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Abstract 
A spatiotemporal atlas refers to a standard image sequence that represents the 
general motion pattern of the targeted anatomy across a group of subjects. 
Recent years have witnessed an increasing interest in using spatiotemporal 
atlas for scientific research and clinical applications in image processing, data 
analysis and medical imaging. However, the generation of spatiotemporal at-
las is often time-consuming and computationally expensive due to the nonli-
near image registration procedures involved. This research targets at accele-
rating the generation of spatiotemporal atlas by formulating the atlas genera-
tion procedure as a multi-level modulation (M-ary) classification problem. In 
particular, we have implemented a fast template matching method based on 
singular value decomposition, and applied it to generate high quality spati-
otemporal atlas with reasonable time and computational complexity. The 
performance has been systematically evaluated on public accessible data sets. 
The results and conclusions hold promise for further developing advanced 
algorithms for accelerating generation of spatiotemporal atlas. 
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1. Introduction 

The understanding of muscle structure and muscular movements is the founda-
tion for many scientific researches and clinical applications in image processing, 
medical imaging and human physiology. However, it is generally challenging to 
determine whether an observed anatomical structure, whether it be the brain, 
the tongue, the heart or the limb, is “normal” because there exists a great differ-
ence in the underlying anatomical structures for even a small group of subjects. 
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In addition to the great inter-subject differences, significant variance also exists 
in the soft tissue anatomy on even a single subject. For instance, a recent imag-
ing-based research has indicated that the size and shape of the human heart vary 
significantly at multiple cardiac phases of a heartbeat, among different heart 
beats and across various subjects [1]. Given these potential sources of anatomical 
differences during muscular motion, it has long been a dream for scientists to 
establish a standard sequence of images representing the “expected” muscle 
structure and motion pattern for a targeted group of subjects. If such a standard 
sequence of images, i.e., a spatiotemporal atlas, were to exist, then it serves as the 
ground truth for quantitatively interpreting the observed muscle movement and 
accurately characterizing the motion variability of a specific subject as versus to 
the general motion pattern [2]. 

Despite the usefulness of spatiotemporal atlas, its construction often involves 
procedures that are time-consuming and computationally expensive. In order to 
create a set of high quality spatiotemporal atlas, initial image formation proce-
dures need to be first performed on each subject from the targeted group. Upon 
completion of this initial step, it is often essential to define a common space to-
wards which accurate mappings of all subjects can be mapped into [3]. After this 
common space is successfully defined, group-wise registration techniques are 
often employed to extract the “expected” anatomical features and motion pat-
terns [2]. Several methods have been proposed to facilitate this step, including 
group-wise registration with kernel regression [4], group-wise registration with 
individual growth model [5], template alignment techniques [6] and diffeomor-
phic image registration [2]. It is worth noting that each of the above mentioned 
steps involves multiple image formation and image processing procedures that 
are often nonlinear, memory inefficient and computationally expensive. Specifi-
cally in this paper, the author constructed a small training set of spatiotemporal 
atlas using a diffeomorphic image registration method with Lipschitz-norm-based 
temporal alignment routine [2].  

Construction of high quality spatiotemporal atlas is even more challenging 
when the underlying image data are undersampled. The quality of the con-
structed spatiotemporal atlas depends heavily on the data quality from the image 
formation steps. Therefore, the quality of the resulting atlas images is very likely 
compromised if they are constructed upon initial images that are contaminated 
by geometric distortion, imaging artifacts and noise. This situation, unfortu-
nately, is often seen with clinical applications that involve fast medical imaging, 
where sparse sampling is performed on the image formation step due to certain 
physical or physiological considerations [2]. Figure 1 illustrates representative 
atlas images constructed based on sparse-sampled Fourier space (k-space) data 
from a dynamic magnetic resonance imaging (MRI) experiment. The top and 
bottom portions of the initial images are cropped to enable better spatial align-
ment under subject motion. The lower jaw of the subject in time frame 1001 and 
2076 and the nose tip of the subject in time frame 4118 suffer from significant 
geometric distortion. These geometric distortions mainly result from sparse  
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Figure 1. Representative atlas image frames (time frame 1001, 2076, 4118) constructed 
based on sparse sampled k-space data from a dynamic MRI experiment. 
 
