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Abstract 
The purpose of this paper is to present the theorical connection between the 
Itô stochastic calculus and the Financial Econometrics. This paper has two 
contributions. First, we give the backgrounds on how the stochastic calculus 
is used to model the real data with the uncertainties. Finally, by using Con-
sumer Price Index (CPI) from the Central Bank of Congo and combining the 
Itô stochastic calculus and the AR (1)-GARCH (1, 1) model, we estimate the 
stochastic volatility of inflation rate measuring efficency of monetary policy. 
Thus the stochastic integrals are the powerful tools of mathematical model-
ling and econometric analysis. 
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1. Introduction 

In most dynamical systems which describe processes in economics, engineering, 
and physics, stochastic components and random noise are included. The sto-
chastic aspects of the models are used to capture the uncertainty about the envi-
ronment in which the systems are operating. For example, there are suggestions 
that increased uncertainty makes fiscal policy temporarily less effective [1]. Real 
life generates situations that require making a decision under uncertainty [2] [3] 
[4] [5]. By taking account of data uncertainty, the indiscriminate reduction of 
uncertaint observations to real numbers is avoided [5]. Uncertaint data implies 

How to cite this paper: Mambo, L.N.K., 
Mabela, R.M.M., Kanyama, I.K. and Mbuyi,  
E.M. (2019) On the Contribution of the 
Stochastic Integrals to Econometrics. Ap-
plied Mathematics, 10, 1048-1070. 
https://doi.org/10.4236/am.2019.1012073  
 
Received: October 11, 2019 
Accepted: December 20, 2019 
Published: December 23, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2019.1012073
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2019.1012073
http://creativecommons.org/licenses/by/4.0/


L. N. K. Mambo et al. 
 

 

DOI: 10.4236/am.2019.1012073 1049 Applied Mathematics 
 

information exhibiting inaccuracy, uncertainty and questionability [5]. The ma-
thematical modeling of the uncertainty in economics and finance can be found 
in [2] [3] [5]-[12]. 

Therefore, the stochastic state space models and time series analysis have been 
both intensively and extensively developed during the past twenty years. A uni-
fied theory has been constructed during this period and the concepts and me-
thods have been widely applied to problems in the area of engineering and 
communication, economics and management. Because of these developments, 
interest in stochastic state space model and its applications has greatly increased 
in econometric research. 

This paper presents the stochastic integrals and numerics which permit suc-
cessful mathematical modelling not only in econometrics but also in many other 
fields such biometrics, psychometrics, environment science, and hydrology, as-
suming of course that a suitable sequence of observed data is available. 

For estimating the parameters of both stochastic continuous and discrete-time 
models, the methods of maximum likelihood are usually used by researchers be-
cause of its capacity to give the best unbaised estimators [9] [13] [14] [15] [16] 
[17]. 

The purpose of this paper is to emphasize on the linkage between the theory 
of stochastic integrals and time series analysis used in the econometric analysis 
[6] [16] [18] [19] [20] [21]. The stochastic integrals and numerics are considered 
as bridges that link the stochastic continuous-time models and the discrete time 
models [14] [18] [22] [23] [24] [25]. 

The structure of the paper is as follows. In Section 2 we will give the theory of 
stochastic integrals that is usefull to economic analysis. In Section 3 we give 
some stochastic differential equations used as econometric models that are used 
to express the economic theories. Section 4 gives some numerical methods to 
perform the empirical analysis. Section 5 illustrates the use of the stochastic in-
tegrals to time series econometric by estimating the stochastic volatility from the 
Autoregressive-Generalized Autoregressive Concoditional Heteroskedasticity 
model, that is, AR (1)-GARCH (1, 1) model. 

2. Stochastic Integrals 

Since the works of Kuyosi Itô the field of stochastic integrals attract the attention 
of many mathematicians and researchers [19] [26]-[33]. 

Itô Stochastic Integrals developed here are from [28] [29] [34] [35].  
Definition 2.0.1 A process X is called adapted to the filtration ( t ), if for all t, 
( )X t  is t -measurable. 
Proposition 2.0.1. (a) ( )tX X= , where tX  is a d-dimensional measurable, 

t -adapted process is a continuous semimartingale if tX  is continuous and 
has the form 

0t t t= + +X X M B                        (1) 
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for all t (a.s.), where 0E X < ∞ , (1) ( )tM M=  is a continuous 2L - t
-martinagle with 0 0=M  (a.s.) and (2) ( )t ∈B . 

(b) If in the decompostion 1, ( tM ), is a continuous local martingale and ( tB ) 
belongs to loc , then ( tX ) will be called a continuous local semi-martingale. 

Theorem 2.1. [35] [36] Let ( )X t  be a regular adapted process such that 
with probability one ( )2

0
d

T
X t t < ∞∫ . Then Itô integral ( ) ( )

0
d

T
X t B t∫  is de-

fined and has the following properties: 
1) Linearity. If Ito integrals of ( )X t  and ( )Y t  are defined and α  and β  

are some constants then 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0 0 0

d d d .
T T T

X t Y t B t X t B t Y t B tα β α β+ = +∫ ∫ ∫       
(2) 

2) ( ) ( ] ( ) ( ) ( ) ( ),0
d d

T b

a b a
X t I t B t X t B t=∫ ∫ . The following two properties hold 

when the process satisfies an additional assumption 

( )( )2
0

d .
T
E X t t < ∞∫                        

(3) 

3) Zero mean property. If condition 3 holds then 

( ) ( )( )0
d 0,

T
E X t B t =∫

                      
(4) 

where E denotes expectation with respect to classical Wiener measure. 
4) Isometry property. If condition 3 holds. Then 

( ) ( )( ) ( ) ( )
2

2
0 0

d d
T T

E X t B t E X t B t=∫ ∫
                

(5) 

Corollary 2.1.1. If X is a continuous adapted process then the Itô integral 
( ) ( )

0
d

T
X t B t∫  exists. In particular, ( )( ) ( )

