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Abstract 
The main aim of this paper is to present and emphasize the contribution of 
stochastic numerical methods as must tools for the modern econometric 
modelisation. Indeed, the stochastic numerical methods play an important 
role in mathematical modelling and the econometric analysis because they 
model uncertainties that govern the real-world data. However these powerful 
tools are not well-known and understood by many economists and financial 
econometricians. 
 
Keywords 
Stochastic Differential Equations, The Euler-Maruyama Scheme, 
The Milstein Scheme, The Crank-Nicolson Scheme, Runge-Kutta Method,  
Itô Integrals, Econometric Analysis 

 

1. Introduction 

As mentioned in [1], the theory of stochastic differential equations was original-
ly developed by mathematicians as a tool for explicit construction of the trajec-
tories of diffussion processes for given coefficients of drift and diffusion. 

Today, the stochastic differential equation (SDE) models 

( ) ( )( ) ( )( ) ( )d , d , dX t X t t t X t t B t= Φ +Ψ  

or Stochastic partial differential equation (SPDE) models 

( ) ( )d d d , 0,t t t t t tX AX F X t B X W X X ξ=∂
 = + + =  

 

play a prominent role in a range of application areas, including economics, 
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finance, biology, epidemiology, chemistry, microelectronics, and mechanics [2] 
[3]. 

By reading [4] [5] and [6] in the field as the reference books of Numerical me-
thods in Economics, one can remark that there exist the high needs to take in 
content the uncertainties in economic analysis. Therefore, the stochastic numer-
ical methods must be understood by econometricians or economists. 

In all, the main challenge of econometricians or economists is how to numer-
ize the stochastic differential equations, that is, how to move from the continuous- 
time stochastic models to discrete-time stochastic models [7]-[15]. 

The motivation for these methods came from the need to deal effectively with 
problems arising in the fields of economics and Finance [2] [16]-[21]. Also, the 
new direction of the modern econometric theory and applications go to stochas-
tic analysis [22] [23] [24] [25]. 

The remainder of this paper is organized as follows. Section 2 presents some 
useful definitions and notations in stochastic analysis. Section 3 gives the sto-
chastic integrals as the tools of evaluation of stochastic differential equations. 
Section 4 presents some recent stochastic differential equations that can be mea-
ningfully in econometric analysis and their assumptions used for uniqueness and 
existence of solution. Section 5 presents some powerful numerical methods for 
stochastic differential equations. 

2. Notations and Definitions 

In this section we present the notations, definitions and basic facts of stochastic 
differential equations, stochastic integrals, stochastic numerical methods and con-
vergence which will be used in this paper. 

Definition 2.0.1. Let ( )( ), , , tP
+∈

Ω    be a filtered probability space. The 
σ -algebra on ×Ω  generated by all sets of the form A, 0A∈ , and A,  
0 a b≤ < < +∞ , aA∈ , is said to be the predictable σ -algebra for the filtra-
tion ( )t +∈  

Definition 2.0.2. A real-valued process ( )t t
X +∈  is called predictable with 

respect to a filtration ( )t t +∈  or t -predictable, if as a mapping from  

+ ∈Ω→   predictable σ -algebra generated by this filtration. 
Definition 2.0.3 Let ( )t t

X
+∈

 be a left-continuous real-valued process adapted 
to ( )t t +∈ . Then tX  is predictable. 

Definition 2.0.4. A stochastic process ( tX ) is said to be right-continuous with 
left limits (RCLL) or contu à droite avec limite à gauche (càdlàg) if, almost surely, 
it has trajectories that are RCLL. That is, 

t sX limx=  

Definition 2.0.5. (Wiener process, [26]) Let ( ), ,F PΩ  be a probability space 
and let { }, 0tF t ≥  be a filtration defined on it. A process ( ){ }, 0X t t ≥  is called 
an tF -Wiener process if it satisfies the following conditions. 

1) ( )0 0X = ; 
2) ( )X t  is tF -measurable and ( ) ( )( ):F X s X t s t− ≥  is independent of tF  
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for all 0t ≥ ; 
3) The increments ( ) ( )X s X t−  are normally distributed with mean 0 and 

variance ( )2 0s tσ − >  for all 0s t> ≥ ; 
4) The sample paths of ( ).X  are in [ )0,C ∞ . 
Definition 2.0.6. [27] X is a Markov process if for any t and 0s > , the con-

ditional distribution of ( )X t s+  given tF  is the same as the conditional dis-
tribution of ( )X t s+ , given ( )X t , that is, 

( )( ) ( ) ( )( )| |tP X t s Y F P X t s Y X t+ ≤ = + ≤  

a.s. 
Definition 2.0.7. [28] A Brownian motion is a continuous, adapted process
{ }, : 0t tB B s= ≤ < ∞ , defined on some probability space ( ), , PΩ  , with the 

properties that 0 0B =  a.s. and for 0 s≤ < ∞ , the increment t sB B−  is inde-
pedentof ∫  and is normally distributed with mean zero and variable t s− . 

The Brownian paths have the following properties [27]. Almost every sample 
path ( ) ,0B t t T≤ ≤ : 1) is a continuous function of t; 2) is not monotone in any 
interval, no matter how small the interval is; 3) is not differentiable at any point; 
4) has infinite variation on any, no matter how small it is; 5) has quadratic varia-
tion [ ]0, t  equal to t, for any t. 

Definition 2.0.8. (Brownian motion with respect to a filtration, [29]) A vec-
torial (d-dimensional) Brownian motion on T  with respect to a filtration  

( )t t∈
= 

T  such that 1) 0 0W = ; 2) For all 0 s t≤ <  in T , the increment 

t sW W−  is independent of s  and follows a centered Gaussian distribution 
with variance-covariance matrix ( ) dt s I− . 

Some classical properties of Brownian motion are stated in the following propo-
sition. 

