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Abstract 

Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation 
in two-dimensional and three-dimensional incompressible flows on an infi-
nite domain and on a semi-infinite domain are obtained. Two configurations 
are considered, one in which a short-wave limit approximation is used, and 
another in which a long-wave limit approximation is used. In the short-wave 
limit, Wentzel-Kramers-Brillouin (WKB) methods are utilized to estimate the 
eigenvalues, and the eigenfunctions are approximated in terms of Green’s 
functions. The procedure consists of transforming the Orr-Sommerfeld equa-
tion into a system of two second order ordinary differential equations for 
which the eigenvalues and the eigenfunctions can be approximated. In the 
long-wave limit approximation, solutions are expressed in terms of genera-
lized hypergeometric functions. Our procedure works regardless of the values 
of the Reynolds number. 
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1. Introduction 

Stability and transition in shear flows and in boundary layers are mechanisms 
which need to be understood importantly for applications in mechanical and 
aerospace engineering and in the atmospheric sciences [1] [2]. Both theoretical 
and experimental studies have been carried out by different researchers in order 
to improve our knowledge of the properties of mechanisms that govern transi-
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tions and instabilities in fluid flows and in boundary layers, and so, different 
types of instabilities that include linear inviscid, viscous and nonlinear instabili-
ties, and transitions in fluid flows and in boundary layers were investigated and 
many more [2] [3] [4] [5] [6] and references therein. However, the problem of 
stability and transition in shear flows and in boundary layers still is a challenging 
problem. 

With that goal in mind, analytical and numerical methods have been used to 
solve the Orr-Sommerfeld equation that governs the mechanisms of linear sta-
bilities of fluid flows on finite domains (channels), semi-infinite domains (e.g. 
boundary layers) and infinite domains (e.g. wakes). The task becomes even more 
complicated when nonlinearities and turbulences are taken into consideration. 
Due to the evolution of computers, this may be accomplished by performing 
computer simulations. However, obtaining initial input that allows computer 
simulations to converge to the correct solutions remains an important challenge. 

For instance, Gregory et al. [7] performed numerical simulations and analyzed 
the linear inviscid stability of the three-dimensional boundary layer and applied 
it to the rotating disk flow but their results were biased. The work by Gregory et 
al. [7] was extended by Brown [8] by including the viscous effects and by apply-
ing the Orr-Sommerfeld equation to the rotating disc and swept-back wing. 
Brown [8] used the temporal instability theory but his results did not match the 
observed values. Almost similar results as Brown [8] were also obtained by Ce-
beci and Stewartson [9] by applying the spatial stability theory to solve the 
Orr-Sommerfeld equation on rotating disc profiles. Cooper and Carpenter [10] 
investigated the stability of the rotating-disc boundary-layer flow over a com-
pliant wall, and analyzed the so called Type I and II instabilities. Reid [11] de-
rived an exact solution to the Orr-Sommerfeld equation for the plane Couette 
flow. Walker et al. [12] investigated a physically-based computational technique 
intended to estimate an initial guess for complex values of the wavenumber of a 
disturbance leading to the solution of the Orr-Sommerfeld equation in a shear 
flow on a semi-infinite domain. 

Here, a different procedure which is rather analytical than numerical is pro-
posed. Two approaches are considered, the short-wave limit approximation and 
the long-wave limit approximation. As it will be shortly shown (Section 3), in 
the short-wave limit approximation, the wavelengths in the spanwise and 
streamwise directions are relatively short while in the long-wave limit approxi-
mation, on the other hand, the wavelengths in the spanwise and streamwise di-
rections are relatively long. 

In the short-wave limit approximation, the Orr-Sommerfeld equation is writ-
ten as a system of two second order ordinary differential equations, and thus the 
eigenvalues are approximated using the WKB method and the eigenfunctions 
are approximated in terms of Green’s functions. Their corresponding outer so-
lutions are investigated since their properties (e.g. behavior at infinity) are easier 
to analyze than those of the solutions obtained by means of Green’s functions. 
For instance, instead of solving the Orr-Sommerfeld equation in the limit of in-
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finite Reynolds numbers and using the fact that the mean flow velocity 
( ) 0U y =  in the boundary layer near the wall as described in Maslowe [13], 

where critical layers and singularities are introduced in the equations while the 
Orr-Sommerfeld equation does not have any, we rather assume that 
( ) ,0U y y y= < < ∞ , approximate the eigenvalues using WKB methods and de-

rive the approximate solutions in terms of Green’s functions. 
On one hand, the advantage of this procedure is that it works for any value of 

the Reynolds number, while on another hand, it can always be used to approx-
imate eigenvalues and eigenfunctions of the Orr-Sommerfeld equation for any 
type of the mean flow velocity profile in three dimensions (3D) that can be ap-
proximated in two dimensions (2D) using the Squires’ Theorem (transformation) 
as ( ) 2U y ay by c= + + , where a, b and c are arbitrary constants. The approx-
imated eigenvalues may be used as a starting point in predicting transitions in 
shear flow (e.g. boundary layers) in two or three dimensions with computer si-
mulations (CFD). 