0
d

T
f B t B t∫  where f is a continuous 

function on R  is well defined. 
A consequence of the isometry property is the expectation of the product of 

two Itô integrals as given in the following theorem. 
Theorem 2.2. [36] Let ( )X t  and ( )Y t  be regular adapted processes, such 

that ( )2

0
d

T
X t t < ∞∫  and ( )2

0

T
Y t < ∞∫ . Then 

( ) ( ) ( ) ( )( ) ( ) ( )( )
0 0 0

d d d .
T T T

E X t B t Y t B t E X t Y t t=∫ ∫ ∫
          

(6) 

where E denotes mathematical expectation. 
We denote by mn  all real-valued m n×  matrices and by 

( ) ( ) ( )( )1 , , , 0.nW t W t W t t′= ≥  

Let [ ] [ [, 0,a b ∈ ∞  and we put 

[ ]( ) [ ] [ ]( ){ }, : , | 1 , 1 : , ,mn
W ij WjC a b f a b i m j n f C a b= ×Ω→ ∀ ≤ ≤ ∀ ≤ ≤ ∈  

[ ]( ) [ ] [ ]( ){ }, : , | 1 , 1 : ,mn
IW ij IWjC a b f a b i m j n f C a b= ×Ω→ ∀ ≤ ≤ ∀ ≤ ≤ ∈  

and [ ]( ),IC a b  respectively. 

Definition 2.2.1. [37] If [ ]: , mnf a b ×Ω→   belongs to [ ]( ),IWC a b , then 
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the stochastic integral with respect to W is the m-dimensional vector defined by 

( ) ( ) ( ) ( )
1 1

d d
nb b

ij ja a
j i m

f t W t f t W t
= ≤ ≤

′ 
=  
 
∑∫ ∫

             
(7) 

where each of the integrals on the right-hand side is defined in the sense of Itô. 
Proposition 2.2.1. (Itô formula) [36] [38] Let 0t t t= + +X X M B  be a 

d-dimensional continuous semimartingale. Let ( )2 d
bF C∈  , that is, let 

: dF →   be bounded and continuous and have bounded, continuous deriva-
tives of orders 1 and 2. Then, 

( ) ( ) ( ) ( )

( )

0 0 0
0 0
2

0
0

d d

1 d ,
2

d dt ti i
t s s s si i

i i

d t i j
si j si

F FF X F X X M X B
x x

F X M M
x x

= =

=

∂ ∂
= + +

∂ ∂

∂
+

∂ ∂

∑ ∑∫ ∫

∑∫
        

(8) 

Stratonovich Stochastic Integrals. In [39], the multidimensional Stratono-
vich integrals ( )mS f  can be expressed by the following formula using Itô in-
tegrals 

( )
( ) ( )2

2

! .
2 ! 2

k
m m kk

k

mS f I Tr f
k m k −

≤

=
−∑

              
(9) 

where Tr  denoted the iterated traces that are defined formally starting with 

( ) ( )1 2 1 2, , , , , , d .m mTrf s s f s s s s s− −= ∫   

Another approach to formula (9) using Hida’s theory of white noise. Working 
on m  instead of m

+  and assuming that f is a test-function, the integral 
( )mS f  may indead be rewritten as 

( ) ( ) ( )
11 1, , d d

,
mm s s n

n

f s s X w X w s s

f X ⊗=

∫  

  



 

where the derivative of Brownian motion is understood in the distribution sense. 
In the sense of Hu and Meyer [39], a Stratonovich integral is given in rigorous 
form as 

( ) [ ) ( ) ( ) ( )
11

1 , , d d
! mm m s sS

m
S f f s s X w X w

m
= ∑ ∫  

         
(10) 

where f is a finite sequence of coefficients ( )2 m
m sf L∈ 

  
and ( )! 1 1n n n= × − × × . 

Itô’s Formula for Functions of Two Variables. If two processes X and Y 
both possess a stochastic differential with respect to and ( ),f x y  has conti-
nuous partial derivatives up to order two, then ( ) ( )( ),f X t Y t  also possesses a 
stochastic differential. 

Theorem 2.3. [36] Let ( ),f x y  have continuous partial derivatives up to 
order two (a 2C  function) and X, Y be Itô processes, then 
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( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

2
2

2

2
2

2

2

d , , d , d

1 , d
2
1 , d
2

, d

X

Y

X Y

f ff X t Y t X t Y t X t X t Y t Y t
x y

f X t Y t X t t
x

f X t Y t Y t t
y
f X t Y t X t Y t t

x y

σ

σ

σ σ

∂ ∂
= +
∂ ∂

∂
+

∂
∂

+
∂

∂
+
∂ ∂    

(11) 

An important case of Itô formula is for functions of the form ( )( ),f X t t . 
Theorem 2.4. [29] [36] [40] Let ( ),f x t  be twice continuously differentiable 

in x, and continuously differentiable in t (a 2,1C  function) and x be an Itô 
process, then 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( )( )
2

2
2

d , , d , d

1 , , d
2 X

f ff X t Y t X t Y t X t X t X t t t
x t

fX t t X t t t
x

σ

∂ ∂
= +
∂ ∂

∂
+

∂      

(12) 

Stochastic Calculus. Let ( )1 2 2, , , nf x x x C∈  and ( )1 2, , , nX X X Q∈  
and ( )1 2, , , nY f X X X Q= ∈ . We denote by Q the totality of quasimartin-
gales. 

Definition 2.4.1. [36] For ,X Y Q∈ , we say that X and Y are equivalent and 
write X Y  if, with probability one, 

( ) ( ) ( ) ( )X t X s Y t Y s− = −  for every 0 s t≤ ≤ . 

The equivalence class containing X is denoted by dX and is called the stochas-
tic differential of X. As known, by definition, 

( )d
t

s
X u∫  

is the process ( ) ( )X t X s− . 
Let { }d d ;Q X X Q= ∈ , { }d d ;M M M M= ∈  and { }d d ; AA A A= ∈ . We in-

troduce the following operations in dQ [36]. 
(1) Addition: ( )d d dX Y X Y+ = +  for ,X Y Q∈ . 
(2) Product: d d d ,x yX Y M M⋅ =  for ,X Y Q∈  where xM  and yM  are 

the martingale parts of X and i respectively. 
(3) B-multiplication: If BΦ∈  and X Q∈ , then 

( ) ( ) ( ) ( ) ( ) ( )
0 0

0 , d , , 0
t t

x xX X s w M s s w A s tΦ⋅ = + Φ + Φ ≥∫ ∫  

is defined as an element in Q. Hence ( )d XΦ⋅  is defined from Φ  and dX. 
We define an element dXΦ⋅  of dQ by ( )d dX XΦ⋅ = Φ ⋅ . 