sampling in the image formation step and significantly compromises the ensuing 
quantitative analysis of anatomical features on the resulting atlas image se-
quence. As can be seen, the subject’s lower jaw and nose tip in the constructed 
atlas image suffer from significant geometric distortion, which renders the atlas 
less useful for quantitative analysis on the underlying anatomical features. To 
remedy the compromised image quality from sparse sampling, anatomical mod-
els need to be incorporated to compensate for the image artifacts and distortions 
from the image formation step [6]. 

This paper targets at the above mentioned technical challenges and aims to 
develop a practical method for generating high quality spatiotemporal atlas im-
ages within reasonable computation time and memory requirements. The au-
thors formulate the atlas generation problem as multi-level modulation (M-ary) 
classification problem. Specifically, a small subset of spatiotemporal atlas images 
is first constructed as training set using a diffeomorphic registration routine as 
mentioned above. With this training set, atlas construction proceeds as choosing 
an atlas image that is “closest” to the one in the training set. A fast template 
matching method based on Fourier space samples has been chosen to perform 
this task. The principles underlying these two methods are given in the 
METHODS section and evaluations of their performance are given in the 
RESULTS section of this paper. Concluding remarks will also be given at the end 
of the paper with detailed discussion on the theoretical, numerical and algorith-
mic problems occur during the formation of the atlas. 

2. Methods 
2.1. Constructing the Training Set of Spatiotemporal Atlas 

Diffeomorphic group-wise image registration lies at the core of constructing the 
training set of the spatiotemporal atlas. Specifically, the initial images for regis-
tration are first obtained from a numerical phantom constructed for evaluating 
dynamic MRI data sampling and reconstruction methods [7]. The group-wise 
image registration procedure is performed with the large deformation diffeo-
morphic metric mapping (LDDMM) algorithm [8]: let Iinit represent an initial 
image sequence obtained from an image formation step, Iatlas represent a con-
structed atlas image sequence on an open and bounded image domain Ω, φ (x, t) 
denote a continuous differentiable function representing the diffeomorphic 
transformation from Iinit to Iatlas parameterized over time t. It is also assumed that 
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φ (x, t) can be computed by integrating over a time-dependent velocity field v 
defined as follows [8], 

( ) ( )( )d ,
, ,

d
x t

v x t t
t

ϕ
ϕ=                       (1) 

where the function φ (x, t) also satisfies the following integration, 

( ) ( ) ( )( )1

0
,1 ,0 , dx x v x t tϕ ϕ ϕ= + ∫ .                  (2) 

Given Equation (1) and Equation (2), it has been indicated in [2] that the dif-
feomorphic image registration procedure can be formulated as a convex optimi-
zation problem that aims at minimizing a energy functional as follows 

( ) ( )
2 1 2* 1

init atlas 02
arg min ,1 d , dI x I v t tϕ ϕ λ ϕ−

ΩΩ
= − Ω+∫ ∫ ,      (3) 

where the first term in the energy functional is a data consistency term and the 
second term is a regularization term with λ as a regularization parameter. To 
better leverage the spatial correlation between Iinit to Iatlas, [2] defines a pair of 
diffeomorphism over φ1 and φ2 and leads to an improved energy functional as 
follows, 
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where Ψ (·) represents a similarity measure. By introducing diffeomorphism into 
the energy functional, the above formulation guarantees that the forward and 
inverse mappings between Iinit to Iatlas are “symmetric”. This optimization prob-
lem is convex and its global optimum can be obtained with a gradient-descent- 
based routine [2]. Implementation of this registration routine is based on the 
ANTs open source software library [9] and is revised from an existing imple-
mentation in [2]. 

