1,---,d and V;; =J7,]; -z
k=d, +1,---,d . The idiosyncratic error is

v:(vl,---,vdl,vd1+1,---,vd)NN(O,EV), such that (vdﬁl,---,vd)w./\/'(O,Ez)

and (VI :"'5le ) | (Vd1+] 5”'5‘/11) ~ N(m(Vls“',Vd, )‘(leﬂ’.”,vd)’2(‘,1’,.4,‘% )‘(Vd]+l"”’vd)) with:
/ -1 '
Mty = Mo i Yvamva) — % (2,) (le+1a"‘,Vd ) (5)
and
, -1

Zdl\dz = 2( iy Vet v =2 -2, (Zz) 2 (6)

Thus, we have:

d)+1 d 4 _d,

b, = ¢d2 (Vitl+ S ¢ )(Ddl ((qz'ltzflm"'aqirl z )9md1\d2 s L, ) (7)

in which @, ((q}[z,.l,,u-,qg‘ z ),mdl‘ 4o dz) denotes the cumulative distribu-
tion function of a multivariate normal function with mean m,, and a cova-
riance matrix X, .

We now focus on two cases. The first one, related to a simultaneous equations
model with two outcomes, one binary and the other one continuous, is treated in
Section 2.1. Then, we focus on a case with three outcomes, composed of either
one binary and two continuous variables (that is developed in Section 2.2), or

two binary and one continuous variables (analyzed in Section 2.3).

2.1. Case with Two Outcomes: One Binary and One Continuous
Let us consider the two following equations:
Fi=ZiB +e (8)
Vi=ZiB +e 9
in which y, is a binary variable equal to 1 if 7, >0, and 7, =y, is a linear

outcome. The associated variance/covariance matrices of error components are:

s - 1 po
VT

2
s = Oy P1,20,0,
u 2
P1,0,0, o,

. . : _ 2 _ _ ,01
By identification, we have X, =1, X, =0", and X, =po. Thus, m, =—v,
and X, =1-p;.In this way, the likelihood has the following form:
112
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T
L=, {Hf (vi-vi| ﬂ)}fy (4l ) duaides

- ij {Hﬂi’ }fﬂ (luzl > /’ltz )dluzldluzz
t
inwhich ¢, isthe individual likelihood:

qf,( p
=4 (v2.0.0")0,| ——Z—~

z! +p‘v,2J
(10)

2.2. Case with Three Outcomes: One Binary and Two Continuous
Let us consider the two previous equations (Equation (8) and Equation (9)), and
anew one:

~3 303 3

V=L +e (11)
also corresponding to a linear equation with 7 =y. . The associated va-
riance/covariance matrices of error components are:

1 P19, P20y,

2

Zv = plo-a O-a p3o-aGb
2
PO, P30,0, Oy
2
(ep! P12010,  P30,0;3
_ 2
zy =| P1,20,0, 0, £230,0;
2
P130103  P,30,0; O3

2

2
o c,0
By identification, we have ¥ =1, %, =£ s P b], and
P30,0, 9,

! (p1_/02/03):_f2+(p2—p1p3);73
DR :(PIO'a,pzo'b) . Thus, My s) = a y b and

1-p;

_ PP 2P0 P
vil(va.vs) 1_p32

. As a result, we can write the following likelihood:

7
L=, {va (v},,vlf,vi | ﬂ)}f,, (#,«1,/13,,#,-3 )du}dyfdu,?
t=1

- J-JR3 {Hfit } v (ﬂz‘l o 1] )d,u,-ld,uizdlul_3
t

inwhich ¢, isthe individual likelihood, defined as:

it

I ((Vii,ViS,),O,Zz)q)l %1, (Z,vlt +mv1\("2v"3)) (12)

vil(va.v3)

2.3. Case with Three Outcomes: Two Binary and One Continuous

In order to derive the likelihood function for a case composed of two binary and
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one continuous outcomes, let us consider Equation (8) for the first binary out-
come and Equation (11) for the linear variable. To consider another binary out-

come, let us redefine the following:
Fa=ZB e (13)

where y; is a binary variable, equal to 1 if J, >0. The associated va-

riance/covariance matrices of error components are:
1 P PO
= p, 1 po

2
po po O

2
g P12,010, 130,03
_ 2
Zﬂ =| P120,0, o, P230,03
2
P130103  P,30,0; O3

!

plj, 2,=0", and %, =(p,0,p0) .