Theorem 2.5. [36] The space dQ with the operations (1), (2) and (3) is a 
commutative algebra over B, i.e., a commutative ring with the operations (1) and 
(2) satisfying the relations 

(a) ( )d d d dX Y X YΦ⋅ + = Φ ⋅ +Φ ⋅ , 
(b) ( ) ( )d d d dX Y X YΦ⋅ ⋅ = Φ ⋅ ⋅ , 
(c) ( ) d d dX X YΦ+Ψ ⋅ = Φ ⋅ +Φ ⋅ , 
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(d) ( ) ( )d dX XΦ⋅Ψ ⋅ = Φ ⋅ Ψ ⋅ , 
for , BΦ Ψ∈  and d ,dX Y Q∈ . We also have that d d dQ Q A⋅ ∈ , d d 0Q A⋅ =  
and d d d 0Q Q Q⋅ ⋅ = . 

If ( )1 2, , , nX X X Q∈  and 2f C∈ , then ( )1 2, , , nY f X X X Q= ∈  and 

( ) ( )
1 , 1

1d d d d .
2

d d
i i j

i i j
i i j

Y f X f X X
= =

= ∂ ⋅ + ∂ ∂ ⋅ ⋅∑ ∑
           

(13) 

where i f∂  and i j f∂ ∂  are elements in B defined by ( )1 2, , , d
i

f X X X
x
∂
∂

  

and ( )1 2, , , d
i j

f X X X
x x
∂

∂ ∂
 , respectively. If 1 2d ,d , ,d ddX X X M∈  and  

d d di j
ijX X tδ⋅ = , , 1, 2, ,i j d=   then ( ) ( ) ( )( )1 2, , , dX t X t X t  is a  

d-dimensional Wiener process. Such a system of martingales ( )1 2, , , nX X X  
is called a d-dimensional Wiener martingale. 

(4) Symmetric Q-Multiplication 

1d d d d
2

Y X Y X X Y= ⋅ + ⋅  or d dX Q∈  and Y Q∈  

Theorem 2.6. [35] [36] The space dQ with the operations (1), (2), (3) and (4) 
is a commutative algebra over Q; we have for , ,X Y Z Q∈ , 

( )d d d d ,X Y Z X Y X Z+ = +    

( ) d d d ,X Y X X Z Y Z+ = +    

( ) ( ) ( )d d d d d d ,X Y Z X Y Z X Y Z⋅ = ⋅ = ⋅ ⋅   

( ) ( )d d .X Y Z X Y Z⋅ =    

where   denotes Stratonovich product. 
Theorem 2.7. If ( )1 2, , , nX X X Q∈  and 3f C∈ , then for  

( )1 2, , , nY f X X X Q= ∈  we have 

1
d d .

d
i

i
i

Y f X
=

= ∂∑ 

                      
(14) 

The stochastic integral 
0

d
t
Y X∫ 

 is called the Stratonovich integral or the 
Fisk integral or sometimes the Fisk-Stratonovich symmetric integral. Indeed, we 
have the following theorem: 

Theorem 2.8. [36] For every X and Y in Q, 

( ) ( ) ( ) ( )( )1
10

1
d . . . , 0,

2

nt i i
i i

i

Y t Y t
Y X l i p X t X t−

−
=

−
= − ∆ →∑∫ 

      
(15) 

where ∆  denotes a partition 0 10 0nt t t= < < < =  and 

( )1max i it t −∆ = − , 1 i n≤ ≤ . 

Skorokhod Integral. The Skorohod integral is an extension of the Itô integral 
to non-adapted processes and is the adjoint of the Malliavin derivative, which is 
fundamentals to the stochastic calculus of variations [41] [42]. 

Definition 2.8.1. [41] Assume that 
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( ) ( )1

2

0

ˆ1 ! .
nn

n
n f

+

∞

=

+ < ∞∑


                    
(16) 

Then we define the Skorohod integral of ( )Y t  denoted by 

( ) ( ) ,Y t B tδ∫  

by 

( ) ( ) ( ) ( ) ( )1
1

1 1 1 1
0

, , d , , .n
n

n n n
n

Y t B t f s s B s sδ +

∞
⊗ +

+ +
=

= ∑∫  


       

(17) 

where ⊗  represents the Kronecker product. 
Wick Product. The Wick product was introduced in Wick (1950) as a tool to 

renormalize certaint infinite quantities in quantum field theory. In stochastic 
analysis the Wick product was first introduced by Hida and Ikeda (1995). The 
Wick product is important in the study of stochastic differential equations. In 
general, one can say that the use of this product corresponds to and extends na-
turally—the use of the Itô integrals. The Wick product can be defined in the fol-
lowing way: 

Definition 2.8.2. The Wick product ◊F G  of to elements 

( ) :
1, m NHα α α α

α α
−

= = ∈∑ ∑F a G b H S
              

(18) 

with , N
α α ∈a b  is defined by 

( )
,

,α β α β
α β

+◊ = ∑F G a b H
                   

(19) 

In the ( )2 µL  cas the basis independence of the Wick product can be seen 
from the following formulation of Wick multiplication in terms of multiple Itô 
integrals. 

Proposition 2.8.1. Let 1N m d= = = . Assume that ( )2, µ∈f g L  have the 
following representation in terms of multiple Itô integrals: 

( ) ( )
0 0

d , d ,i j
i j

i j
i j

f w f B g w g B
∞ ∞

⊗ ⊗

= =

= =∑ ∑∫ ∫ 
            

(20) 

Suppose ( )2 µ◊ ∈F G L . Then 

( )
0

ˆ d .n
n

i j
i i j n

f w B
∞

⊗

= + =

= ⊗∑ ∑∫


f g
                 

(21) 

For the relation between the Wick multiplication and The Itô-Skorohod Inte-
gration we put 1N m d= = =  for simplicity. One of the most stricking features 
of the Wick product is its relation to Itô-Skorokhod Integration. In short, this 
relation can be expressed as 

( ) ( ) ( ) ( )d .n nY t B t Y t W t tδ = ◊∫ ∫
                  

(22) 

Here the left hand side denotes the Skorokhod integral of the Stochastic 
process ( ) ( ),Y t Y t w=  (which coincides with the Itô integral if ( )Y t  is 
adapted), while the right hand side is to be interpreted as an ( )*S -valued (Pettis) 
integral. The relation 22 explains why the Wick product is so natural and im-
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portnat in stochastic calculus. 