2.2. Template Matching Functional MRI 

Template matching often refers to a range of image processing methods that 
match a subset of a given image to the targeted template image. Although the 
underlying principles of template matching are not especially advanced, tem-
plate matching has found great use and has proven effective in many applica-
tions such as object tracking, feature recognition and video matching. Multiple 
components directly interact with the performance of a template matching algo-
rithm—prototype templates, probability distribution, similarity measure and 
feature space. Details of each of these three components are given in the follow-
ing paragraphs. 

1) Prototype Templates: Prototype templates are usually created in two ways: 
a) directly generate prototype templates from an existing physiological model. b) 
extract prototype templates from predetermined representative images [2] [3]. 
In this report, the author chooses the latter approach because having a set of 
predetermined template images (which are available from publicly accessible 
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data bases) removes the complicated procedures of developing and validating 
the quality of physiological models [5]. Specifically in this paper, initial proto-
type templates are created from the training set of the spatiotemporal atlas with 
manual adjustment on image orientation and contrast using the image processing 
toolbox in Matlab 2014b (Mathworks, Natick, MA). Three representative proto-
type templates are shown in Figure 2. As can be seen, the prototype template 
images are free from geometric distortion and imaging artifacts.  

2) Probability Distribution: The underlying probability distribution is critical 
towards accurately defining how well the targeted image “matches” with the 
template. The similarity measure is obviously important in the decision rule be-
cause its value directly influences the likelihood ratio and therefore the decision 
boundary (under Gaussian assumption as introduced in class). The risk asso-
ciated with a certain decision rule (i.e., generating a incorrect frame of spati-
otemporal atlas) can only be minimized on the condition that the underlying 
probability distribution is properly defined. 

Despite the importance of probability distribution, defining an appropriate 
distribution is not an easy task for the problem of generating a spatiotemporal 
atlas. This is because: 1) There exists a certain level of spatial and temporal misa-
lignment between the targeted images and the prototype templates. 2) The tar-
geted image data are often given as Fourier space (k-space) data. 3) The situation 
gets worse when the targeted image data are only partially available, or sparsely 
sampled. Aiming at these difficulties, it has been developed in [10] an estimation 
scheme for determining the probability distribution from multiple incomplete 
features in both image and feature domains. Details of the probability density 
function projection theorem and the extension to the atlas-generation problem 
in this report are given in the following paragraphs. 

The probability density function projection theorem provides a setting where 
the algorithm can work with features in both domains the image domain I and 
the feature domain Z. For the proposed problem in this project, we choose the 
feature domain Z to be the undersampled Fourier domain, i.e., the sparsely sam-
pled k-space data from the MRI machine. The Neyman-Fisher factorization 
theorem [11] states that if Z = ψ (I) is a sufficient statistics for hypothesis H, 
then the posterior probability p (I|H) can be factorized into the product of two 
terms as follows: 
 

 
Figure 2. Representative prototype template frames (template 3001, 3021 and 3041) con-
structed by performing manual adjustment of image orientation and contrast on the 
training set of spatiotemporal atlas. 
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( ) ( )( ) ( )| |p I H g I H h Iψ= .                  (5) 

Significance of the Neyman-Fisher factorization theorem lies in that it re-
moves the dependence of p (I|H) and separates it into the product of a function 
g, whose dependence on H is obtained via ψ (I), and another function h. This 
allows the cross-talk between the raw data domain and the image data domain to 
be more manageable. In the case of having M prototype templates, it has been 
indicated [12] that the posterior probability can be defined as 

( ) ( ) ( ) ( )0 0| | | |j j j jp I H g I H p z H p z H=             (6) 

where a specific feature set zj is extracted for each hypothesis Hj. It is noticed 
that the term) p (zj|Hj) lies at the denominator and, therefore, its accuracy may 
significantly impact the accuracy of the resulting p (I|Hj) even a slight error in 
p (zj|H0) may cause p (I|Hj) to vary to a large amount. Considering this, it is 
suggested in [12] to choose an analytical probability density function as a refer-
ence hypothesis. A number of potential analytical solutions for a number of sta-
tistics have also been provided as references [12]. Also, according to the Ney-
man-Fisher factorization theorem [11], the reference hypothesis H0 can be arbi-
trarily defined as long as zj represents a sufficient statistic for H0 and Hj In prac-
tice, however, it has been demonstrated [12] that careful choice over the refer-
ence hypothesis H0 can significantly improve the accuracy of determining the 
probability distribution. 