1
By identification, we have X, =( )
1

P11~ Pa2Ps 1—,032

I=p  p=paps The
c o

_| P, Ps =
Thus, m .. —(—vp—v;j and X, . _{

likelihood has the following form:
T;.
Li = RrR3 {Hﬁ/ (Vilt 2 Vj s Vi3; | ﬂ)} fp (luzl ’ /’112 > :u13 ) dﬂzldluzzd:u;

= .[]R3 {Hﬁit } fﬂ (/uil 5 luiz B /11.3 )d,ui'd,ul?dﬂl?

inwhich ¢, isthe individual likelihood:

qilt (Zilt +ﬁ-2v£) qlzt (tht _5_3‘/;)
O,O'Z)CDZ

2 2

1-p; 1-p;

Co=d(vi, savalp | (14)

with p= P~ PaPs '

(i )(-)

3. Estimation Requirement

The likelihood function being a d-dimensional integral function, we use the
Gauss-Hermite quadrature method (see Moussa and Delattre [11]). Implement-
ing this method requires to 1) compute the mode 4 of the log-integrand
log(f)= log({Hiléit}fﬂ (,ul.l,---,yid)) in y:(y},---,y[_d) and to derive the
Hessian matrix A at g with respectto u;and, 2) to derive the gradient of the
overall likelihood function with respect to the parameters.

Let Q denotes the selected number of quadrature points, x denotes the Q di-
mension vector of quadrature nodes, and w denotes the Q dimension vector of

quadrature weight. By applying the adaptive Gauss-Hermite quadrature [9], the

DOI: 10.4236/tel.2020.101005

74 Theoretical Economics Letters


https://doi.org/10.4236/tel.2020.101005

A. Adeline, R. K. Moussa

likelihood function in Equation (3) can be rewritten as:
0 o .
L= Y w w, Hgn (M, ..”ul_)
b=l kgl

inwhich x" = 2+v2H "’x and
o * 1\ _Ad)2 -1/2 . ’ 2
w = (wl ‘--wd) =2 det(H )~d1ag(w ~exp(x )) .
The derivation of the Hessian matrix is explained in Section 3.1 while the gra-

(15)

H=x

dient of the overall likelihood function is derived in Section 3.2.

3.1. Hessian Matrix at g

Based on the expressions of ¢, for each case described in Section 2 (Equation
(10), Equation (12), and Equation (14)), we first need to write the associated

log-integrand log( f ) corresponding to each three cases. Then, we can focus on
2
the calculation of the Hessian matrices, where we need to derive #bg( )
in which &,;j=1,---,d.
Focusing on the first case with two equations, we have the following

log-integrand:

E | [afe2)
log(f):log(fﬂ(,ui',yf))+;10g(¢l(vl,,() o ))+Zlog o|——9% 7

= Vi-pf

qilt[ +&V
with the notation b, = g , we find
1-pf
? T’b‘lbizq)lbir_lbizz
81 log(f) = ———— " = A 0)0 (%) 2(¢( )
o) of(1=p) 1-pi %3 (@1 (5,))
2 . > bd(B,)0, :
P ()T, & b)) (5()]
6(77,- ) o, (1—pl,2) o’ o (1—,0l )t:l ((I)l(bit))
2 i b 1 bit q)l bit 1 bit ’
P & o i (0)1(8) (4 (0,)
on,on; 0,0, (l_pl,z) (1 P ) t=1 (CDI (bit))

Thus, the Hessian matrix is given by:

2 g(f) 1 g(f)
. o(n!) omon, 16)
- | - |
omont o) = i og(/)

Then, focusing on the case of three equations with one binary outcome, the

log-integrand is given by:
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log (1) =log(f, (4 4. 15) )+ Zlog ))
+ilog{®[ Z Ml ﬂ

Vl\ v2.v3)