3. Stochastic Differential Equations Models 

The objective of this section presents in short the two main types of stochastic 
differential equation models. The theory of stochastic differential equation is 
very vaste and well known by Engineers and other scientists but less known and 
understood among economists. For further reading the reader can see [36] 
[43]-[48]. 

Example 1: Stochastic Differential Equation Model. Let ( )tX  be a diffu-
sion in n dimensions described by the multidimensional stochastic differential 
equation 

( ) ( )( ) ( )( ) ( )d , d , d ,t t t t t t B t= Φ +ΨX X X
            

(23) 

where Ψ  is n d×  matrix valued function, B  is d-dimensional Brownian 
motion and and X and Φ  are n-dimensional vector valued functions. The 
vector ( ), tΦ X  and the matrix ( ), tΨ X  are the coefficients of the stochastic 
differential equation. 

Theorem 3.1. [34] (Uniqueness and Existence of Solution) If the coeffi-
cients are locally Lipschitz in X with a constant independent of t; that is, for 
every N, there is a constant K depending only on T and N such that for all 

,x y N≤  and all 0 t T≤ ≤ , 

( ) ( ) ( ) ( ), , , , ,t t t t KΦ −Φ + Ψ −Ψ ≤ −x y x y x y
          

(24) 

for any given ( )0X  the strong solution to stochastic differentional Equation 
(27) is unique. If in addition to condition 24 the linear growth condition holds 

( ) ( ) ( ), , 1 ,t t KτΦ + Ψ ≤ +x x x
                

(25) 

( )0X  is independent of B, and ( ) 2
0E X < ∞ , then the strong solution ex-

ists and is unique on [ ]0,T , moreover, 

( )( ) ( )( )2 2
sup 1 0 ,t C E< +E X X  

where the constant C depends only on K and T. 
The following theorem gives the solution of stochastic differential equations 

as Markov processes. 
Theorem 3.2. [34] (The solution of SDEs as Markov processes) If equation 

27 satisfies the conditions of the existence and uniqueness theorem 3.1, the solu-
tion tX  of the equation for arbitrary initial values is a Markov process on the 
interval [ ]0 ,t T  whose initial probability distribution at the instant to is the dis-
tribution of C and whose transition probabilities are given by 

( ) ( ) ( )( ), , | ,t t s tP s x B P B x P s x B= ∈ = = ∈X X X
         

(26) 

where ( ),t s xX  is the solution of equation. 
Theorem 3.3 [34] (The solution of SDEs as Diffusion processes) The con-

dition of the existence and uniqueness theorem 3.1 are satisfied for the SDE 
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( ) ( )( ) ( )( ) ( )
0 0d , d , d , , ,tt t t t t t B t t t T= Φ +Ψ = ≤ ≤X X X X C

     
(27) 

where d
tX R∈ , ( ), dt x RΦ ∈ , mB R∈  and ( ),t xΨ  is a d m×  matrix. If in 

addition, the functions Φ  and Ψ  are continuous with respect to t, the solu-
tion tX  is a d-dimensional diffusion process on [ ]0 ,t T  with drift vector and 
diffusion matrix ( ) ( ) ( ), ; ,t x t x t x ′Π = Ψ Ψ . In particular, the solution of an au-
tonomous SDE is always a homogeneous diffusion process on [ )0 ,t ∞ . 

Example 2: Differential Equation with Markovian Switching Model. For 
economists, the economic phenomena can be governed by uncertainties and 
cycles. This model was developped by [49] as hybrid models. Consider the Sto-
chastic Differential Equation with Markovian Switching of the form 

( ) ( ) ( )( ) ( ) ( )( ) ( )d , d , d , 0.t f t t t g t t t t= + ≥Y Y R Y R W
      

(28) 

Here the state vector has two components: ( )Y t  and ( )R t . The first one is 
normally referred to as the state while the second one is regarded as the mode. In 
its operation, the system will switch from one mode to another in random way, 
and the switching among the modes governed by the Markov chain ( )R t . 

Example 3: Differential with Respect to Fractional Brownian Motion 
Model. Let { }, 0t t= ≥B B  be a m-dimensional fractional Brownian motion of 
Hurst parameter ( )1 2,1H ∈ . This means that the components of B are inde-
pendent fractional Brownian motions with the same Hurst parameter H. For 
further reading see [46] [50] [51]. 

Consider the equation on m  

( ) ( ) [ ]0 0 0
1

, d , d , 0, ,
m t tj

t j s s s
j

s B s s t Tσ φ
=

= + + ∈∑∫ ∫x x x x
       

(29) 

where 0x  is an m-dimensional random variable. 
Assumption 3.3.1. Let us introduce the following assumptions on the coeffi-

cients: 
A1. ( ),tσ x  is differentiable in x, and there exists some constants 0 , 1β δ< ≤  

and for every 0N ≥  there exist 0NM >  such that the following properties 
hold: 

( ) ( ) [ ]0, , , , 0, ,mt x t y M x y x t Tσ φ− ≤ − ∀ ∈ ∀ ∈  

( ) ( ) [ ]0, , , , , 0, ,
i i

m
x xt x t y M x y x y t Tδσ φ∂ − ∂ ≤ − ∀ ∈ ∀ ∈  

( ) ( ) ( ) ( ) 0, , , , ,
i ix xt x t y t x t y M t s βσ φ σ φ− + ∂ − ∂ ≤ −  

A2. The coefficient ( ),t xφ  satisfies for every 0N ≥  

( ) ( ) [ ], , , , , 0, ,Nt x t y L x y x y N t Tφ φ− ≤ − ∀ ≤ ∀ ∈  

( ) ( ) [ ]0 0, , , 0, ,mt x L x t x t Tφ φ≤ + ∀ ∈ ∀ ∈  

where ( )0 0, ;p mL Tφ ∈  ), with 2ρ ≥  and for some constant 0NL > . 
Consider the stochastic differential equation with respect to fBm (29) on m  

