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Abstract 
This paper proposes a Hybridized Ant Colony Optimization (HACO) algo-
rithm. It integrates the advantages of Ant System (AS) and Ant Colony Sys-
tem (ACS) of solving optimization problems. The main focus and core of the 
HACO algorithm are based on annexing the strengths of the AS, ACO and 
the Max-Min Ant System (MMAS) previously proposed by various research-
ers at one time or the order. In this paper, the HACO algorithm for solving 
optimization problems employs new Transition Probability relations with a 
Jump transition probability relation which indicates the point or path at 
which the desired optimum value has been met. Also, it brings to play a new 
pheromone updating rule and introduces the pheromone evaporation residue 
that calculates the amount of pheromone left after updating which serves as a 
guide to the successive ant traversing the path and diverse local search ap-
proaches. Regarding the computational efficiency of the HACO algorithm, we 
observe that the HACO algorithm can find very good solutions in a short 
time, as the algorithm has been tested on a number of combinatorial optimiza-
tion problems and results shown to compare favourably with analytical results. 
This strength can be combined with other metaheuristic approaches in the 
future work to solve complex combinatorial optimization problems. 
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1. Introduction 

Ant System algorithms have been founded on the observation of real ant colo-
nies by various researchers to which Marco Dorigo a key factor as it was found 
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in his Ph.D. Thesis of 1992, where the concept was first brought to light. By liv-
ing in colonies, ants’ social behavior is directed more to the survival of the colo-
ny than that of a single individual member of the colony. An interesting and sig-
nificantly important behavior of ant colonies is their foraging behavior, and in 
particular, their ability to find the shortest route between their nest and a food 
source, realizing that they are almost blind. Without any leader that guides the 
ants to optimal trajectories, the ants manage to find these optimal trajectories 
with time, by interacting with their local environment. 

The ants initially search for food in a random fashion such that, when they 
have found some, they return home depositing chemicals, called pheromones. 
According to [1], these pheromones attract other ants to follow the same path, 
and they in turn also deposit pheromones on their way back. Over a period of 
time, this behavior leads to the emergence of paths, which can be shown to be 
near-optimal which is essentially done at random. By smelling the pheromone, 
there is a higher probability that the trail with a higher pheromone concentra-
tion will be chosen. The pheromone trail allows ants to find their way back to 
the food source and vice versa. 

It follows that when a number of paths are available from the nest to a food 
source, a colony of ants may be able to exploit the pheromone trail deposited by 
the individual members of the colony to discover the shortest path from the nest 
to the food source and back [2]. As more ants choose a path to follow, the phe-
romone on the path builds up, making it more attractive to other ants seeking 
food and hence more likely to be followed by other ants. 

In general, Ant Colony Optimization (ACO) algorithms employ a finite size of 
artificial agents with defined characteristics which collectively search for good 
quality solutions to the problem under consideration. Starting from an initial 
state selected according to some case-dependent criteria, each ant builds a solu-
tion, which is similar to a chromosome in a genetic algorithm. While building its 
own solution, each ant collects information on its own performance and uses 
this information to modify the representation of the problem, as seen by the 
other ants [3]. The ant’s internal states store information about the ant’s past 
behavior, which can be employed to compute the goodness/value of the gener-
ated solution. Artificial ants are permitted to release pheromone while develop-
ing a solution or after a solution has fully been developed, or both. 

The amount of pheromone deposited is made proportional to the goodness of 
the solution an artificial ant has developed (or is developing). Rapid drift of all 
the ants towards the same part of the search space is avoided by employing the 
stochastic component of the choice decision policy and the pheromone evapora-
tion mechanism. To simulate pheromone evaporation, the pheromone persis-
tence coefficient, ρ, is defined which enables greater exploration of the search 
space and minimizes the chance of premature convergence to suboptimal solu-
tions. 

A probabilistic decision policy is also used by the ants to direct their search 
towards the most interesting regions of the search space. The level of stochastic-
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ity in the policy and the strength of the updates in the pheromone trail deter-
mine the balance between the exploration of new points in the state space and 
the exploitation of accumulated knowledge [3]. 