The associated derivatives, assuming b, = \/7 , a, =4/1- pi3 ,
l

a, = 1/1—p22’3 ,and ra= Pra " Prafas , are given by:

a4,

o’ I
(O'lal\/l ra )
1 i bit¢1(bt) 1(

AESESE

@‘
\/
A
hSS
A
v
—

A
—_
S
~—
e

o o 1 T

6(77,~2 )2 oel)= (o-za2 1-ra* )2 (1 - )O_j

_ (o —p.ps) ib’?@ (b,) @, (b,)+ (4 (5,))
(1-p) (=)o (=) 5 (@8]
o’ _ l_,012,2 _ T,

oty )" (i)

(P, - pips) 3 4 (6,) @ (5,)+(4,(5,))
(1-2)(-23)(o(1-02)) T ()
o’ _ P2 P3P
6771‘16’7!‘2 log(f) ) 0,0, (alaZ\/l —ra’ )2
PL= PP i | bty (bit)q)l (bit)+(¢1 (bit))z
O, (l—p )(1 pz)(l ps)f ! (q)l (bit))2
o’ log(f) = Pz~ PraPas

an;on; 0,0, (alalel—ra2 )2

_ P = PPy g, 4(5.), (5,)+ (4 (b))
o,(1-p*)(1-p2)(1-p}) = (@ ()
o’ P23~ Pi2Pi3 P

—log(f) =

on; on; 0,0, (ala2 Nl-ra® ) (1_'03 )G“O-b

- (o, =pips) (P =popy) & budh (b)) @, (bit)+<¢1 (bit))z
0.0, (1-0)(1=3) (1=} T (@5,
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Thus, the Hessian matrix is given by:

2 e 2
- 1 1
) o) )
2 Pu 2
H= _8 115 12 g(f) _6(77,.2)2 g(f) Wlog(f) (17)
—?—zglog(f) —?—zﬂog(f) S 7 log(f)
8771'5771' aﬂi 6771' 6(7]1.3)

Finally, for the three equations with two binary outcomes case, the log-integrand
can be written as:

10g(f):log(fﬂ(/lilaﬂizsﬂ?))+

K]

log(¢ (V”,O o ))

1

P P
7 q; ( it - Vitj 9 ( it = )
+ log| @ : 144,
1=1 ’ dl—pzz \[1—,032 o

Then, considering a,, a, and ra previously defined and the following nota-
tions:

pi =49 (bi)® (%]

1-p?

12 g2

s P ool B 9idiPbi |, Py o] B~ Dudulbs
jo Gl_pzvﬁ(,,) [ N +29(51) N

We find the following:
1 212 g1
i 2 1 by — 4.4 Pby 1 1)
az a§ T rn { btplt qttp¢(btt)¢[ N ]J (blt’blt7qltqltp) (pit)
l2log(f)=— 22+7 : 2
a(r]’ ) (O-lala2 l_ra ) = ( (bzt’bt’qttqltp))
DOI: 10.4236/tel.2020.101005 77

Theoretical Economics Letters


https://doi.org/10.4236/tel.2020.101005

A. Adeline, R. K. Moussa

2 a

log(f)=——"—

2
1
6(771'2 )2 (O'zalaz\ll_raz )2
L1 2 g0
T Z:[ bzpn q}tp¢(btf)¢[b”\/;]iq/l;2pb’t}] (bllt’bz’q"q”p)_(p"zf)z

(0, (52:,60))

og()=-— AT % (i)

0
2,
R PP o R DX

b2 b,
LZ (pz—%llqizlp Ps j¢(bl§)¢ b =0u49iPbi | _Ps bj P2 |0, (8).8250420)
T; O'az l_p O'al oa [

2 1-p°
+2
= (@, (8).8%:4420))
p p p by —4u4uPby | P .
+io—al\/lz7[{o_;z _qill‘q;p O_;l j¢(bzlt)¢(t\/li7J 5 bzlz zltJ (bllt’btt’q}tqiztp)
= (@, (8).8:4420))
? log(f) _ P~ PrPs