3) Similarity Measure: Similarity measure should be a real-valued function 
that quantifies the similarity between two objects. In the context of this project, 
the similarity measure should be a function of spatial location, temporal loca-
tion, image perspective, image contrast and image orientations. Although vari-
ous definitions of similarity measures have been defined in the literature [2] [3] 
[5] [12], these definitions are invariably based on either the vector norm or the 
matrix norm. Specifically, if we assume a vector x representing a patch in the 
incoming image data (an putting it into a column),  

pp
ip

i
x x= ∑ .                          (7) 

The performance of various vector norms has been evaluated and the Frobe-
nius norm (with p = 2 in the above expression) has been chosen due to its com-
putational convenience. Also, if we choose to overload the p  notation with 
matrix norm, the lp norm of a mapping A from the image space to the feature 
space given by, 

sup p
p

p

Ax
A

x
= .                        (8) 

In the context of this paper, p can take on various non-negative values. In par-
ticular, the case of p = 1 corresponds to the template matching approach by 
finding the mean absolute difference (MAD) and the case of p = 2 corresponds 
to the template matching approach by finding the mean squared errors (MSE). It 
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should be noted that there is no limitation on the form of the mapping A as long 
as its induced norm can be properly defined. 

4) Feature Space: Defining an appropriate feature space is important for a 
practical template matching technique. As mentioned in the above paragraphs, 
the incoming image data for construction of the spatiotemporal atlas are pro-
vided in forms of k-space. The relation between the image space data and the 
k-space data are given by the Fourier transform relationship as follows, 

( ) ( ) ( )2, , e d ,i kxd k t I x t x x tη− π

Ω
= +∫ ,               (9) 

where d (k, t) represents the acquired data in k-space along time, Ω represents 
the spatial support of the spatiotem-poral image function I (x, t), k represents 
the coordinates in the Fourier space (where data are acquired from) and η (x, t) 
represents the measurement noise. In a more practical setting, sparse sampling is 
applied to acquire the k-space and the relation between the image space data and 
the acquired data is given by 

( ) ( ) ( )( )2, , e d ,i kxd k t U I x t x x tη− π

Ω
= +∫ ,             (10) 

where U represents an undersampling operator that sparsely collects samples in 
the k-space along time. Figure 3 illustrates the relationship between a represent-
ative image in Ω, its associated image in the k-space and the sampling trajectory 
in the k-space. As can be seen, the image data in k-space are only partially ac-
quired with a sparse spiral trajectory. Therefore, it is difficult to define an ap-
propriate similarity measure based on the data acquired from this trajectory. 

As can be seen with Equation (10) and Figure 3, the provided data for the 
construction of spatiotemporal atlas are acquired in the k-space. Mathematically, 
the k-space data can be interpreted as the integration of all the “spatial frequen-
cy” components in the image space I. In this case, it is challenging to define and 
separate anatomical features from the acquired data because each sample con-
tains information from all the features from I. Considering this, this project 
proposes to apply singular value decomposition (SVD) on the acquired k-space 
data to extract features. The author decides to use SVD to extract anatomical 
features from the acquired data because: 1) numerical procedures in calculating 
SVD are independent of the spatial coordinates of the acquired data d (k, t). Us-
ing SVD removes the difficulties of interpolating the non-Cartesian sparse  
 

 
Figure 3. The relationship between an image in Ω, its associated image in the k-space and 
the associated sampling trajectory in the k-space. As can be seen, the sampling trajectory 
is a sparse spiral trajectory that only collects sparse, non-Cartesian samples in the k-space. 
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sampled data onto a Cartesian grid; and 2) SVD has proven useful for extracting 
the general data features as a variation of the principal component analysis. Ma-
thematically, this can be expressed as 