This paper is structured as follows: Section 2 describes and briefly reviews va-
riants Ant systems that have been developed over years by various researchers. 
While Section 3 is dedicated to the introduction and description in detail of the 
Hybridized Ant Colony Optimization (HACO) algorithm. Section 4 presents a 
step by step computational procedure of the HACO algorithm. Section 5 con-
cludes the paper. 

2. Ant System Variants 

The concept of metaheuristic is a general purposes algorithmic framework that 
can be applied to different optimization problems with relatively few modifica-
tions to make them adaptable to a specific problem. In the view of [3], it was ob-
served that, when adapting an Ant Colony Optimization approach to a particu-
lar problem, the following choices need to be adapted: 

A) How do the ants construct a solution? 
B) How do the ants choose the next step to take? 
C) How is the solution post-optimized? 
D) How is the pheromone deposit updated? 
Any variant of ACO algorithm that will be regathered as amenable will find 

answers to all the afore mentioned questions. There are numerous examples of 
Combinatorial Optimization problems and the variants being handled using Ant 
Colony Optimization algorithms. This is a type of algorithm that seeks to model 
the emergent behaviour observed in ant colonies and utilize this behaviour to 
solve problems. Before we roll out the HACO algorithm there is need to have an 
outline to various ACO developed by various researchers. This leads us to va-
riants ACO algorithms that have been developed over years by various research-
ers and improvements that ACO algorithms have witnessed. 

In the last three decades, there have been variants Ant Colony Optimizations 
due to modification and improvements in one respect or the other. It must be 
noted that, the several variants Ant Colony Optimization differing most impor-
tantly on when and how pheromones are updated. However, some of the va-
riants are highlighted and discussed in what follows. 

2.1. Ant System (AS) 

Ant Colony Optimization (ACO), called Ant System in [4] was inspired by the 
studies and the behaviour of ants [5]. The ant-colony metaheuristic framework 
was introduced by [1], which enabled ACO to be applied to a range of combina-
torial optimization problems. The authors in [1] also reported the successful ap-
plication of ACO algorithms to a number of bench-mark combinatorial optimi-
zation problems. ACO in [3], is “a metaheuristic that is inspired by the phero-
mone trail laying and following behaviour of some ant species”. 
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Ant System is the first ACO algorithm proposed in literature. The AS is based 
on the behavior of real ants searching for food. Real ants communicate with each 
other using an aromatic essence, called pheromone, that they lay down on the 
path they traverse. By [6], the pheromone accumulates when more and more 
ants pass through the same path. Nevertheless, the pheromone will evaporate if 
no ants continue to pass. The selection of the pheromone trail reflects the length 
of the paths as well as the quality of the food source found. [7] reported the use 
of AS to solve Traveling Salesman Problem (TSP), Quadratic Assignment Prob-
lems (QAP) and Job-Shop Scheduling. 

Its main characteristics are as follows: at each iteration, the pheromone values 
are updated by all the m ants that have built a solution in the iteration itself. At 
each step, an ant at node i chooses to go to a node j through the edge ( ),i j  and 
this arc is added to the solution. The repetition of this step stops when the ant 
has completed its tour. The pheromone, ijτ , associated with the edge joining ci-
ties, i and j, is updated using the relation: 

( ) 11 m k
ij ij ijkτ ρ τ ρ τ

=
− + ∆← ∑                      (1) 

where ρ is the evaporation rate, m is the number of ants, and k
ijτ∆  is the quan-

tity of pheromone laid on edge ( ),i j  by ant k: 

( )
 

1 if ant used , in its tour
othe wise0 r

kk
ij

L k i j
τ

∆ = 


               (2) 

where kL  is the length of the tour constructed by ant k. 

2.2. Ant Colony System (ACS) 

The ant colony system (ACS) was developed as in [8] and [9] to improve the 
performance of AS. A different state transition rule was used by [5] to which a 
local pheromone updating rule was also added. [2] Proposed an ACS algorithm 
based on AS. The first difference between the ACS algorithm and the AS con-
cerns the update of the pheromone trail. The update done at the end of an itera-
tion of the algorithm is called offline. 