Proposition 2.0.1. Let ( )t t
W

∈T  be a Brownian motion with respect to ( )t t∈


T . 
1) symmetry: ( )t t

W
∈T  is also a Brownian motion. 2) scaling: for all 0λ > , the 

process is also a Brownian motion. 3) Invariance by translation: for all 0s > , 
the process t s sW W+ −  is a standard Brownian motion independent of s . 

Definition 2.0.9. [27] A process X is called adapted to the filtration ( )t=  , 
if for all t, ( )X t  is  -measurable. 

Definition 2.0.10. Let tX  be an adapted stochastic process with RCLL tra-
jectories. It is said to be decomposable if it can be written as 

0 ,t t tX X M Z= + +  

where 0 0 0M Z= = , tM  is a locally square-integrable martingale, and tZ  has 
RCLL-adapted trajectories of bounded variation. 

Definition 2.0.11 (Martingale, [30]) Let { }t  be an indexed set of sub-σ- 
algebra of { }  such that { } { }t s⊃   if t s> . The pair ( ){ }, tx t   is said 
to be a t -martingale if ( )E x t < ∞  and ( )x t  is t -measurable and 

( ) ( )| tE x t s x t+ =    

w.p.1. for each t and 0s > . If the equality is replaced by ≤ , we have a Super-
martingale, and if it is replaced by ≥  we have a Submartingale. 

https://doi.org/10.4236/ajcm.2019.94024


L. N. K. Mambo et al. 
 

 

DOI: 10.4236/ajcm.2019.94024 331 American Journal of Computational Mathematics 
 

Definition 2.0.12. [31] The quadratic covariation of two processes X and Y is 

[ ] ( ) ( )( ) ( ) ( )( )1 10 1
, lim .

n

n

k k k kt
k

X Y X t X t Y t Y t− −Π → =

= − −∑           (1) 

Here { }0 1 2 10n n nt t t t t t−Π = = < < < < < =  is an arbitrary partition of the 
interval [ ]0, t . 

3. Stochastic Integrals 

The aim of this section is to provide some backgrounds on the stochastic inte-
grals. These integrals constitute a cornerstone of mathematical modelling and 
stochastic analysis used in evaluation and resolution of the stochastic diferential 
equatons [1] [32]-[36]. 

3.1. The Itô Integral 

Itô’s theory of stochastic integration was originally motivated as a direct me-
thod to construct diffusion processes (as subclass of Markov processes) as so-
lution of stochastic differential equations [35]. As in [27] Itô integral is defined 
as a sum 

( ) ( ) ( ) ( )( )
1

10
0

d .
nT

i i i
i

X t B t C B t B t
−

+
=

= −∑∫               (2) 

Theorem 3.1. (Properties of stochastic integrals, [27]) Let ( )X t  be a regular  

adapted such that with probability one ( )2
0

d
T
X t t < ∞∫ . Then Itô integral  

( ) ( )
0

d
T

X t B t∫  is defined and has the following properties. 

1) Linearity. If Itô integrals of ( )X t  and ( )Y t  are defined and α  and β  
are some constants then 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0 0 0

d d d
T T T

X t Y t B t X t B t Y t B tα β α β+ = +∫ ∫ ∫  

2) ( ) ( ] ( ) ( ) ( ) ( ),0
d d

T b

a b a
X t I t B t X t B t=∫ ∫ . The following two properties hold 

when the process satisfies an additional assumption 

( )( )2
0

d .
T
E X t t < ∞∫                         (3) 

3) Zero mean property. If condition 3 holds then ( ) ( )( )0
d 0

T
E X t B t =∫ . 

4) Isometry property. If condition 3 holds. Then 

( ) ( )( ) ( )( ) ( )
2

2
0 0

d d
T T

E X t B t E X t B t=∫ ∫  

5) Generalized Itô Isometry [31]. For [ ]( )( )2 2, , 0,af g d T∈ Ω L , we have 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

d d d
t t t

f s W s g s W s f s g s t  =     ∫ ∫ ∫   

Corollary 3.1.1. If X is a continuous adapted process then the Itô integral  

( ) ( )
0

d
T
X t B t∫  exists. In particular, ( )( ) ( )

0
d

T
f B t B t∫  where f is a continuous 

function on R is well-defined. 
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A consequence of the isometry property is the expectation of the product of 
two Itô integrals. 

Theorem 3.2. Let ( )X t  and ( )Y t  be regular adapted processes, such that 

( )2

0
d

T
X t t < ∞∫  and ( )2

0

T
Y t < ∞∫ . Then 

( ) ( ) ( ) ( )( ) ( ) ( )( )
0 0 0

d d d
T T T

E X t B t Y t B t E X t Y t t=∫ ∫ ∫  

We denote by mn  all real-valued m n×  matrices and by 

( ) ( ) ( )( )1 , , , 0.nW t W t W t t′= ≥  

Let [ ] [ [, 0,a b ∈ ∞  and we put 

[ ]( ) [ ] [ ]( ){ }, : , | 1 , 1 : , ,mn
W ij WjC a b f a b i m j n f C a b= ×Ω→ ∀ ≤ ≤ ∀ ≤ ≤ ∈  

[ ]( ) [ ] [ ]( ){ }, : , | 1 , 1 : ,mn
IW ij IWjC a b f a b i m j n f C a b= ×Ω→ ∀ ≤ ≤ ∀ ≤ ≤ ∈  

and [ ]( ),IC a b  respectively. 
Definition 3.2.1. [37] If [ ]: , mnf a b ×Ω→   belongs to [ ]( ),IWC a b , then 

the stochastic integral with respect to W is the m-dimensional vector defined by 

( ) ( ) ( ) ( )
1 1

d d
nb b

ij ja a
j i m

f t W t f t W t
= ≤ ≤

′ 
=  
 
∑∫ ∫              (4) 

where each of the integrals on the right-hand side is defined in the sense of Itô. 
As in [38] the Itô formula for multidimensional Itô processes is defined in 

following way. If 

0 0 0
1

d d ,
kt ti i i il l

t s s s
l

X X K s H B
=

= + +∑∫ ∫  

[ ]0,t T∈ , 1, ,i m=  , are Itô processes and [ ]( )2 0, mF C T∈ × , then 

( ) ( )