6771-1‘3771'2 0,0, (alaZ,ﬂ — rf )2
S 1
%7;1" [¢(b;t)¢[bn\/1‘1niqﬁfbn]J (b :q4a,p) - Phpi
NIE) —-pP

( (b}t,bl, ,q,,qn/’))z

T;
+y
t=1

2

P2~ PP
———log(f)=
1 3 2
on,on; 0,0, (alaz\/l —r )
P V%
| on WP G, by~ 0:9:Pb, |_ P
L qu(b;)af s S LA L UR R
7
+Y 2
t=1 ( (btlz 9b;r ’qltqllp))
2
Ps— PP,
1 =
on;on; ef)

2
2
0,0, (ala2 1-r, )

2 &_qttqttp&

b b
) S (b} )| A ,Mj ~ P pt |0, (b).b2qap) - P
U l—p l_p o

T
+2
= (@, (51,8250}

Thus, the Hessian matrix has the same form as the previous one (matrix 17). In
other words, it is given by:
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2 62 2
- 2 g(f) 1~ 2 g(f) 1~ 3 g(f)
o(n) on'on; onlon
2 62 2
H=|- - 1 18
omont 8/ o oelf) —ggoe)| a8
2 62 2
- I I
on;om; sl/) on;on; ef) o(n) /)

3.2. Gradient Vector with Respect to the Parameters

Based on the likelihood function given by Equation (15), parameters to estimate
are ﬂk ,with k=1,---,d, and the associated covariance matrices z, and X, .
Thus, the gradient has to be calculated with respect to these parameters. The first
order derivative of the log-likelihood function with respect to a parameter « , in
the set of parameters, is given by:

Olog(L) & & of foa

oA S A z LN (19)

oa k=1 ky=l Ll-
Focusing on the three cases, we apply this formula to compute derivatives with
respect to each parameter.
First, considering the two outcomes case, we need to consider the six follow-

ing parameters: B, B, o, P> Oys Oy, Py . As in subsection 3.1, we con-

sider the previously defined b

it >

which is specific to the case with two outcomes,
such that we have:

i: *Ti qilt¢1(bit)
6ﬂl / ; l_plzcbl(bit)

o =f*§[v—5— Pt (b, J

o o 1-p @, (bit)

A _]_M—WJ)
e o l—plz(l)l(b”)

2
Vi

= f* (plqitzilt +

LA
dlog (o) 1-pf,

of .
L/,
olog(o,) ! " 1-p7,
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Now, focusing on the case of three equations with one binary outcome, we
consider notations associated to this case in subsection 3.1 (b,,qa,, and ra).
We compute derivatives with respect to ', B>, B, 0,, G,s s Pr> Py

0\, Oy, O3, Pi,> Ps and p, 5, such that:

KA 4.4 (b,)
R (R [ LY
v v
o a3 ot 3Ua:;b_ a0, (p. - p.p;) 4 (b,)
N I N e T
Vv v’

it it

of :f*i O-zf ' 0.9 qilt (pz —,01,03)¢1 (bit)
8ﬂ3 -1 1—p32 Ub\/(l—Pz)(l—pgz)(Dl (b,-t)

2\? 2.3
[V”J —p VieVie ] i
L:f*i 1+ %a 9.9 _ 9 (pl _prS)Vit¢l (bit)
alog(%) 1=1 1—,032 O-a(l_p32) (l_pz)(l_pzz)cbl(bit)
(1/3]2 _p V;V?
L: f*i “1+ % ] %% _ % (pz —plpg)viﬂ (bn)
dlog(a,) pam 1-p3 Gb(l—p32>\/(1_p2)(l—p22)(l)l (b,)
S Vi
qilt [10301[ Ull \J p2
_ b a +b’ 1_p2 l_pZ ¢(bl)
1-p5 A=) 2)(1—/92)(/0] -pp) |
) T
! 12 =/* (1 p12) - -
ol ( plj =t (1_,0 )(1_/02 )(I)l (bit)
— P
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Finally, we compute derivatives with respect to B', B, B°, o, p» py>

P> Ops Oy, O3, P, P15 and p,, for the three equations with two bi-
nary outcomes case. To do so, we consider notations defined for this case in

2 | 2
subsection 3.1 concerning b, b., a,, a,, ra, r,, 1,, p, py, and p.,
such that:
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4. Examples and Comparisons with Roodman’s Command

In order to shed light on the advantages and the consistency of our method
(xtcmp), we decide to implement examples using a dataset, previously used for
xtsur', in Stata software. This database is an unbalanced panel database of 1672
observations, corresponding to 142 individuals followed between 1990 and 2003.
All explanatory variables used are quantitative and do not contain any missing
values.