Once all the ants have built a solution, a pheromone trail is added to the arcs 
used by the ant that has found the best tour from the beginning of the trial. Thus, 
instead of allowing all the m ants to update the pheromones as in AS, only the 
ant that has found the best solution in ACS deposits pheromone on the arcs of 
the best tour. The local pheromone update is performed by all the ants after each 
construction step. Each ant applies update only to the last edge traversed as 
opined by [10] thus: 

( ) 01ij ijτ ρ τ ρτ= − +                          (3) 

where ( ]0,1ρ ∈  is the pheromone decay coefficient, and 0τ  is the initial value 
of the pheromone. 

The offline pheromone update, similarly to Max-Min Ant System (MMAS), is 
applied at the end of each iteration by the ant with the shortest tour, which can 
be either the iteration-best or the best-so-far. The update formula is: 
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( ) ( )1 , if ,

, otherwise
ij ij

ij
ij

i j tρ τ ρ τ
τ

τ

− + ∆ ∈← 


                 (4) 

In MMAS, not all pheromone levels are evaporated, as with the AS, but only 
those that also receive a pheromone deposit. 

2.3. MAX–MIN Ant System (MMAS) 

In MMAS, only one single ant is used to update the pheromone trails after every 
iteration. The algorithm achieves a strong exploitation of the search history by 
allowing only the best solutions to add pheromone during the pheromone trail 
update. Its characterizing elements are that only the best ant updates the phe-
romone trails and that the value of the pheromone is bounded by min maxτ τ− . 
Also, the use of a rather simple mechanism for limiting the strengths of the phe-
romone trails effectively avoids premature convergence of the search. 

The pheromone update is implemented as follows: 

( ) max

min
1 best

ij ij ij

τ

τ
τ ρ τ τ = − ⋅ +                         (5) 

where maxτ  and minτ  are respectively the upper and lower bounds imposed on 
the pheromone; the operator [ ]abx  is defined as: 

[ ]
if
if

otherwise

a

b

a x a
x b x b

x

>
= <



                         (6) 

and best
ijτ  is defined by: 

( )1 if , belongs to the best tour
0 otherwise

bestbest
ij

L i j
τ

= 


                (7) 

where bestL  is the length of the tour of the best ant. This may be either the best 
tour found in the current iteration i.e. iteration-best, ibL  or the best solution 
found since the start of the algorithm-best-so-far, bsL  or a combination of both 
[10] and [11]. We observe that quite a number of parameters need to be mod-
ified and improved upon. 

The Hybridized Ant Colony Optimization hinges on the strengths of the afore 
mentioned variants and improves on the drawbacks leading to the hybridized 
algorithm stressing on the Transition Probability, Jump Transition Probability, 
generating Randomized Numbers that guides in determining the path traversed 
by the ants, pheromone updating rule, pheromone evaporation residue and di-
verse local search approaches are proposed hence, evaluating the function values 
to which the best and worst function values is identified will be discussed in the 
next section. 

3. Hybridized Ant Colony Optimization (HACO) Algorithm 

The HACO algorithm is described as follows: 
Step 1: Initialize, , , ,N n ρ 0τ . Set 0.00001ξ =  and 2ζ = . 

where , 1, 2, ,aA a N=   represent the number of Ants in the colony. { }jx  
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represents a set of permissible discrete values of the Design Variables, jx , and 
1,2, ,j n=  . The interval, jxα β≤ ≤  or [ ],α β , is divided into n equal parts 

such that, each part is assigned to each of the design variables, jx . The phero-
mone evaporation rate is assumed to be 0.5ρ = . It is assumed that all the ants 
will deposit equal amount of pheromone at the initial stage hence, 0 1τ = . 

Step 2: a) Compute the Transition Probability, ,i jTP , using: 

( )( ),
1

i
i j

best i i

TP
N freq of f

τ
τ τ +

=
− +∑

                  (8) 

where  bestf  is the highest function value, bestfreq of f∑  is the sum of the fre-
quency of the  bestf  where more than one exist and the Jump Transition Proba-
bility, ,

jump
i jP  is computed using: 

( )( )
1

,
1

jump i
i j

best i i

TP
N freq of f

τ
τ τ

+

+

=
− +∑

                  (9) 

where the subscripts, i and j of ,i jTP  and ,
jump

i jTP  are the iterations and paths 
counters respectively. The cumulative transition probabilities’ values are computed 
and it is being associated with the paths traversed by the ant based on the value 
of the transition probability obtained using the expressions (8) and (9). 