( ) ( ) ( )

0

2

0 0
1 0 , 1

, 0,

1, d , , d ,
2

T

m T mT Ti i j
t t t t ti i ji i j

F T X F X

F F Ft X X t X t X X X
x t x x= =

−

∂ ∂ ∂
= + +

∂ ∂ ∂ ∂∑ ∑ ∑∫ ∫
   (5) 

( ) ( )

( ) ( )

0 0
1 1 1

2

0 0
1 1

, d , d

1, d , d .
2

m k mT Til l il
t t t t t

i l ii i

m kT T il jl
t t t t

i l i j

F Ft X H B t X K t
x x

F Ft X t t X H H t
t x x

= = =

= =

∂ ∂
= +

∂ ∂

∂ ∂
+ +

∂ ∂ ∂

∑∑ ∑∫ ∫

∑∑∫ ∫
           (6) 

Morever, if [ ]( )2,3 0, mF C T∈ × , then this formula can be written in term of 
the Stratonovich integral [38] 

( ) ( ) ( ) ( )0 0 0
1

, 0, , d , d
m T Ti

T t t t
i i

F FF T X F X t X X t X t
x t=

∂ ∂
− = +

∂ ∂∑∫ ∫       (7) 

( ) ( ) ( )
0 0 0

1 1 1
, d , d , d

m k mT T Til il
t t t t t t

i l ii i

F F Ft X H B t X K t t X t
x x t= = =

∂ ∂ ∂
= + +

∂ ∂ ∂∑∑ ∑∫ ∫ ∫     (8) 

3.2. The Stratonovich Integral 

Definition 3.2.2. [35] Let tX  and tY  be Itô processes. The Stratonovich integral 
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of tX  with respect to tY  is defined by 

( )( )1d d d d ,
2

b b b
t t t t t ta a a

X Y X Y X Y= +∫ ∫ ∫                  (9) 

or equivalently in the stochastic differential form 

( )( )1d d d d .
2t t t t t tX Y X Y X Y= +                  (10) 

Theorem 3.3. [35] Let ( ),f t x  be a continuous function with continuous 

partial derivatives 
F
t

∂
∂

, 
f
t

∂
∂

, and 
f
x
∂
∂

. Then 

( )( ) ( )( ) ( )( ), d , , d .
bb b

ta aa

Bf t B t B F t B t t B t t
t

∂
= −

∂∫ ∫           (11) 

In particular, when the function f does not depend on t, we have 

( )( ) ( )( )d .
bb

ta a
f B t B F B t=∫                   (12) 

Theorem 3.4. [35] Let ( ),f t x  be a continuous function with continuous 

partial derivatives 
f
t

∂
∂

, 
f
x
∂
∂

, and 
2

2

f
x

∂
∂

. Then 

( ) ( )( ) ( ) ( )( )*
1 10 1

1d lim ,
2

nb
t t i i i i ia

i
X Y f t B t B t B t B t− −∆ → =

 = + − 
 

∑∫       (13) 

( ) ( )( )* 1
10 1

lim , ,
2

n
i i

i i i
i

t t
f t B B t B t−

−∆ → =

 +  = −  
  

∑            (14) 

in probability, where *
1i i it t t− ≤ ≤ , { }0 1 1, , , ,n nt t t t−∆ =   is a partition of the fi-

nite interval [ ],a b  and ( )1max i n i i nt t≤ ≤ −∆ = − . 
In [39], the multidimensional Stratonovich integrals ( )mS f  can be ex-

pressed by the following formula using Itô integrals 

( )
( ) ( )2

2

! .
2 ! 2

k
m m kk

k

mS f I Tr f
k m k −

≤

=
−∑              (15) 

where Tr  denoted the iterated traces that are defined formally starting with 

( ) ( )1 2 1 2, , , , , d .m mTrf s s f s s s s− −= ∫   

Another approach to formula (15) using Hida’s theory of white noise. Work-
ing on m  instead of m

+  and assuming that f is a test-function, the integral 
( )mS f  may indead be rewritten as 

( ) ( ) ( )
11 1, , d d ,

m

n
m s s nf s s X w X w s s f X ⊗=∫   

    

where the derivative of Brownian motion is understood in the distribution sense. 
In the sense of Hu and Meyer [39], a Stratonovich integral is given in rigorous 
form as 

( ) [ ) ( ) ( ) ( )
11

1 , , d d
! mm m s sS

m
S f f s s X w X w

m
= ∑ ∫          (16) 

where f is a finite sequence of coefficients ( )2 m
m sf L∈   

and ( )! 1 1n n n= × − × × . 
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3.3. The Skorohod Integral 

The Skorohod integral was introduced for the first time by A. Skorohod in 1975 
as an extension of the Itô integral to non-adapted processes and is the adjoint of 
the Malliavin derivative which is fundamentals to the stochastic calculus of vari-
ations [40] [41]. 

Definition 3.4.1. [40] Let ( ) [ ], 0,u t t T∈ , be a measurable stochastic process 
such that for all [ ]0,t T∈  the random variable ( )u t  is T -measurable and 

( )2u t  < ∞  . Let its Wiener-Itô chaos expansion be 

( ) ( ) ( )( )
0 0

, ., .n n n n
n n

u t I f t I f t
∞ ∞

= =

= =∑ ∑                  (17) 

Then we define the Skorohod integral of ( )u t  by 

( ) ( ) ( ) ( )10
0

: : ,
T

n n
n

u u t W t I fδ δ
∞

+
=

= = ∑∫                  (18) 

where convergent in ( )2L P . Here , 1, 2,nf n =

  are the symmetric functions 
derived from ( )., , 1, 2,nf t n =  . We say that u is Skorohod integrable, and we 
write ( )u Dom δ∈  if the series in (18) converges in ( )2 PL . 