( ) ( ) ( )
1

,
L

l l l
l

d k t d k d tσ
=

= ∑ ,                 (11) 

where d (k,t) represents the acquired data organized into a matrix, whose col-
umn space represents the spatial domain and row space represents the temporal 
domain, L represents the order of decomposition, dl (k) represents the spatial 
subspace of d (k, t), σl represents the singular values corresponding to each index 
l and dl (t) represents the temporal subspace of d (k, t). Mathematically, Equation 
(11) can be written in a more condensed form, 

( ) ( ) ( )
1

,
L

l l
l

d k t d k d t
=

′= ∑                   (12) 

where ( )ld t′  are chosen as the feature space in the context of this project. It 
should be noted that ( )ld t′ , instead of ( )ld k  are chosen as the feature space 
because the template matching problem mainly attempts to match an incoming 
image towards the subject motion at a specific time point. However, the template 
matching problem can also be formulated as one that matches the spatial fea-
tures towards the prototype template. Therefore, it would be also reasonable to 
define feature space over ( )ld k . The evaluation and comparison between these 
two methods will be evaluated in the future. 

In Figure 4, nonlinear image registration procedures that are computationally 
expensive (left); the proposed fast template matching methods in this report 
(middle). The absolute difference between these two images is shown on the 
right. It is obvious that the difference is mainly due to contrast difference be-
tween the image-registration-based image and the prototype image. This result 
demonstrates the effectiveness of the fast template matching. The schematic dia-
gram of how the spatiotemporal atlas was created from numerical phantom and 
training set of images are shown in Figure 5. 
 

 
Figure 4. Comparison between the spatiotemporal images generated from. 
 

 
Figure 5. Schematic diagram of the method to create spatiotemporal atlas through fast 
template matching. 
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3. Results 

To demonstrate the effectiveness of the method introduced in this paper, a 
comparison between two spatiotemporal atlas images has been performed. As 
seen in Figure 4, the image on the left was constructed with expensive nonlinear 
image processing steps. The image in the middle, however, was constructed us-
ing the fast template matching method introduced in this paper. The image on 
the right illustrates the absolute difference between the previous two images. It is 
obvious that the image created with template matching inherits the anatomical 
features from the prototype templates and matches well with the image generat-
ed with computationally expensive image processing. In addition, the differences 
are mainly caused by the contrast difference, but do not contain significant 
structural misalignment or geometric distortion. 

To demonstrate how well the spatiotemporal atlas generated from fast tem-
plate matching represent the true movements of the subject, a temporal profile is 
given in Figure 6 across a vertical strip across the tongue tip. As can be seen, the 
first 600 frames of the spatiotemporal atlas are taken directly as the prototype 
templates, while the rest of the temporal frames of the spatiotemporal atlas are 
generated by the fast template matching algorithm. It is obvious that there is no 
significant temporal blurring or spatial distortion occurred in the generated 
frames, especially when compared with those in the prototype frames. In addi-
tion, the temporal dynamics of the subject are well represented as repetitions of 
the motion in the prototype templates. This result demonstrates that the tem-
plate matching algorithm is capable of generating high quality spatiotemporal 
atlas. 

4. Discussion 

An important motivation of this project is to accelerate the generation of spati-
otemporal atlas. To illustrate the speed up available from the proposed template 
matching algorithm, a comparative study on computation time was performed 
(versus generating the spatiotemporal atlas using expensive nonlinear image 
registration procedures) using the “tic” and “toc” commands in Matlab2014b 
(Mathworks, Natick, MA). In particular, comparison was performed on the time 
spent on generating a total of 100 frames of spatiotemporal atlas. The total 
computation time for the nonlinear image registration method was 10.53 hours 
on a personal computer with an Intel i5 CPU and 6 GB of RAM. As contrast, the 
template matching algorithm took 1.51 hours with an acceleration factor of 7. As  
 

 
Figure 6. The temporal profile of the generated spatiotemporal atlas. 
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the number of frames in the spatiotemporal atlas increase, it is reasonable to ex-
pect an even larger number of acceleration factor. This comparative study shows 
the effectiveness to apply the template matching algorithm to reduce computa-
tion time. 