where the process B is a d-dimensional fBm with Hurst parameter ( )1 2,1H ∈  
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and 0X  is an m-dimensional random variable. 
Suppose that the coefficients [ ], : 0,i m

j Tσ φ Ω× × →   are measurable 
functions satisfying conditions A1 and A2, where the constants NM  and NL  

may depend on ω∈Ω , and 1 Hβ > − , 1 1
H

δ > − . Fix α  such that 

0
11 min , ,
2 1

H δα α β
δ

 − < < =  + 
 a uniue continuous solution such that 

( ),
0 0,iX W Tα ∞∈  for all 1,2, ,i m=  . Moreover the solution is Holder conti-

nuous of order 1 α− . 
Example 4: Differential Equation with Jumps Models. In real world, some 

phenomena or economic policy decisions are governed under uncertainty with 
jumps. Therefore, stochastic differential equation with jumps modeling can be 
considered as a usefull econometric approach [32]. Consider a one-dimensional 
SDE, d = 1, in the form 

( ) ( ) ( ) ( )d , d , d , , d ,dt t t t tX a t X t b t X W c t X v p v tϕε −= + + ∫        
(30) 

for [ ]0,t T∈ , with 0X ∈ , and [ ]{ }, 0,tW W t T= ∈  an t -adapted 
one-dimensional Wiener process. We assume an an t -adapted Poisson meas-
ure ( )d ,dp v tϕ  with mark space { }\ 0ε ⊆   and with intensity measure 
( ) ( )d d d dv t F v tϕ λ= , where ( ).F  is a given probability distribution function 

for the realizations of the marks. Consider a one-dimensional SDE with Jumps 
(30) in integral form, is of the form 

( ) ( )
( )

( )0 0 0
1

, d , d ,
i

p t
t t

t s s s i
i

X X a s X s b s X W c X
ϕ

ττ
=

= + + + ∑∫ ∫
       

(31) 

Example 5: Partial Differential Equation Models. Stochastic Partial Diffe-
rential Equation Models are used as power tools of mathematical modeling in 
many areas [52] [53] [54]. 

Consider the Itô Stochastic Partial Differential Equation of the form as men-
tioned in [27] 

( ) ( )d d d , 0,t t t t t tA F t B W X ξ=∂
 = + + =  

X X X X X
        

(32) 

for 0t ≥ , where tW , is an infinite dimensional Wiener process of the form 

( ) ( ) ( )
1

, , 0,j
t j t j

j
W x w C W w x t xφ

∞

=

= ≥ ∈∑ 
            

(33) 

with independent scalar Wiener processes j
tW , j∈  and. Note that 

A = ∆  (Laplacian with Dirichlet boundary conditions) and ( )B U I≡  in one 

spatial dimension has sample paths which are only 1
4

ε − 
 

-Hölder continuous. 

Here the family jφ , j∈ , is an orthonormal basis in, ( )2 ,L . 

Assumption 3.3.2. [27] (1) Linear operator A. Let   be a finite or countable 
set. In addition, let ( )i i

λ
∈

 be a family of real numbers with infi∈ > −∞  and 
let ( )i i

ϑ
∈

 be an orthonormal basis of H. The linear operator ( ):A A H→  
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is given by ,i iiAυ λ ϑ υ ϑ
=

= −∑ 
 for all ( )Aυ ∈  with  

( ) { }22 ,iiA Hλ ϑ υ
=

= ∈∑ 
 . (2) Drift term F. Let ,α δ ∈  be real num-

bers with 1δ α− <  and let :F H Hδ α→  be a globally Lipschitz continuous 

mapping. (3) Diffusion term B. Let ,α δ ∈  be real numbers with 1
2

δ β− <  

and let ( )0: ,F H HS Hδ βυ→  be a globally Lipschitz continuous mapping. (4) 

Initial value ξ : Let ( ),min 1, 1 2γ δ α β∈ + +    and [ )2,p∈ ∞  be real num-

bers and let : Hγξ Ω →  be an ( )0 Hγ  -measurable mapping with 
p
Hγ

ξ  < ∞  
E . 

The literature contains many existence and uniqueness theorems for mild so-
lutions of SPDEs. Theorem below provides an existence, uniqueness, and regu-
larity result for solutions of SPDEs with globally Lipschitz continuous coeffi-
cients in the Equation (32). 

Theorem 3.4. [27] Let Assumptions 3.3.2 (1)-(4) be fulfilled. Then there exists 
a unique of the Equation (32) that is predictable stochastic process 

[ ]: 0,T Hγ×Ω→X  satisfying sup p
Hγ

ξ  < ∞  
E  and 

( ) ( ) ( ) ( )
0 0

e e d e d
t tt s t st

t s s ss Xξ − −= + +∫ ∫A AAX F X B W
         

(34) 

. .a s−  for all [ ]0,t T∈ . In addition,  

( ]
( ) [ ] ( )( )min ,1 2

, 0, , ,r p
rr C T Hγ

γ
−

∈ −∞∈ ΩX L . 

4. Numerical Methods for Stochastic Differential Equations 

In this section we give a brief review some numerical methods used in the sto-
chastic analysis that can be usefull for economists and social scientists. These 
main books can help econometricians and economists to improve and under-
stand the numerical methods for stochastic analysis [27] [45] [55]-[61]. The 
numerical methods for stochastic ordinary differential equations can be summa-
rized as follows. 

The Euler-Maruyama Scheme. We consider a scalar Itô stochastic ordinary 
differential equation (SODE) [27] 

( ) ( )d , d , dt t t tx f t x t g t x W= +                   (35) 

with a standard scalar Wiener process , 0tW t ≥ . The SODE (35) is in fact a 
symbolic representation for the stochastic integral equation 

( ) ( )
0 0 0

, d , d
t t

t t t t tt t
x x f t x t g t x W= + +∫ ∫               

(36) 

The simplest numerical scheme for the SODE (35) is the Euler-Maruyama 
Scheme given by 

( ) ( )1 1
1 , d , dn n

n n

t t
n n n n n n st t

Y Y f t Y s g t Y W+ +

+ = + +∫ ∫             
(37) 
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where one usually writes 

1 1d , d ,n n

n n

t t
n n st t

s W W+ +∆ = ∆ =∫ ∫  

for 0,1, , 1Tn M= −  and where 0 1 Mt t t T< < < =  with TM ∈  is an ar-
bitrary partition of [ ]0 ,t T . 