3.4. The Ogawa Integral 

The Itô integral and others are based in a fundamental hypothesis of causal rela-
tionship. Shigeyoshi Ogawa [42] defined this following noncausal integral that is 
so-called Ogawa integral 

( ) ( ) ( ) ( ) ( ) ( ) [ ]
0 0 0

d d d , 0,
T t t

i if t W t f s m s s m s W s t T∗ = ∈∑∫ ∫ ∫      (19) 

where ( ){ }im t  is the complete orthnormal system on [ ]( )2 0,T . Nualart and 
Zakai [43] proved that the Ogawa integral is equivalent to the Stratonovich 
integral of the Ogawa integral exists with the Stratonovich integral defined [31] 
as 

( ) ( ) ( ) ( ) ( )( )1
10 0 1 1

1d lim d .i

in

nt t
i it

i i i

f t W t f s s W t W t
t t

+

+Π → = +

= −
−∑∫ ∫      (20) 

Here { }1 2 10n n nt t t t t−Π = = < < < < =  is an arbitrary partition of the in-
terval [ ]0, t . The Ogawa integral coincides with the Stratonovich integral de-
fined at the midpoints [31] 

( ) ( ) ( ) ( )( )1
10 0 =1

d lim .
2n

nt i i
i i

i

t t
f t W t f W t W t+

+Π →

+ = − 
 

∑∫          (21) 

Here { }0 1 2 10n n nt t t t t t−Π = = < < < < < =  is an arbitrary partition of the 
interval [ ]0, t . 

4. Stochastic Differential Equations 

This section presents four types of stochastic differential equations that can be 
useful in econometric modelling such as the stochastic ordinary differential equ-
ation, stochastic partial differential equation, Stochastic Differential Equation 
with Jumps, and Stochastic Delay Differential Equations [15] [26] [44]-[51]. 
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4.1. Stochastic Ordinary Differential Equations 

Let ( )X t  be a diffusion in n dimensions described by the multi-dimensional 
stochastic differential equation 

( ) ( )( ) ( )( ) ( )d , d , d ,X t X t t t X t t B t= Φ +Ψ          (22) 

where Ψ  is n d×  matrix valued function, B is d-dimensional Brownian mo-
tion and and X and Φ  are vector n-dimensional vector valued functions. The 
vector ( ),X tΦ  and the matrix ( ),X tΨ  are the coefficients of the stochastic 
differential equation. 

Theorem 4.1. (Unique and Existence of Solution). If the coefficients are lo-
cally Lipschitz in X with a constant independent of t, that is, for every N, there is 
a constant K depending only on T and N such that for all ,x y N≤  and all 
0 t T≤ ≤ , 

( ) ( ) ( ) ( ), , , , ,x t y t x t y t K x yΦ −Φ + Ψ −Ψ ≤ −        (23) 

for any given ( )0X  the strong solution to stochastic differentional equa-
tion 26 is unique. If in addition to condition 23 the linear growth condition 
holds 

( ) ( ) ( ), , 1 ,x t x t K xτΦ + Ψ ≤ +              (24) 

( )0X  is independent of B, and ( ) 2
0E X < ∞ , then the strong solution ex-

ists and is unique on [ ]0,T , moreover, 

( )( ) ( )( )2 2
sup 1 0 ,E X t C E X< +  

where constant C depends only on K and T. 
The following theorem gives the solution of stochastic differential equations 

as Markov processes. 
Theorem 4.2. [1] (The solution of SDEs as Markov processes) If Equation (26) 

satisfies the conditions of the existence and uniqueness theorem 4.1, the solution 

tX  of the equation for arbitrary initial values is a Markov process on the inter-
val [ ]0 ,t T  whose initial probability distribution at the instant to is the distribu-
tion of C and whose transition probabilities are given by 

( ) ( ) ( )( ), , | ,t s tP s xt B P X B X x P X s x B= ∈ = = ∈           (25) 

where ( ),tX s x  is the solution of equation. 
Theorem 4.3. [1] (The solution of SDEs as Diffusion processes). The condi-

tion of the existence and uniqueness Theorem 4.1 are satisfied for the SDE 

( ) ( )( ) ( )( ) ( )
0 0d , d , d , , ,tX t X t t t X t t B t X C t t T= Φ +Ψ = ≤ ≤     (26) 

where d
tX R∈ , ( ), dt x RΦ ∈ , mB R∈  and ( ),t xΨ  is a d m×  matrix. If in 

addition, the functions Φ  and Ψ  are continuous with respect to t, the solution 

tX  is a d-dimensional diffusion process on [ ]0 ,t T  with drift vector and diffusion 
matrix ( ) ( ) ( ), , ,t x t x t x ′Π = Ψ Ψ . In particular, the solution of an autonomous 
SDE is always a homogeneous diffusion process on [ )0 ,t ∞ . 
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4.2. Stochastic Partial Differential Equations 

Consider the Itô Stochastic Partial Differential Equation of the form as men-
tioned in [52] 

( ) ( )d d d , 0,t t t t t tX AX F X t B X W X X ξ=∂
 = + + =  

         (27) 

for 0t ≥ , where tW , is an infinite dimensional Wiener process of the 

( ) ( ) ( )
1

, , 0,j
t j t j

j
W x w C W w x t xφ

∞

=

= ≥ ∈∑               (28) 

with independent scalar Wiener processes j
tW , j∈ . Here the family jφ , 

j∈ , is an orthonormal basis in, e.g., ( )2 ,L . 
Assumptions: For uniqueness and existence of solution of this SPDE the fol-

lowing assumptions hold. A1) Linear operator A. Let   be a finite or counta-
ble set. In addition, let ( )i i

λ
∈

 be a family of real numbers with iinf ∈ > −∞  and 
let ( )i i

ϑ
∈

 be an orthonormal basis of H. The linear operator ( ):A A H→  
is given by ,i iiAυ λ ϑ υ ϑ

=
= −∑ 

 for all ( )Aυ ∈  with 

( ) { }22 ,iiA Hλ ϑ υ
=

= ∈∑ 
 . 