N.B: At 0i = , the Jump Transition Probability, ,
jump

i jTP , is not computed since 
each path has equiprobable chances of being traversed. Also, the 0bestfreq of f =∑  
and 1 0iτ + = . The Jump Transition Probability, ,

jump
i jTP , is aimed at speeding up 

the transition probability of the path traversed after a path have been identified 
as being best owning to the function value. 

b) Compute the Cumulative Transition Probability, ,i jCTP . 
At iteration 0i = , the Cumulative Transition Probability, ,i jCTP  along the 

path, j, is given by: 

,1 ,1

,2 ,1 ,1

,3 ,2 ,1

, , 1 ,1

 

 

i i

i i i

i i i

i n i n i

CTP TP
CTP CTP TP
CTP CTP TP

CTP CTP TP−

= 
= + 
= + 


= + 



                     (10) 

At iteration 0i > , the Cumulative Transition Probability, ,i jCTP  along the 
path, j, is given by: 

( )

,1 ,1

,2 ,1 ,1

, , 1 ,1

, 1 , ,

, 2 , 1 ,1

, 3 , 2 ,1

, ,1, 1

i i

i i i

i m i m i

jump
i m i m i j

i m i m i

i m i m i

i n ii n

CTP TP
CTP CTP TP

CTP CTP TP

CTP CTP TP

CTP CTP TP
CTP CTP TP

CTP CTP TP

−

+

+ +

+ +

−

=


= + 


= +
= + 
= + 
= +


= + 





                      (11) 
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Step 3: a) Generate N random numbers. 
The specific path chosen by a particular ant will then be determined using the 

Roulette Wheel selection process of randomization. From the closed interval 
[ ]0,1 , N random numbers: 

1 2 , ,, Nr r r                               (12) 

are generated such that, an ant, aA , is assigned a random number each. The as-
signed randomized number is then further used as a guide towards the path tra-
versed by the ant. 

b) Correlate each of the randomized numbers, ar . 
Correlate each of the randomized numbers, ar , with a transition probability 

cumulative value, ,i jCTP , such that the randomized number, ar , falls within the 
range of value of the ,i jCTP  along a particular path thus: 

,a i jr CTP
                             (13) 

Step 4: a) Evaluate the objective function value, ( )jf x . 
The objective function value, ( )jf x  is evaluated with the value assigned to 

the design variable, jx , that corresponds to the cumulative transition probabili-
ty’s paths, j, of the design variable path. i.e. 

( ) ( ),a i j jf CTP j f x= =                        (14) 

b) Determine the best and worst paths. 
The best and worst paths among the N paths chosen by different ants are de-

termined using the relation: 

( ) ( ) ( )( )1 2, , ,best Nf Max f x f x f x=                 (15) 

( ) ( ) ( )( )1 2, , ,worst Nf Min f x f x f x=                (16) 

Step 5: Test for convergence of the process. 
The process is assumed to have converged if all the ants take the same path. 

i.e. 

( ) ( ) ( )1 2 Nf x f x f x= = =  or               (17a) 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 0.00001N N N Nf x f x f x f x f x f x ξ− − −− = − = = − = ≤ (17b) 

If the convergence criterion has been satisfied, then stop. Else, it will be as-
sumed that, all the ants return to the colony and start the search for a shorter 
path to the food source again. 