We implement two cases: 1) a system of two equations with one linear and
one binary dependent variables; 2) a system of three equations with two binary

and one continuous outcomes. Indeed, let us consider the three following equa-

tions:
Jr= By +xl B +x2, B, +x3, B+ x4, B, +u +v, (20)
Ta = Vot X4, 7 X6, 7, +XT, 5+ 4 +V, (21)
=, +xT, 0, +x9, 0, + 1 +v, (22)

where y, and y. are binary variables equal to 1if 7, >0 and . >0; and
where 7, =y, isa linear outcome.

When considering the first case (a system of two equations) with one conti-
nuous and one binary outcomes, we focus on the simultaneous estimation of
Equation (20) and Equation (22). In this case, the associated variance/covariance
matrices of the error components are given by:

5, ZE 1 pfjj and %, =( o plalo-zj

2
po o £10,0, 9,

We consider four estimation techniques: 1) each equation is estimated separately
as a single panel equation; 2) the two equations are estimated with cmp, while
considering a pooled equation; 3) the two equations are estimated with cmp,
with a posterior estimate of random effects; and, 4) the two equations are esti-
mated with our method (xtcmp) presented in Section 2. Results are presented in
Table 1.

Results suggest that first, estimating equations separately is misleading since
the covariance between idiosyncratic errors and individual random effects is not
considered; and, the significance of the coefficients appears to be false. On the
other hand, considering equations simultaneously aims at obtaining consistent
estimates among the three tests performed (coefficients are closer to each others
in the last three columns). However, one should notice that, when using cmp
with random effects, the estimation of the covariance matrices for both individ-

ual random effects and idiosyncratic errors is done after the estimation of the

'See Nguyen [12] for more detailed information.
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Table 1. Two equations system with both a linear and a non-linear outcome.

Variables Separate Cmp on Cmp with Our method
equations pooled data random effects xtcmp

Binary outcome: j,

xl 0.0238 —0.0056 0.0021 0.0119
(0.0166) (0.0062) (0.0224) (0.0082)
x2 0.2569™ 0.0297™ 0.0484™ 0.0204™
(0.0238) (0.0034) (0.0045) (0.0037)
3 0.3171" 0.0053 0.0351 0.0254
(0.1228) (0.006) (0.0224) (0.0263)
x4 -0.5748™ -0.0084 —-0.058 -0.0463
(02182) (0.0112) (0.0399) (0.0471)
Intercept 64382 07083 L% 2t

Continuous outcome: j,

X7 -0.1528"™ -0.0321" -0.1044™ -0.0422™
(0.0207) (0.0168) (0.015) (0.0158)
X9 0.0384™ 0.1035™ 0.0361™ 0.096™
(0.004) (0.0047) (0.004) (0.0043)
Intercept 15.9964" 10.0568™ 17,0243” 74308”

(0.7339) (0.5086) (04477

Covariance matrix: individual effects

o 3.8635™ _ 2.8431™ 2.0702™
1 (02135) (0.2144) (0.1263)

% 6.024 - > .(079869; 2‘%},‘1‘4%}

p‘ - - ! (0.0247) : (0.0417)

Covariance matrix: idiosyncratic errors

o 26596 641k 2615 6473
» i 0.1525™ 00342 05087~

(0.0349) (0.0528) (0.0418)

***: significant at the 1% level; **: significant at the 5% level; *: significant at the 10% level.

coefficients (post-estimation). Comparing with our results (xtcmp, last column),
we can see that the variance of the individual effects seems to be overestimated
in cmp’s case.