A2) Drift term F. Let ,α δ ∈  be real numbers with 1δ α− <  and let 
:F H Hδ α→  be a globally Lipschitz continuous mapping. 

A3) Diffusion term B.Let ,α δ ∈  be real numbers with 1
2

δ β− <  and let 

( )0: ,F H HS Hδ βυ→  be a globally Lipschitz continuous mapping. 

A4) Initial value ξ : Let ( ),min 1, 1 2γ δ α β∈ + +    and [ )2,p∈ ∞  be real 
numbers and let : Hγξ Ω →  be an ( )0 Hγ  -measurable mapping with 

p
Hγ

ξ  < ∞  
E . 

The literature contains many existence and uniqueness theorems for mild so-
lutions of SPDEs. Theorem below provides an existence, uniqueness, and regu-
larity result for solutions of SPDEs with globally Lipschitz continuous coeffi-
cients in the Equation (27). 

Theorem 4.4. [52] Assume that the Assumptions A1)-A4) are fulfilled. Then 
there exists a unique predictable stochastic process [ ]: 0,X T Hγ×Ω→   

satisfying [ ]0,sup p
t T Hγ

ξ∈
  < ∞  

E  and 

( ) ( ) ( ) ( )
0 0

e e d e d
t tA t s A t sAt

t s s sX F X s B X Wξ − −= + +∫ ∫         (29) 

. .a s−  for all [ ]0,t T∈ . In addition, 
( )

( ] [ ] ( )( )min ,1 2
,

0, , , .r p
rr

X C T Hγ
γ

−
∈ −∞

∈ Ω


L  

Here we assume that the Assumptions that [ ]: 0,X T H×Ω→  is a predicta-
ble stochastic process, which satisfies 27. Let [ )0 0,t T∈ . Then the solution process 
X also satisfies 

( ) ( ) ( ) ( ) ( )0
0 0 0

e e d e d , . .
t tA t t A t s A t s

t t s s st t
X X F X s B X W a s− − −= + + −∫ ∫    (30) 
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for every [ ]0t t T∈ ∈ . 
Proposition 2 Let assumption A1)-A4) be satisfied and let ( )0,1γ ∈  be 

given by Assumption A3. Then there is an up-to-modification unique predicta-
ble stochastic process [ ] ( )( ): 0,X T D A γκ×Ω→ −  with 

( )
0
sup

p

t
Ht T

A Aγκ
≤ ≤

− < ∞  

for [ )0,p∈ ∞  and with 

( ) ( ) ( ) ( ) ( )0
0 0 0

e e d e d 1,
t tA t t A t s A t s

t s s sP X X F X s B X W− − − = + + =  ∫ ∫    (31) 

for all [ )0,t T∈ . Moreover, X is the unique mild solution of the SPDE 27 in the 
sense of Equation (31). 

4.3. Stochastic Differential Equation with Jumps 

In real world, some phenomena or economic policy decisions are governed un-
der uncertainty with jumps. Therefore, stochastic differential equation with 
jumps modeling can be considered as a useful econometric approach [53]. Con-
sider a one-dimensional SDE, d = 1, in the form 

( ) ( ) ( ) ( )d , d , d , , d ,dt t t t tX a t X t b t X W c t X v p v tϕε −= + + ∫       (32) 

for [ ]0,t T∈ , with 0X ∈ , and [ ]{ }, 0,tW W t T= ∈  an t -adapted one-di- 
mensional Wiener process. We assume an an t -adapted Poisson measure  

( )d ,dp v tϕ  with mark space { }\ 0ε ⊆   and with intensity measure  
( ) ( )d d d dv t F v tϕ λ= , where ( ).F  is a given probability distribution function 

for the realizations of the marks. 
Consider a one-dimensional SDE with Jumps (32) in integral form, is of the 

form 

( ) ( )
( )

( )0 0 0
1

, d , d ,
i

p t
t t

t s s s i
i

X X a s X s b s X W c X
ϕ

ττ
=

= + + + ∑∫ ∫        (33) 

4.4. Stochastic Delay Differential Equations 

Consider the following Stochastic Delay Differential Equations with constant 
delay in Stratonovich form [54] 

( ) ( ) ( )( ) ( ) ( )( ) ( )
1

d , d , d ,
r

l l
l

X t f X t X t t g X t X t W tτ τ
=

= − + −∑      (34) 

( ) ( )X t tφ=                        (35) 

where 0τ >  is a constant ( )( ) ( ){ }( ), ,1 ,t lW t W t l r= ≤ ≤   is a system of 
one dimensional independent standard Wiener process, the function  

: d d df × →   , : d d d
lg × →   , ( ) [ ]: ,0 dtφ τ− →   are continuous with 

2

Lφ ∞ < ∞ . and φ  is  -measurable. For mean-square stability of (35), we 
assume that , ,l x l qf g g g∂  and x l qg g

τ
∂  ( x∂  and xτ

∂  denote the derivatives 
with respect to the first and second variables respectively), , 1, 2, ,l q r=  , in (35) 
satisfy the Lipschitz and linear growth conditions. 
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5. Numerical Methods for Stochastic Differential Equations 

In this section we review shortly some numerical methods used in the stochastic 
analysis that can be useful for economists and other social scientists. These main 
books that can helpfully to econometricians and economists are [26] [52] [55]-[61]. 