An M-ary classification problem lies at the core of the generation of spati-
otemporal atlas. There exist many algorithms to perform this task and many 
have proven useful. For instance, one potential algorithm to realize this goal is 
the artificial neural networks. However, the proposed template matching algo-
rithm outperforms artificial neural networks in terms of computation complexi-
ty for obvious reasons. In addition, the template matching algorithm is much 
easier to implement—the author has attempted to implement the neural net-
work methods based on a combination of Matlab 2014b (Mathworks, Natick, 
MA) and ArrayFire (a GPU jacket software for Matlab), but was forced to stop 
this attempt because of the “segmentation fault” problem during computation. 
Even though such problems can be solved by updating software versions and 
computation hardware, the template matching algorithm still stands out as a 
practical solution to generating spatiotemporal atlases in a reliable fashion.  

A representative frame of the spatiotemporal atlas is shown on the left. A ver-
tical strip across the tongue tip (yellow dashed line) is plotted along time to form 
the temporal profile. As can be seen, the first 600 frames of the spatiotemporal 
atlas are taken directly as the prototype templates, while the rest of the temporal 
frames of the spatiotemporal atlas are generated by the fast template matching 
algorithm. There is no significant temporal blurring or spatial distortion in the 
generated frames compared with those in the prototype frames. 

It will be useful to compare the obtained result with an underlying ground 
truth. As mentioned in the METHODS section of the report, the probability dis-
tribution is defined in an empirical fashion because of the incoming data are 
sub-optimal—spatial distortion, temporal misalignment, contamination from 
noise and incomplete data from sparse sampling. Considering these practical 
difficulties, the author decides to examine the “correctness” of the generated 
spatiotemporal atlas by directly comparing the result with the traditional me-
thod—generating spatiotemporal atlas using computationally-expensive image 
registration methods. Based on the results in Figure 6, the proposed template 
matching algorithm is capable of generating spatiotemporal atlas free of spatial 
distortion and temporal misalignment. Therefore, it is reasonable to assume that 
the determined probability distribution is at least near optimal. 

5. Conclusion 

This paper focuses on applying the principles of statistical learning and pattern 
recognition to accelerate the generation of spatiotemporal atlas. Specifically, the 
paper investigates the fast template matching algorithm and applies it to gener-
ate high quality spatiotemporal atlas within reasonable time and computation 
complexity. Unlike existing methods that focus on the image domain in the gen-
eration of spatiotemporal atlas, the template matching algorithm introduced in 
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this research allows prototype templates to be matched based on incomplete 
samples of the image from the Fourier space. In particular, the singular value 
decomposition is performed to extract features from the sparse-sampled data 
and template matching is performed in this feature space. Conceptual feasibility 
of the method has been validated. Practical effectiveness of the method has been 
evaluated on publicly accessible data sets. The results demonstrate that fast tem-
plate matching algorithm is capable of generating high quality spatiotemporal 
atlas from sparse-sampled data in short computation time. This study provides a 
practical method of accelerating the generation of spatiotemporal atlas. This al-
lows it to serve as the ground truth for quantitatively interpreting the observed 
muscle movement in medical imaging, as well as accurately characterizing the 
motion variability of a specific subject as versus to the general motion pattern in 
medical research and clinical applications. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Alessandrini, M., Basarab, A., Liebgott, H. and Bernard, O. (2013) Cardiac Motion 

Assessment from Echocardiographic Image Sequences by Means of the Structure 
Multivector. 2013 IEEE International Ultrasonics Symposium (IUS), Prague, 21-25 
July 2013, 1541-1544. https://doi.org/10.1109/ULTSYM.2013.0392 

[2] Woo, J., Stone, M. and Prince, J.L. (2015) Multimodal Registration via Mutual In-
formation Incorporating Geometric and Spatial Context. IEEE Transactions on 
Image Processing, 24, 757-769. https://doi.org/10.1109/TIP.2014.2387019 