Then, we offer an example for the second case, a three equations system with
two binary outcomes and one continuous dependent variable, such that we con-
sider Equations (20)-(22). In this case, the associated variance/covariance ma-

trices of the error components are given by:

2
1 P PO O P12010;  P130,03
- _ 2
Z, = P 1 po|and X, =| p,00, 0, P230,03
2 2
PO P60 O P130105  P,30,0% O3

For this example, we cannot provide the third estimation technique where we
used cmp command with a posterior estimate of the random effects, because this
procedure does not converge. However, we provide the other estimation tech-

niques: 1) each equation is estimated separately as a single panel equation; 2) the
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three equations are estimated with cmp, considering a pooled database; and, 3)
the three equations are estimated with our method (xtcmp). Results are provided
in Table 2.

Table 2. Three equations system with two binary outcomes.

Variables Separate Cmp on Our method

equations pooled data xtcmp

Binary outcome 1: j,

xl 0.0238 —0.0067 0.0399™
(0.0166) (0.0063) (0.0146)

x2 0.2569™ 0.0326™ 0.2313™
(0.0238) (0.0034) (0.0042)

3 03171" 0.0065 0,0445
(0.1228) (0.0072) (0.0379)

“ ~0,5748" -0.0107 ~0.0826
(02182) (0.0132) (0.0669)

Interept 543 07476 27305

Binary outcome 2: j.

x4 01838 0.0976 04345
X6 -0.1068™ -0.0499™ —-0.0201
(0.0136) (0.0031) (0.0041)
X7 -0.0812™ -0.0418™ -0.0230™
(0.0193) (0.0040) (0.0071)
Intercept 8%6093 4%)9261756) 1 %%88851)

Continuous outcome: j,

X7 -0.1528™ -0.0343" -0.0643™
(0.0207) (0.0168) (0.0123)
X9 0.0384™ 0.1005™ 0.0608™
(0.004) (0.0049) (0.0034)
Interepe 159954 102621 124396

Covariance matrix: individual effects

o 3.8635™ - 24,123
1 (0.2135) (1518)
o 3.0296™ - 6.5402"
2 (0.3417) (0.485)
05 6.024 - 3 .7(012335)5
Prs - - 0(2093593)1
b : : 03579
Pas - - 0‘%%545.56)

Covariance matrix: idiosyncratic errors

o 2.6596 6.7736 4.6060
2 R 0.2468™ 0.8719™
1 (0.0464) (0.0681)
P - 0.1132™ 0.8631™
? (0.0404) (0.0274)
P _ 0.15017™ 0.5906™
3 (0.0354) (0.0565)

***: significant at the 1% level; **: significant at the 5% level; *: significant at the 10% level.
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Results suggest that, as before, estimating equations separately leads to errors
in the significance of coefficients, especially for the first outcome. Moreover,
such method does not consider the covariance between idiosyncratic errors and
individual random effects. On the other hand, considering equations simulta-
neously allows to obtain more consistent estimates (coefficient estimates seem
closer in the last two columns, and significance of the latter is persistent along

the two last columns).

5. Conclusions

xtcmp is a command implemented under Stata software. We focus on three
main cases: 1) a simultaneous equations model with two equations (including
one linear and one binary outcomes); 2) a case with three equations composed of
two linear and one binary outcomes; and, 3) a three equations case with one li-
near and two binary dependent variables. This command further develops
Roodman’s [1] command cmp which does not explicitly consider the panel di-
mension of the data, nor simultaneous equations model since it is written as a
SUR estimator. This technical note gives detailed description of the computa-
tions, namely likelihood functions, log-integrand associated, Hessian matrices
and gradient vectors with respect to each parameter of interest, specific to the
three cases described above.

xtcmp’s estimation framework could be further developed in order to consider
a broader range of non-linear outcomes (such as ordered probit, multinomial
probit or truncated framework, for instance) or to consider much more equa-
tions simultaneously, in a dynamic setup.

Still, as it stands, xtcmp represents a significant development in Stata’s com-
mands. Indeed, it allows researchers to resolve endogeneity issues in a panel di-
mension context by analyzing correlation in the error terms of the equations and

thus specific individual effects depending on the outcomes.
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