5.1. Numerical Methods for Stochastic Ordinary Differential  
Equations 

The Euler-Maruyama Scheme. The Euler-Maruyama method is a method for 
the approximate numerical solution of a stochastic differential equation. It is a 
simple generalization of the Euler method for ordinary differential equations to 
stochastic differential equations. It is named after a Swiss mathematician, phy-
sicist, geograph, astronomer, engineer, and logician Leonhard Euler (1707-1783) 
and a Japanese mathematician Gisiro Maruyama (1916-1986). Consider a scalar 
Itô stochastic ordinary differential equation [52] 

( ) ( )d , d , dt t t tX f t X t g t X W= +                   (36) 

with a standard scalar Wiener process , 0tW t ≥ . This Equation (36) is in fact a 
symbolic representation for the stochastic integral equation 

( ) ( )
0 0 0

, d , d
t t

t t t t tt t
X X f t X t g t X W= + +∫ ∫             (37) 

The simplest numerical scheme for the stochastic ordinary differential Eqau-
tion (36) is the Euler-Maruyama Scheme given by 

( ) ( )1 1
1 , d , dn n

n n

t t
n n n n n n st t

Y Y f t Y s g t Y W+ +

+ = + +∫ ∫           (38) 

where one usually writes 
1 1d , d ,n n

n n

t t
n n st t

s W W+ +∆ = ∆ =∫ ∫  

for 0,1, , 1Tn M= −  and where 0 1 Mt t t T< < < =  with TM ∈  is an ar-
bitrary partition of [ ]0 ,t T . The Euler-Maruyama approximation of an m-di- 
mensional stochastic differential equation ( )1 2, , ,h h h h

mX X X X=   is defined by 
[38] 

( ) ( )1
, ,

p p p p

h h h h
t t p t p t pX X t X h t X Bµ σ
+
= + + ∆              (39) 

10 , : , .
p p

h
p t t pX x B B B t ph

+
= ∆ = − =  

As a strong approximation, it is of order 1/2, while as a weak approximation it 
s of order 1. In other words, ( )1 2sup h

t T t tX X O h≤ − =E  and 

( ) ( ) ( )h
t tf X f X O h− =E E , 0h → , for all ( )4 mf µ∈C  . 

The Milstein Scheme The Mistein method is a technique for the approximate 
numerical solution of a stochastic differential equation. It is named after Russian 
mathematician Grigori N. Milstein (who first published the method in 1974. The 
another useful numerical scheme for the SODE (36) is the Milstein Scheme giv-
en in [52] by 
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( ) ( )

( ) ( )

1 1

1

1 , d , d

, , d d

n n

n n

n

n n

t t
n n n n n n st t

t s
n n n n u st t

Y Y f t Y s g t Y W

gg t Y t Y W W
x

+ +

+

+ = + +

∂
+

∂

∫ ∫

∫ ∫
          (40) 

The Milstein approximation of an m-dimensional stochastic differential equa-
tion ( )1 2, , ,h h h h

mX X X X=   is defined by [38] 

( ) ( )1
, ,

, , ,
p p p p

iqh h h h j lq
it it i p it ij p it p jl p

j l q j

X X t X h t X B C
x
σ

µ σ σ
+

∂
= + + ∆ + ∆

∂∑ ∑  

( )1: d , , .p

p pp

tlq l q h i
p s t s it pt

C B B B X x t ph+∆ = − = =∫  

The Runge-Kutta Scheme. The Runge-Kutta methods are a family of implicit 
and explicit iterative methods, which include the well-known routine called the 
Euler Method, used in temporal discretization for the approximate solutions of 
ordinary differential equations. These methods were developed around 1900 by 
the German mathematicians Carl Runge (1856-1927) and Wilhelm Kutta (1867- 
1944). Consider an m-dimensional Stratonovich differential equation of the 
form [62] [63] 

( ) ( ) ( ) ( )0 0d , d , d , ,X f t X t g t X W t X t X= + =           (41) 

where f is an m-vector-valued function, g is an m p×  matrix-valued function 
and ( )W t  is a p-dimensional process having independent scalar Wiener process 
components and the solution ( )X t  is an m-vector process. A general class of 
stochastic Runge-Kutta method in which [62] [63] 

( ) ( )
1 1

, 1, ,
s s

i n ij j ij j
j j

X x h a f X Z g X i s
= =

= + + =∑ ∑            (42) 

( ) ( )1
1 1

,
s s

n n i j j j
j j

x x h f X Z g Xα+
= =

= + +∑ ∑               (43) 

where Z and z are respectively, an s s×  matrix and 1s×  vector whose ele-
ments are themselves arbitrary random variables. By letting 

( )1
1 10 , , 1, , ,ij ij ijZ b J b J h i j s= + =   

( ) ( )1 2
1 , 1, , .j j jZ J h j sγ γ= + =   

Here 10J  represents the Stratonovich multiple integral of order two given by 

( )
0 0

10 d d .
t s

tt t
J W s s= ∫ ∫   

This method is defined to be of order p if the local truncation error is ( )pO h . 