The Milstein Scheme [27]. The another useful numerical scheme for the 
SODE (35) is the Milstein Scheme given by 

( ) ( )

( ) ( )

1 1

1

1 , d , d

, , d d

n n

n n

n

n n

t t
n n n n n n st t

t s
n n n n u st t

Y Y f t Y s g t Y W

gg t Y t Y W W
x

+ +

+

+ = + +

∂
+

∂

∫ ∫

∫ ∫
            

(38) 

Numerical Methods for Stochastic Differential Equations with Jumps. The 
Euler scheme for SDE with jumps (30), is given by the algorithm [32] [62] [63], 

( ) ( )1
1 d ,dn

n

t
n n n n t

Y y a b W c v p v zϕε

+

+ = + ∆ + ∆ + ∫ ∫  

( )

( )
( )

1

1
1

np t

n n n n i
i p t

Y Y a b W c
ϕ

ϕ

ξ
+

+
= +

= + ∆ + ∆ + ∑
              

(39) 

for { }0,1, , 1n N∈ −  with initial value 0 0Y X= . Here 1n n nt t+∆ = −  is the 
length of the time interval [ ]1,n nt t +  and 

1n nn t tW W W
+

∆ = −  is the nth Gaussian 
( )0, nN ∆  distributed increment of the Wiener process W, { }0,1, , 1n N∈ − , 
( ) [ ]( ), 0,p t p tϕ ϕ ε=  represents the total number of jumps of Poisson random 

measure up to time t, which is Poisson distributed with mean tλ . 
In the multidimensional case with mark-indepedent jump size we obtain the 

kth component of the Euler scheme 

( )

( )1
,

1
1

np t
k k k k j k
n n n n n

i p t
p

ϕ

ϕ

+

+
= +

= + ∆ + ∆ + ∆∑Y Y Y b W c
            

(40) 

Methods for Stochastic Partial Differential Equations. This material is 
from [64] 

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( )( ) ( ))
( ) ( ) ( )(
( ) ( ) ( )( ) ( )) ( )

1

1

1 1 1

1

d d d

d d d

n
j

n
j

n n
j j

n
j

n
j

n n
j j

tn n n n n n n
j j j j j j jt

s s

t t

t n n n
j j jt

s s

t t

X t S t t X t S t s B S s t x t

Bx r r S s r G x r M r s

S t s B S s t X t

BX r r S s r G x r M r M s

+

+

+ + +

+

= − + − −

+ + −

+ − −

+ + −

∫

∫ ∫

∫

∫ ∫
     

(41) 

Methods for SPDE with Multiplicative Noise. Two representative numerical 
schemes used in the literature for the Stochastic Partial Differential Equation (32) 
are the linear-implicit Euler and the linear-implicit Crank-Nicolson schemes 
[27]. 

The Euler scheme 
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( ) ( )( )
( ) ( )

1, , , , , ,
1 1 1

1 , ,
, 1 , . .

N M L N M L N M L
k N k N k

N M L
N N L k k

Y I hA Y hF Y

I hA B Y W a s

−
+ + +

−
+

= − +

+ − ∆ −
          

(42) 

The Crank-Nicolson scheme 

( )

( )

1
, , , , , ,
1 1 1

1
, ,

,

2 2

, . .
2

N M L N M L N M L
k N N k N k

N M L
N N L k k

h hY I A I A Y hF Y

hI A B Y W a s

−

+ + +

−

    = − + +    
    

 + − ∆ − 
 


      

(43) 

for { }0,1, , 1k M∈ −  and , ,N M L∈ . Here it is necessary to assume that 
0λ ≥  for all i∈  in Assumptions 2 in order to ensure that ( )I hA−  is in-

versible for every 0h ≥ . 
Convergence of SPDE with Multiplicative Noise. The convergence of the 

exponential Euler scheme will proved under the following assumptions. 
Assumption 4.0.1. (A5) (Linear operator A). there exist sequences of real ei-

genvalues 1 20 λ λ< ≤ <  and orthonormal eigenfunctions ( ) 1n n
e

≥
 of A−  

such that the linear operator ( ):A D A H H∈ →  is given by 

1
, ,n n

n
Av e vλ

∞

=

= −∑  

for all ( )v D A∈  with ( ) { }2 2
1: ,n nnD A v H e vλ∞

=
= ∈ < ∞∑ . 

(A6) (nonlinearity of F). The nonlinearity :F H H→  is two times conti-
nuously Fréchet differentiable and its derivatives satisfy the following conditions 

( ) ( ) ,HF x F y L x y′ ′− ≤ −
 

( ) ( ) ( )( ) ,r r
HH

A F x A v L v− − ′− − ≤
 

for all ,x y H∈ , ( )( )rv D A∈ − , and 0,1 2,1r = , and 

( )( ) ( ) ( )1 2 1 21 , ,
H H

A F x v w L A v A w− −− ′′ ≤ − −  

for all ,x y H∈ , where 0L >  is a positive constant. 
Let Q be a nonnegative definite symmetric trace-class operator on a separable 

Hilbert space K, { } 1j j
f

∞

=
 be an ONB in K diagonalizing Q, and let the corres-

poing eigenvalues be { } 1j j
λ

∞

=
. Let ( ){ } 0j t

w t
≥

, 1,2,j =  , be a sequence of inde-

pendent Brownian motion defined on filtered probability space { }( ), , ,t t
PΩ   . 

The process 1 2
1t j j jjw w fλ∞

=
= ∑  is called a Q-Wiener process in K. 