Step 6: a) Calculate the Pheromone Residue, M: 

( )1
N

iiM τ ρ
=

= −∑ .                        (18) 

where ρ , rate of pheromone evaporation, is a user defined parameter. 
b) Evaluate the objective function value’s ratio 
The range ratio of the best objective function value, bestf , to the worst objec-

tive function value, worstf , in maximizing a function given by jkτ∆ , is evaluated 
using the relation: 

https://doi.org/10.4236/ajcm.2019.94026


K. J. Adebayo et al. 
 

 

DOI: 10.4236/ajcm.2019.94026 365 American Journal of Computational Mathematics 
 

( )( )best best
jk

worst

freq of f f
f

ζ
τ∆ = ∑                     (19) 

where the summation extends over all the best ants, aA  (if multiple ants take 
the same best path). The subscripts, j, is the path preceding node and k is the 
path succeeding node. 

c) Compute the pheromone deposit update: 
To compute the pheromone deposits update set 1i i= +  and use the follow-

ing relations: 

( ) 11i iτ ρ τ −= −                          (20) 

1i i jkτ τ τ+ = + ∆                          (21) 

where 1iτ +  is the pheromone on the node link, ( ),j k , after updating and iτ  
is the pheromone on the link ( ),j k . This is before the update is computed, 
then, go to Step 2. 

4. Test Problems 

The HACO algorithm is now applied to solve the following test problems: 
Problem 1: Find the Maximum of 

( ) 2200 92000 8400000f x x x= − + −                 (22) 

within the range 220 - 300 using HACO algorithm. 
Step 1: Let , 1, 2, ,aA a N=   represent the number of Ants in the colony. 
Let { }jx  represent a set of permissible discrete values of the Design Variable, 

jx , where 1,2, ,j n= 
. The range, jxα β≤ ≤  or [ ],α β , is divided into n 

equal parts such that, a part each is assigned to each of the design variables, jx . 
Let 0.5ρ =  represent the pheromone evaporation rate. It is assumed that all 
the ants will deposit equal amount of pheromone at the initial stage hence, 

1 1τ = . 
Number of Ants = 4, 9n = , are assumed within the range for ix  as: 

1 2 3

4 5 6

7 8 9

220, 230, 240,
250, 260, 270,
280, 290, 300

x x x
x x x
x x x

= = =

= = =

= = =

 

Step 2: Compute the Transition Probability, ,i jTP , of selecting the arc or ray 
(or the discrete values) jx  as: 

( )( ),
1

, 1, 2, ,i
i j

best i i

TP j n
N freq of f

τ
τ τ +

= =
− +∑

        (23) 

( )1,1
1 1 0.11111111111

9 0 1 0 9
TP = = =

− × +
           (24) 

The cumulative of the transition probability values are computed associated 
with different paths based on the transition probabilities values obtained from 
the expressions (8) and (9). The Cumulative Transition Probability, ,i jCTP  at 
iteration i and path j is given by: 
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,1 ,1

,2 ,1 ,1

,3 ,2 ,1

, , 1 ,1

 
i i

i i i

i i i

i n i n i

CTP TP
CTP CTP TP
CTP CTP TP

CTP CTP TP−

= 
= + 
= + 


= + 



 

Hence, 

1,2 0.11111111111 0.11111111111 0.222222222222,CTP = + =  

1,3 0.11111111111 0.22222222222 0.333333333333,CTP = + =  

1,4 0.11111111111 0.33333333333 0.444444444444,CTP = + =  

1,5 0.11111111111 0.44444444444 0.555555555556,CTP = + =  

1,6 0.11111111111 0.55555555556 0.666666666667,CTP = + =  

1,7 0.11111111111 0.66666666667 0.777777777778,CTP = + =  

1,8 0.11111111111 0.77777777778 0.888888888889,CTP = + =  

1,9 0.11111111111 0.88888888889 1.000000000000.CTP = + =  

N. B: Since none of the paths have been identified as bestf , the jump transi-
tion probability needs not be computed at this stage. 

Step 3: a) Generate N random numbers, 1 2 , ,, Nr r r , within the [ ]0,1 . One 
random number for each ant thus: 

1 2

3 4

0.3122, 0.8701,
0.4729, 0.6190

r r
r r
= =
= =

                    (25) 

b) Correlate each of the randomized numbers, ar . with a transition probabil-
ity cumulative value, ,i jCTP , which is of the most approximate value or the cu-
mulative transition probability value’s range to which the randomized numbers 
value, ar , fall: 

, .a i jr CTP≅                          (26) 

Ant 1: 1 1,30.3122 0.333333333333r CTP= ≈ =  

Ant 2: 2 1,80.8701 0.888888888889r CTP= ≈ =  

Ant 3: 3 1,50.4729 0.555555555556r CTP= ≈ =  

Ant 4: 4 1,60.6190 0.666666666667r CTP= ≈ =  

Step 4: a) Evaluate the objective function value, ( )jf x . 
The objective function values, ( )jf x  are evaluated using values assigned to 

the design variable values, jx , corresponding to the cumulative of the transition 
probability’s paths, j. 