5.2. Numerical Methods for Stochastic Differential Equations with 
Jumps 

The Euler scheme for SDE with jumps (32), is given by the algorithm, Platen [53] 
[64] [65] 

( ) ( )1
1 d ,dn

n

t
n n n n t

Y Y a b W c v p v zϕε

+

+ = + ∆ + ∆ + ∫ ∫  
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( )

( )
( )

1

1
1

np t

n n n n i
i p t

Y Y a b W c
ϕ

ϕ

ξ
+

+
= +

= + ∆ + ∆ + ∑               (44) 

for { }0,1, , 1n N∈ −  with initial value 0 0Y X= . Here 1n n nt t+∆ = −  is the 
length of the time interval [ ]1,n nt t +  and 

1n nn t tW W W
+

∆ = −  is the nth Gaussian 
( )0,N n∆  distributed increment of the Wiener process W, { }0,1, , 1n N∈ − , 
( ) [ ]( ), 0,p t p tϕ ϕ ε=  represents the total number of jumps of Poisson random 

measure up to time t, which is Poisson distributed with mean tλ . 
In the multidimensional case with mark-indepedent jump size we obtain the 

kth component of the Euler scheme 

( )

( )1
,

1
1

.
np t

k k k k j k
n n n n n

i p t
Y Y a b W c p

ϕ

ϕ

+

+
= +

= + ∆ + ∆ + ∆∑            (45) 

5.3. Numerical Methods for Stochastic Partial Differential  
Equations 

This material is from [66] 

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( )( ) ( ))
( ) ( ) ( )(
( ) ( ) ( )( ) ( )) ( )

1

1

1 1 1

1

d d d

d d d

n
j

n
j

n n
j j

n
j

n
j

n n
j j

tn n n n n n n
j j j j j j jt

s s

t t

t n n n
j j jt

s s

t t

X t S t t X t S t s B S s t X t

BX r r S s r G X r M r s

S t s B S s t X t

BX r r S s r G X r M r M s

+

+

+ + +

+

= − + − −

+ + −

+ − −

+ + −

∫

∫ ∫

∫

∫ ∫

      (46) 

For SPDE with multiplicative noise, (27), there are two stochastic numerical 
methods that are used in the literature the linear-mplicit Euler and the linear- 
implicit Crank-Nicolson schemes [52]. 

The Euler-Maruyama scheme 

( ) ( )( )
( ) ( )

1, , , , , ,
1 1 1

1 , ,
, 1 , . .

N M L N M L N M L
k N k N k

N M L
N N L k k

Y I hA Y hF Y

I hA B Y W a s

−
+ + +

−
+

= − +

+ − ∆ −
            (47) 

The Crank-Nicolson scheme. The Crank-Nicolson method is a finite differ-
ence method used for numerically solving the heat equation and similar partial 
differential equations. It is implicit in time and can be written as an implicit 
Runge-Kutta method, and it is numerically stable. The method was developed by 
a British mathematical physicist John Crank (1867-1944) and a British mathe-
matician Phyllis Nicolson (1916-1968) in the mid 20th century [67]. 

( )

( )

1
, , , , , ,
1 1 1

1
, ,

,

2 2

, . .
2

N M L N M L N M L
k N N k N k

N M L
N N L k k

h hY I A I A Y hF Y

hI A B Y W a s

−

+ + +

−

    = − + +    
    

 + − ∆ − 
 



       (48) 

for { }0,1, , 1k M∈ −  and , ,N M L∈ . Here it is necessary to assume that 
0λ ≥  for all i∈  in Assumption ( ) in order to ensure that ( )I hA−  is in-

versible for every 0h ≥ . 
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Convergence of SPDE with multiplicative noise. The convergence of the 
exponential Euler scheme will proved under the following assumptions. 

Assumption 5.0.1 (A5). (Linear operator A). There exist sequences of real 
eigenvalues 1 20 λ λ< ≤ ≤  and orthonormal eigenfunctions ( ) 1n n

e
≥

 of A−  
such that the linear operator ( ):A D A H H∈ →  is given by 

1
, ,n n

n
Av e vλ

∞

=

= −∑  

for all ( )v D A∈  with ( ) { }2 2
1: ,n nnD A v H e vλ∞

=
= ∈ < ∞∑ . 

(A6) (nonlinearity F). The nonlinearity :F H H→  is two times conti-
nuously Fréchet differentiable and its derivatives satisfy 

( ) ( ) ,HF x F y L x y′ ′− ≤ −  

( ) ( ) ( )( ) ,r r
HH

A F x A v L v− − ′− − ≤  

for all ,x y H∈ , ( )( )rv D A∈ − , and 0,1 2,1r = , and 

( )( ) ( ) ( )1 2 1 21 , ,
H H

A F x v w L A v A w− −− ′′ ≤ − −  

for all ,x y H∈ , where 0L >  is a positive constant. 
(A7) (Cylindrical Q-Wiener process tW ). There exist a sequence ( ) 1n n

q
≥

 of 
positive real numbers and a real number ( )0,1γ ∈  such that 

2 1

1
n n

n
qγλ

∞
−

=

< ∞∑  

and pairwise independent scalar t -adapted Wiener process ( ) 0t t
W

≥
 for 1n ≥ . 

The cylindrical Q-Wiener process tW  is given formally by 

1
.n

t n t n
n

W q W e
∞

=

= ∑                       (49) 

(A8) (Initial value). The random variable ( )( )0 :x D A γΩ → −  satisfies 

( )
4

0
H

E A xγ− < ∞ , where 0γ >  is given in A7. 

5.4. Numerical Methods for Stochastic Delay Differential  
Equations 

There are many numerical schemes for solving stochastic delay differential equ-
ations. As given in [54], we give three schemes to solve (35). The first scheme is 
the Predictor-correction scheme given by 

( ) ( )

( ) ( )

1 1 1

1 1 ,
1

, ,
2

1 , , ,
2

n n n n m n n m

r

l n n m l n n m l n
l

hX X f X X f X X

g X X g X X W

+ − + − +

− + − +
=

 = + + 

 + + ∆ ∑
         (50) 

( ) ( )1 ,
1

, ,
r

n n n n m l n n m l n
l

X X hf X X g X X W+ − −
=

= + + ∆∑           (51) 

The second is the Midpoint scheme given by 
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1 1
1