[3] Woo, J., Xing, F., Lee, J., Stone, M. and Prince, J.L. (2015) Construction of an Un-
biased Spatio-Temporal Atlas of the Tongue during Speech. Information Processing 
in Medical Imaging, 723-732.  
https://doi.org/10.1007/978-3-319-19992-4_57 

[4] Serag, A., Aljabar, P., Ball, G., Counsell, S.J., Boardman, J.P., Rutherford, M.A., Ed-
wards, A.D., Hajnal, J.V. and Rueckert, D. (2012) Construction of a Consistent 
High-Definition Spatio-Temporal Atlas of the Developing Brain Using Adaptive 
Kernel Regression. NeuroImage, 59, 2255-2265.  
https://doi.org/10.1016/j.neuroimage.2011.09.062 

[5] Liao, S., Jia, H., Wu, G., Shen, D., Initiative, A.D.N., et al. (2012) A Novel Frame-
work for Longitudinal Atlas Construction with Groupwise Registration of Subject 
Image Sequences. NeuroImage, 59, 1275-1289.  
https://doi.org/10.1016/j.neuroimage.2011.07.095 

[6] Durrleman, S., Pennec, X., Trouvé, A., Gerig, G. and Ayache, N. (2009) Spatiotem-
poral Atlas Estimation for Developmental Delay Detection in Longitudinal Data-
sets. Medical Image Computing and Computer-Assisted Intervention—MICCAI 
297-304. https://doi.org/10.1007/978-3-642-04268-3_37 

[7] Zhu, Y.H. and Nayak, K. (2013) Flexible Dynamic Phantoms for Evaluating Data 
Sampling and Reconstruction Methods. Proceedings of International Society of 
Magnetic Resonance and Medicine, p. 1289. 

[8] Cao, Y., Miller, M., Winslow, R.L. and Younes, L. (2005) Large Deformation Dif-

https://doi.org/10.4236/jcc.2020.81002
https://doi.org/10.1109/ULTSYM.2013.0392
https://doi.org/10.1109/TIP.2014.2387019
https://doi.org/10.1007/978-3-319-19992-4_57
https://doi.org/10.1016/j.neuroimage.2011.09.062
https://doi.org/10.1016/j.neuroimage.2011.07.095
https://doi.org/10.1007/978-3-642-04268-3_37


L. J. Zhang et al. 
 

 

DOI: 10.4236/jcc.2020.81002 27 Journal of Computer and Communications 
 

feomorphic Metric Mapping of Vector fields. IEEE Transactions on Medical Imag-
ing, 24, 1216-1230. https://doi.org/10.1109/TMI.2005.853923 

[9] Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A. and Gee, J.C. (2011) A 
Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image 
Registration. NeuroImage, 54, 2033-2044.  
https://doi.org/10.1016/j.neuroimage.2010.09.025 

[10] Thayananthan, A., Navaratnam, R., Torr, P.H. and Cipolla, R. (2004) Likelihood 
Models for Template Matching Using the PDF Projection Theorem. BMVC, 1, 1-10.  
https://doi.org/10.5244/C.18.97 

[11] Duda, R.O., Hart, P.E. and Stork, D.G. (2012) Pattern Classification. John Wiley & 
Sons, New Jersey.  

[12] Baggenstoss, P.M. (1998) Class-Specific Feature Sets in Classification. Proceedings 
of the 1998 IEEE International Symposium on Intelligent Control (ISIC) Held 
Jointly with IEEE International Symposium on Computational Intelligence in Ro-
botics and Automation (CIRA) Intell, Gaithersburg, 17 September 1998, 413-416.  

 
 

https://doi.org/10.4236/jcc.2020.81002
https://doi.org/10.1109/TMI.2005.853923
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.5244/C.18.97

	Accelerated Generation of Spatiotemporal Atlas through Fast Template Matching
	Abstract
	Keywords
	1. Introduction
	2. Methods
	2.1. Constructing the Training Set of Spatiotemporal Atlas
	2.2. Template Matching Functional MRI

	3. Results
	4. Discussion
	5. Conclusion
	Conflicts of Interest
	References