,a i jf CTP=  at ( )jj f x=                     (27) 

Ant 1: 1 1,3 0.333333333333.f CTP= =  
Then, 3 240x = . Hence, ( ) ( )1 240 2160000f x f= = . 
Ant 2: 2 1,8 0.888888888889.f CTP= =  
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Then, 8 290x = . Hence, ( ) ( )2   290 1460000f x f= = . 
Ant 3: 3 1,5 0.555555555556.f CTP= =  
Then, 5 260x = . Hence, ( ) ( )3 260 2000000f x f= = . 
Ant 4: 4 1,6 0.666666666667.f CTP= =  
Then, 6 270x = . Hence, ( ) ( )4 270 1860000f x f= = . 
b) Determine the best and worst paths. 
The best and worst paths among the N paths chosen by different ants are de-

termined using the relation: 

( ) ( ) ( )( )1 2, , ,best Nf Max f x f x f x=                (28) 

( ) ( ) ( )( )1 2, , ,worst Nf Min f x f x f x=                (29) 

Hence, ( )3 216000bestf f x= =  at 3 240bestx x= =  and 
( )8 146000worstf f x= =  at 8 290worstx x= = . 

Step 5: Test for convergence of the process. The process is assumed to have 
converged if all the N ants take the same path. i.e. 

( ) ( ) ( )1 2  Nf x f x f x= = =  or              (30) 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 0.00001N N N Nf x f x f x f x f x f x ξ− − −− = − = = − = ≤ (31) 

However, if convergence has not been achieved, it will be assumed that all the 
ants will have to return home and start again in search of food. Since neither of 
the convergence conditions is met, the process has to continue. 

Step 6: a) Calculate the Pheromone Evaporation constant, M. 
Since the convergence criterion has not been met, there is need to calculate 

the pheromone evaporation constant, M, using the relation: 

( )1 .N
iiM τ ρ

=
= −∑                        (32) 

4 1 0.5 3.5M = × − =  

b) Evaluate the objective function value’s ratio: 

( )( )best best
jk

worst

freq of f f
f

ζ
τ∆ = ∑                  (33) 

2,4
1 2 2160000  2.95890410959

1460000
τ × ×

∆ = =  

where 2, 0.5ζ ρ= = . 
c) Compute the Pheromone deposit update: Then, set the new iteration 

number as 1i i= + , and update the pheromone deposits on different arcs (or 
discrete values of design variables) where 1iτ −  denotes the previous pheromone 
amount of the iteration after evaporation, which is taken as iτ  can be com-
puted by: 

At 1 2i i= + = , 

( ) 11i iτ ρ τ −= −  

( )2 11 0.5 0.5 1.0 0.5τ τ= − × ==  
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1 ,i i jkτ τ τ+ = + ∆                        (34) 

where 1,2,4,5,6,7,8,9j = . It must be noted that the path, 3j =  is omitted. 
This is because, that was the path at which bestf  has been identified. 

3 2 2,4 1.0 2.95890410959 3.95890410959τ τ τ= + ∆ = + =  

With this, we go back to step 2. 
Step 2: Compute the Transition Probability, ( ,i jTP ) and Transition Probabil-

ity Jump, ( ,
jump

i jTP ) of selecting the arc: 

( )( ),
1

i
i j

best i i

TP
N freq of f

τ
τ τ +

=
− +∑

 and 

( )( )
1

,
1

jump i
i j

best i i

TP
N freq of f

τ
τ τ

+

+

=
− +∑

 

where bestfreq of f  is the frequency of the bestf , 2 0.5τ = ,  

3  3.95890410959τ =  and 1,2,4,5,6,7,8,9j =  
This gives: 