1 1
,

1

,
2 2

,
2 2

n n n m n m
n n

r
n n n m n m

l l n
l

X X X X
X X hf

X X X X
g W

+ − − +
+

+ − − +

=

+ + = +  
 

 + +  + ∆  
  

∑
          (52) 

where we have ,l nW∆  with ,l nW∆ . 
The last scheme is the Milstein-like scheme given by 

( ) ( )

( ) ( )

( ) ( )

1

1

1 0
1

, , , ,0
1 1

2 , , ,
1 1

, ,

, ,

, ,

n n

n n n

r

n n n n m l n n m
l

r r

x l n n m q n n m q l t t
l l
r r

x l n n m q n m n m t q l t t
l l

X X hf X X g X X I

g X X g X X I

g X X g X X I
τ τχ

+

+

+ − −
=

− −
= =

− − − ≥
= =

= + +

+ ∂

+ ∂

∑

∑∑

∑∑

    (53) 

where ( )1
0 dn

n

t
lt

I W t+= ∫  , ( ) ( )1

1, , , ,0 d dn

n n n n

t t
q l t t q lt t

I W s W t+

+
= ∫ ∫   , 

( ) ( )1

1, , , , d dn

n n n n

t t
q l t t q lt t

I W s W t
τ

τ τ

+

+

−

−
= ∫ ∫   , 1 0nt + ≥ , 

( ) ( ) ( )1
, 1dn

n

t
l l n l n l nt

W t W W t W t+

+= ∆ = −∫  . 

6. Convergence and Implementation of Numerical Methods 
6.1. Convergences of Numerical Methods 

Definition 6.0.1. (Strong Convergence) We say that a numerical scheme for 
solving the SDE (36) converges strongly on [ ]0,T  to the solution X of the SDE 
if for the final time T have 

( ) ( )( )
0

lim 0.X T Y Tδ

δ→
− =                    (54) 

A strongly convergent scheme is said o have convergence rate γ  if for some 
constants C and 0 0δ >  we have 

( ) ( )( ) [ ]00
lim , 0, .X T Y T Cδ γ

δ
δ δ δ

→
− ≤ ∀ ∈             (55) 

Theorem 6.1. (Strong Convergence: Euler-Maruyama scheme) Under assump-
tions of Lipschitz and linear growth of coefficients and additionally 

( ) ( ) ( ) ( ) ( ) 1 2, , , , 1a t x a s x t x s x K x t sσ σ− + − ≤ + −      (56) 

for some suitable constant K, the Euler-Maruyama scheme converges strongly 
with a convergence rate of 1 2γ = . 

Theorem 6.2. (Strong convergence of Milstein scheme) In addition to the  

assumption of Theorem , let ( ),t xσ  and 
( ),t x
x

σ∂
∂

 satisfy the conditions on  

the coefficients of the Theorem . If further we have 1,1a C∈ , 1,2Cσ ∈ , then the 
Milstein converges strongly with a convergence rate of 1γ = . 

The convergence of error for SPDE is given by the following theorem. 
Theorem 6.3. (Convergence Theorem, [52]) Suppose that assumptions (A1)- 

(A8) are satisfied. Then there is a constant 0TC >  such that 
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( ) ( )
1

2 2,

0, ,

log
sup ,

k

N M
t k T NHk M

M
X Y C

M
γλ−

=

  − ≤ +   
   

          (57) 

holds for all ,N M ∈ , where tX  is the solution of SPDE (27), ( ),N M
kY  is the  

numerical solution given by (46), k
kt T
M

=  for 0,1, ,k M=  , and 0γ >  is  

the constant given in Assumption (A8). 

6.2. Implementation of Numerical Methods 

As with the Euler-Maruyama method, the Milstein method is very easy to im-
plement which is a reason that it is also quite popular among practitioners in 
finance. 

Algorithm 6.3.1. (The Euler-Maruyama Scheme). Let :t T N∆ =  for a given 
N. Then approximate the SDE via 

1) Set ( ) ( ) 00 0NY X x= =  
2) For 0j =  to 1N −  do 
a) Simulate a standard normally distributed random number jZ  
b) Set ( ) jW j t tZ∆ ∆ = ∆  and 

( )( ) ( ) ( )( ) ( )( ) ( )1 , ,N N N NY j t Y j t a j t Y j t t j t Y j t W j tσ+ ∆ = ∆ + ∆ ∆ ∆ + ∆ ∆ ∆ ∆ . 

Algorithm 6.3.2. (The Milstein Scheme) Let :t T N∆ =  for a given N. Then 
approximate the SDE via 

1) Set ( ) ( ) 00 0NY X x= =  
2) For 0j =  to 1N −  do 
a) Simulate a standard normally distributed random number jZ  
b) Set ( ) jW j t tZ∆ ∆ = ∆  and 

( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( )2

1 , ,

1 , , .
2

N N N N

N N

Y j t Y j t a j t Y j t t j t Y j t W j t

j t Y j t j t Y j t W j t t

σ

σ σ

+ ∆ = ∆ + ∆ ∆ ∆ + ∆ ∆ ∆ ∆

′+ ∆ ∆ ∆ ∆ ∆ ∆ −∆
 

7. Conclusion 

This paper surveys the recent development of numerical methods used in sto-
chastic analysis that can be useful in econometric analysis. As well-known, the 
discretization of the stochastic continuous-time models through the numerical 
methods is one of main cornerstones and problems of the modern econometric 
analysis. Modelling and analyzing economical dynamical systems under uncer-
tainties through the stochastic differential equations are considered as the chal-
lenges for economists. In this paper we give these numerical methods such as 
Euler-Maruyama scheme, Runge-Kutta scheme, Milstein scheme and Crank-Ni- 
colson scheme that are used in literature. Since the Black-Scholes-Merton works 
awarded by Nobel Prize Committee in 1997 in Economics field, the stochastic 
differential equations are used in economics and finance as one of the best ways 
to model uncertainties. 
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