(A7) (Cylindrical Q-Wiener process tW ) There exist a sequence ( ) 1n n
q

≥
 of 

positive real numbers and a real number ( )0,1γ ∈  such that 

2 1

1
n n

n
qγλ

∞
−

=

< ∞∑  

and pairwise independent scalar t -adapted Wiener process ( ) 0t t
W

≥
 for 

1n ≥ . The cylindrical Q-Wiener process tW  is given formally by 
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1
.n

t n t n
n

W q W e
∞

=

= ∑
                      

(44) 

(A8) (Initial value). The random variable ( )( )0 :x D A γΩ → −  satisfies 
( )

4

0
H

A xγ− < ∞E , where 0γ >  is given in A7. 
The convergence theorem for SPDE model 32 
Theorem 4.1. (Convergence Theorem [27]) Suppose that Assumptions 3 

(A5)-(A8) are satisfied. Then there is a constant 0TC >  such that 

( ) ( )
1

2 2,

0, ,

log
sup ,

k

N M
t k T NHk M

M
X Y C

M
γλ−

=

  − ≤ +   
   


         

(45) 

holds for all ,N M ∈ , where tX  is the solution of SPDE 32, ( ),N M
kY  is the 

numerical solution given by 42, k
kt T
M

=  for 0,1, ,k M=  , and 0γ >  is the 

constant given in Assumption A8. 

5. Application to Stochastic Volatility Estimation 

Continuous-time models are central to financial econometrics, and mathemati-
cal finance. Here we estimate the Unobserved Stochastic Volatility of Inflation 
Rate. The literature on discrete-time models and that on continuous-time mod-
els were developed independently, but it is possible to establish connections be-
tween the two approaches [22] [23] [65] [66] [67] [68] [69]. 

In time series analysis, autoregressive integrated moving average (ARIMA) 
models have found extensive use since the publications of Box and Jenkins (1976) 
[25] [70] [71]. 

Maximum likelihood methods are widely used for estimating stochastic vola-
tility [18]. 

To facilitate our discussion we will specialize the general continuous time 
model with zero drift, i.e. 

( ) ( )( ) ( ) ( )1d d dy t y t t t W tµ γ σ= − +
               

(46) 

( ) ( ) ( )( ) ( )2 2 2 2d d dt t t t W tσ ψσ φ σ= − +
             

(47) 

where the stochastic processes ,t tσ φ , and ψ  are [ ];tI tσ
τσ τ= ≤  adapted. 

Here ( )2tσ  is a stationary process with nonnegative values and is called the 
stochastic volatility. The µ  is the speed of adjustment of y to its long-run mean, 
γ , and σ  is a positive scalar. And also ( ){ }, 0W t t >  is a standard Wiener 
process. 

One should note that the constant elasticity variance process (CEV) in 47 im-
plied an autoregressive model in discrete time for ( )2tσ , namely: 

( ) ( ) ( )11 e e e e d ,
t t u tt t t

t t t tt
y y W tµµ µ µγ σ

+∆ −− ∆ − ∆ − ∆
+∆ = − + + ∫        

(48) 

( ) ( ) ( )22 2 2e e d .
t t u tt

t t t tt
W tψψσ σ φ σ

+∆ −− ∆
+∆ = + ∫            

(49) 

After some algebraical manipulations such as ( )1 e µϑ γ −= − , e µρ −=  and 
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( ) 1e e d
t t u tt

t t tt
Wψψε σ

+∆ −− ∆= ∫  and e ψβ −= , 1t∆ = , we have this hybrid model 
that has the autoregssive model and the generalized autoregressive condintion-
ally heteroscedastic models, i.e. the AR (1)-GARCH (1, 1) Model with the mean 
equation [13] [19] [25] [70] [72] [73], 

1 ,t t ty yϑ ρ ε−= + +                       (50) 

where 1ρ ≤ , t t tε σ η=  with tη  following a t-Student distribution and the va-
riance equation that can be presented as follows 

2 2 2
1 1,t t tσ α βσ φε− −= + +                     (51) 

where ( )1 2,t t tW W W=  is a vector of two standard dimensional Brownian mo-
tions that are independent with zero mean and unit variance, and are defined on 
probability space ( ), ,Ω   . 

In time series analysis, a process ty  is called a GARCH(p,q) process if its first 
two conditional moments exist and satisfy [13] 

(1) ( )| , 0t uE y u tε < = , t∈ . 
(2) There exist constants ω , , 1, ,i i qφ =   and , 1, ,j j pβ =   such that 

( )2 2 2

1 1
var | , , .

q p

t t u i t i j t j
i j

y u t tσ ε ω φ ε β σ− −
= =

= < = + + ∈∑ ∑   

Theorem 5.1. ([13] Strict stationarity of the strong GARCH (1, 1) process) if 

{ }2: log 0,tγ αη β−∞ ≤ = + <E  

then the infinite sum 

( ) ( )2
1

1
1t t t i

i
a a wσ η η

∞

− −
=

 = + 
 

∑   

converges almost surely (a.s.) and the process ( tε ) defined by t t thε η=  is the 
unique strictly stationary solution of the model t t thε η= . This solution is non-
anticipative and ergodic. If 0γ ≥  and 0w > , there exists no strictly stationary 
solution. 

Another important theorem for our analysis is the secon-order stationarity of 
the GARCH (1, 1) process. 

Theorem 5.2. Let 0w > . If 1φ β+ ≥ , a nonanticipative and second-order 
stationary solution to the GARCH(1,1) model does not exist. If 1φ β+ < , the 
process ( tε ) defined by (2.13) is second-order stationary. More precisely ( tε ) is a 
weak, white noise. Moreover, there exists no other second-order stationary and 
nonanticipative solution. 

To estimate the parameters of these models we use the maximum likelihood me-
thod. The maximum likelihood method provides the best estimators and efficient 
estimators [13] [73]-[78]. The density f of the strong write noise is assumed known. 
This assumption is obviously very strong. Conditionally on the σ -field 1t−  
generated by { }:u u tε < , the variable tε  has the density ( )1

t tx f xσ σ−→ . It 
follows that given the observations 1, , nε ε , and the initial values 0 1, , qε ε − , 

2 2
0 1, , pσ σ − 
  the conditional likelihood is defined by 
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( )
1

1n
t

t t t

f
ε

θ
σ σ=

 
=  

 
∏

 

  

where the 2
1 pσ −  are recursively, defined for 1t ≥ , by 

2 2 2

1 1
.

p q

t j t j i t i
j i

σ α β σ φ ε− −
= =

= + +∑ ∑   

For the student’s t-distribution, the log-likelihood contributions are of the 
form 

( ) ( ) ( )
( )( )

( )
( )

22
2

2 2

2 21 1 1log log log 1 ,
2 2 2 21 2

t t
t

t

y Xv v v
vv

θπ
θ σ

σ

   ′−− Γ +   = − − − +
   −Γ +   

  

where the degree of freedom 2v >  controls the tail behavior and log denotes 
the natural logarithm, that is, loge where e 2.718281828459 . The t-distribution 
approaches the normal as v →∞  and ( )...Γ  denotes the Gamma function. 