( )( )

( )

2
2,1

2 3

0.5
9 1 0.5 3.95890410959

0.06282271945

best

TP
N freq of f

τ
τ τ

=
− +

=
− × +

=

∑
 

( )( )
3

2,3
2 3

3.95890410959 0.49741824441
7.95890410959

jump

best

TP
N freq of f

τ
τ τ

=
− +

= =

∑  

The Transition Probabilities would have been equiprobable but for the fact 
that, the transition probability has to jump at 2,3P . Hence, 

2,1 0.06282271945,CTP =  

2,2 0.06282271945 0.06282271945 0.1256454389,CTP = + =  

Note that, there is a jump at this point. Hence, 

2,2 0.49741824441 0.12564543890 0.62306368330,jumpCTP = + =  

2,4 0.06282271945 0.62306368330 0.68588640276,CTP = + =  

2,5 0.06282271945 0.68588640276 0.74870912221,CTP = + =  

2,6 0.06282271945 0.74870912221 0.81153184166,CTP = + =  

2,7 0.06282271945 0.81153184166 0.87435456111,CTP = + =  

2,8 0.06282271945 0.87435456111 0.93717728056,CTP = + =  

2,9 0.06282271945 0.93717728056 1.00000000001CTP = + =  

Step 3: Generate N random numbers 1 2 , ,, Nr r r  in the [ ]0,1 , one for each 
ant 

1 2 3 40.3688, 0.8577, 0.0776, 0.5791r r r r= = = =  
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a) Evaluate the objective function values corresponding to the complete paths 

( ) ( )1 1Ant 1: 240 2160000f f x f= = =  

( ) ( )2 2Ant 2 : 280 1680000f f x f= = =  

( ) ( )3 3Ant 3 : 230 2180000f f x f= = =  

( ) ( )4 4Ant 4 : 240 2160000f f x f= = =  

Step 4: Determine the best and worst paths among the N paths chosen by dif-
ferent ants 

3 3230; 218000best bestx x f f= = = =  

7 2280; 168000worst worstx x f f= = = =  

Step 5: At 3i = , 1i i jkτ τ τ+ = + ∆ , 

( )( ) 2 2180000 2.59523809524,
1680000

best best
jk

worst

freq of f f
f

ζ
τ ×

∆ = == ∑  

where 2, 0.5ζ ρ= =  and iτ  can be computed as: 

( ) ( )1 11 1 0.5 0.5 0.5 0.25; 1,3,4,5,6,7,8,9i i i jτ ρ τ τ− −= − = − = × = =  

with the path 2 missed out. Hence, 

4 3 1,3 3.95890410959 2.59523809524 6.55414220483τ τ τ= + ∆ = + =  

for 2j =  and 3 0.25τ =  
With this, we set 4i =  and go back to step 2. 
Step 2: Compute the Transition Probability ( ijTP ) of selecting the arc 

( )( ),
1

i
i j

best i i

TP
N freq of f

τ
τ τ +

=
− +∑

 and 

( )( )
1

,
1

,jump i
i j

best i i

TP
N freq of f

τ
τ τ

+

+

=
− +∑

 

where 3 0.25τ = ; 1,3,4,5,6,7,8,9j =  and 4 6.55414220483τ =  

This gives 3,1
0.25 0.25

8 0.25 6.55414220483 8.55414220483
TP = =

× +
 

3,1 0.0292256072TP =  

3,2
6.55414220483 0.76619514241
8.55414220483

jumpTP = =  

3,3 3,40.82464635681, 0.85387196401,CTP CTP= =  

3,5 3,60.88309757121, 0.91232317841,CTP CTP= =  

3,7 3,8 3,90.94154878561, 0.97077439281, 1.00000000001CTP CTP CTP= = =  

Step 3: a) Generate N random numbers 1 2 , ,, Nr r r  in the [ ]0,1 , one for 
each ant: 

1 2 3 40.9251, 0.4928, 0.0632, 0.2064r r r r= = = =  

b) Evaluate the objective function values corresponding to the complete paths: 

https://doi.org/10.4236/ajcm.2019.94026


K. J. Adebayo et al. 
 

 

DOI: 10.4236/ajcm.2019.94026 370 American Journal of Computational Mathematics 
 

( ) ( )1 1Ant 1: 280 1680000f f x f= = =  

( ) ( )2 2Ant 2 : 230 2180000f f x f= = =  

( ) ( )3 3Ant 3 : 230 2180000f f x f= = =  

( ) ( )4 4Ant 4 : 230 2180000f f x f= = =  

Step 4: Determine the best and worst paths among the N paths chosen by dif-
ferent ants 

1,2 2 3 4230; 2180000best bestx x f f f f= = = = = =  

1,7 1280; 1680000worst worstx x f f= = = =  

Step 5: 4i = , 

( )( )
1,5

3 2 2180000   7.78571428571
1680000

best best

worst

freq of f f
f

ζ
τ × ×

∆ = = =∑  

where 2, 0.5ζ ρ= = , iτ  and 1iτ +  can be computed as 

( ) ( )1 31 1 0.5 0.5 0.25 0.125; 1,5,6,7,8,9i i jτ ρ τ τ−= − = − = × = =  

1i i jkτ τ τ+ = + ∆  

5 4 1,5 6.55414220483 7.78571428 4.3398564957 054τ τ τ= + ∆ = + =  

for 2j =  and 4 0.125τ =  
With this we back go to step 2. 
Step 2: Compute the Cumulative transition probability ( ijCTP ) of selecting the 

arc: 

( )( ),
1

i
i j

best i i

TP
N freq of f

τ
τ τ +

=
− +∑

 and 

( )( )
1

,
1

,jump i
i j

best i i

TP
N freq of f

τ
τ τ

+

+

=
− +∑

 

where 0.125; 1,3,4,5,6,7,8,9ij jτ = =  and 4,2 14.33985649054τ =  
This gives: 

4,1
0.125 0.125 0.00828371032

6 0.125 14.33985649054 15.08985649054
TP = = =

× +
 

4,2
14.33985649054 0.95029773806
15.08985649054

jumpTP = =  

4,1 0.00828371032,CTP =  

4,2 4,30.95858144838, 0.9668651587,jumpCTP CTP= =  

4,4 4,50.97514886902, 0.98343257934,CTP CTP= =  

4,6 4,70.99171628966, 0.99999999998,CTP CTP= =  

4,8 4,91.0082837103, 1.01656742062CTP CTP= =  

Step 3: a) Generate N random numbers 1 2 , ,, Nr r r  in the [ ]0,1 , one for each 
ant: 
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1 20.5684, 0.8385,r r= =  

3 4  0.4191, 0.250r r= =  

b) Evaluate the objective function values corresponding to the complete paths: 

( ) ( )1 1Ant 1: 230 2180000f f x f= = =  

( ) ( )2 2Ant 2 : 230 2180000f f x f= = =  

( ) ( )3 3Ant 3 : 230 2180000f f x f= = =  

( ) ( )4 4Ant 4 : 230 2180000f f x f= = =  

It can be seen that all the ants now follow the same path, that is, Ant 1, Ant 2, 
Ant 3 and Ant 4 follow the same path. Hence, this is acclaimed as the best path 
with: 

2 1 2 3 4230, 2180000best bestx x f f f f f= = = = = = =  

4,2 14.33985649054τ =  and ( )* 2180000f x = . 

5. Conclusion 

In this paper, we tried to annex the strengths of AS, ACS and MMAS, Ant Co-
lony Optimization algorithms, to obtain solution of optimization problems. To 
this means, due to high computational complexity in solving these problems us-
ing the earliest ACO algorithms, we modify the relation for determining the 
Transition Probability, formulate the Jump Transition Probability and Phero-
mone Evaporation Residue relations and introduce the process of correlating the 
randomized numbers, ar , with the cumulative transition probability cumulative 
value, ,i jCTP , into the algorithm to obtain the best solution to build a Hybri-
dized ACO such that the randomized number, ar , falls within the range of value 
of the ,i jCTP  along a particular path. Implementation of the method and nu-
merical results that show the accuracy of the method, speedy convergence and 
low occupation of the computer memory are also discussed. 
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