A maximum likelihood estimator (MLE) is obtained by maximizing the like-
lihood on a compact subset Θ  of the parameter space [13] [79] [80] [81] that is, 

( )ˆ arg max .
θ

θ θ= 
                      

(52) 

To select a fitted model, the Akaike (1973) information criterion (AIC), 
Schowrz (1978) information (SIC), the mean squared error criterion (SIC), 
Hannan-Quinn information criterion (HQC) are usually used, that is, 

( )1
, 0,

1
AIC 2 | 2 ,

N
s

T T i i
i

N L kθ−

=

= Ω −∑  

( ) ( )1
, 0,

1
SIC 2 | ln ,

N
s

T T i i
i

N L T kθ−

=

= Ω −∑  

where ( )kk dim θ≡  refers to the number of estimated model parameters. 

( ) ( ) 21 1 2 2
, 0 , 0,

1 1
SIC 2 ,

N T

t i t i i
i t

N T σ θ θ θ− −

= =

 = − ∑∑  

( )( )maxHQC 2 2 ln ln ,L k n= − +  

where maxL  is the log-likelihood, k is the number of parameters, and n is the 
number of observations. Among a finite set of models; the model with the lowest 
criteria is preferred. 

6. Empirical Results 

In this study we modelize the stochastic volatility of inflation rate observed by 
the Central Bank of Congo for the period from January 2004 to June 2018. We 
get the inflation rate by transforming the consumer price index (CPI) index by 
using log-difference transformation, that is, ( ) ( )1log logt t ty CPI CPI −= − . The 
operations of taking logarithms and differencing are standard time series tools 
for coering a data set into looking stationary (Resnick, 2007); therefore our va-
riable is stationary. The inflation rate measures how fast prices are rising [21] 
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[82]. For the period under analysis Table 1 shows that the mean, the maximum, 
and minimum inflation rates are 1.3, 11.4, −7.5 percentages respectively. (ii) 
With the Jarque-Bera statistic, 346.8773, it indicates that the inflation rate does 
not follow the normal distribution. It is well known that the fundamental task in 
many statistical analyses is to characterize the location and variability of a data 
set. A further characterization of the data includes skewness and kurtosis. The 
Skewness statistics is a measure of symmetry, or more precisely, the lack of 
symmetry. A distribution, or data set, is symmetric if it looks the same to the left 
and right of the center point. The Skewness of 1.52 indicates the moderate level. 

In statistics, the Kurtosis is a measure of whether the data are heavy-tailed or 
light-tailed relative to a normal distribution. That is, data sets with high kurtosis 
tend to have heavy tails, or outliers. Data sets with low kurtosis tend to have light 
tails, or lack of outliers. Kurtosis statistics of the inflation rate 9.23 more large 
than 3, and Jarque-Bera statistics indicate that inflation rate does not follow the 
normal distribution. With high kurtosis statistic, 9.2287, there is an indication of 
inflation volatility. 

We use a Student statistic test of statistical significance and find that parame-
ters estimations are all statistically significant. Results confirm that the past vola-
tilities affect the current volatility of inflation rate. Thus, we the dynmical beha-
vior of volatility. We restrict the constant term to a function of the GARCH pa-
rameters and the unconditional variance: 

1
2

1 1
ˆ 1 ,

q p

j i
j i

w σ β φ
−

= =

 
= − − 

 
∑ ∑  

where 2σ̂  is the unconditional variance of the residuals, that is, ˆ 0.00000007ω = . 
Table 2 raises tree isues. First, in the mean equation, the coefficient 1̂ 0.6558θ =  

measuring the persistence of inflation rate is high. This means that the monthly 
last inflation contributes to current rate by 66 percents. Secondly, the stochastic  

 
Table 1. Summary statistics. 

Mean 0.0128 

Median 0.0056 

Maximum 0.1139 

Minimum −0.0746 

Standard Deviation. 0.0207 

Skewness 1.5268 

Kurtosis 9.2287 

Jarque-Bera 346.8773 

Sum Sq Dev 0.4929 

Observations 173 
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Table 2. Results of estimation. 

Parameters AR (1)-GARCH (1, 1) Z-Statistic Prob 

The Mean Equations    

ϑ̂  0.0011 7.5509 0.0000 

ρ̂  0.6558 16.8504 0.0000 

γ̂  0.0032   

µ̂  0.4219   

The Conditional Variance Equations    

ω̂  0.00000007   

β̂  0.5635 31.9568 0.0000 

φ̂  0.4363 24.7967 0.0000 

ψ̂  0.5736   

Student Distribution Parameter 3.3461 10.5507 0.0000 

R2 0.16   

AIC −7.1608   

SIC −7.0693   

HQC −7.1237   

DW 2.2   

SQ-Stat (20)  0.4929 1.0000 

ARCH Test  0.0171 0.8963 

 
volatility persistence of CPI-inflation rate is very high level,  
0.5635 0.4363 0.9998+ = , this means that the past volatility information con-
tributes to current volatility of inflation rate at 100 percents. Therefore the pur-
chasing power of congolese householders is also volatile. 

The postestmation tests of Ljung Box (1978), Q-Stat = 3.0639, and ARCH test, 
0.0171, show that there are any remaining ARCH effects in the residuals. 

7. Concluding Remarks 

Since the Itô’s works, the stochastic integrals and stochastic differential equa-
tions attract the attention of many researchers in the fields of mathematical 
modelling. In this paper, we emphasize on the application of stochastic integrals 
and differential equations in the economics and finance. Comparing to discrete 
models, the stochastic continuous-time models have many advantages because 
they take into account the uncertainty. The limit of this approach is the com-
plexity of stochastic calculus and stochastic numerical methods. As mentioned 
by scientists (see Wiener, Einstein, Itô) the uncertainties are anywhere and any-
time; therefore the stochastic integrals must be well known and understood by 
all scientists. 
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