In the long-wave limit approximation, the Orr-Sommerfeld equation is re-
duced to a second order ordinary differential equation, and the solutions are 
written in terms of the generalized hypergeometric function. The obtained re-
sults can be useful in geophysical fluid dynamics (GFD) where the size of the 
fluid disturbances can be of the same order as the radius of the earth or greater, 
for example, in the atmospheric boundary layer [14]. 

2. The Three-Dimensional Linear Stability Model 

We consider an incompressible parallel flow in three dimensions with velocity 
components  

( ) ( ) ( ), , , , , , ,u x y z t u y u x y z t′= +                    (1) 

( ) ( )v , , , v , , , ,x y z t x y z t′=                       (2) 

( ) ( ) ( ), , , , , , ,w x y z t w y w x y z t′= +                   (3) 

and pressure 

( ) ( ) ( ), , , , , , ,p x y z t p y p x y z t′= +                   (4) 

where the terms with a bar represent the mean flow quantities, while the terms 
with a prime represent small perturbation quantities or waves. We then substi-
tute then (1), (2), (3) and (4) in the Navier-Stokes equation and neglect nonli-
near terms (products of perturbation quantities). This yields the linearized 
Navier-Stokes equations,  

2
2

2

d dv ,
d d

u u u u p uu w u
t x y z x y

ν ν
′ ′ ′ ′∂ ∂ ∂ ∂′ ′+ + + = − + ∇ +

∂ ∂ ∂ ∂
           (5) 

2v v v d v ,
d
p pu w

t x z y y
ν

′ ′ ′ ′∂ ∂ ∂ ∂ ′+ + = − − + ∇
∂ ∂ ∂ ∂

               (6) 

and 
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2
2

2

d dv ,
d d

w w w w p wu w w
t x y z z y

ν ν
′ ′ ′ ′∂ ∂ ∂ ∂′ ′+ + + = − + ∇ +

∂ ∂ ∂ ∂
           (7) 

where ν  is the fluid kinematic viscosity and 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 is the 

Laplacian operator. 
The full model describing the linear stability of the three-dimensional incom-

pressible fluid flow comprises Equations (5), (6) and (7) complemented by the 
continuity equation 

v 0.u w
x y z
′ ′ ′∂ ∂ ∂
+ + =

∂ ∂ ∂
                        (8) 

Differentiating (5), (6) and (7) with respect to x, y and z respectively and sum 
up the resulting equations, we obtain  

2
2

2

d d v d v2 2 .
d dd

p u wp
y x y zy

′ ′∂ ∂′∇ + = − −
∂ ∂

                 (9) 

We now eliminate the pressure term in (6) by applying the Laplacian operator 
2∇  and by combining (6) with (9). This gives 

2 2
2 2 2 4

2 2

v v v d v d v v 0.
d d

u wu w
t x z x zy y

ν
′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ′∇ + ∇ + ∇ − − − ∇ =

∂ ∂ ∂ ∂ ∂
      (10) 

We make all variables in (10) non-dimensional with respect to a typical refer-
ence speed V, a typical length scale H in the y-direction and a typical length scale 
L in both the streamwise direction (x-direction) and spanwise direction 
(z-direction). Thus, we find that Equation (10) does not change but the Lapla-
cian operator takes the form 

2 2 2
2 2 2

2 2 2 ,r r
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

                  (11) 

where 
2

2
2

Hr
L

=                          (12) 

is the spatial aspect ratio, while on the other hand, the non-dimensional kine-
matic viscosity is given by 

2 * *

2 2

1 1 ,L
R LV LVH r

ν νν = = =                   (13) 

where *ν  is the dimensional kinematic viscosity and R is the Reynolds number. 
And the Reynolds number R can now be written in terms of the aspect ratio 2r  
as 

2
* .LVR r

ν
=                         (14) 

3. The Orr-Sommerfeld Equation: From Three Dimensions  
to Two Dimensions 

We discuss the three-dimensional model and reduce it to a two-dimensional one. 
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In stability theory of fluid flow, this procedure is known as Squire’s theorem (or 
transformation). We consider that the perturbations are small wavelike pertur-
bations propagating in xz-plane with amplitude ( )yφ , and assume these per-
turbations are plane waves. Thus  

( ) ( ) ( ) ( )v , , , v , , , e c.c.,i x y tx y z t x y z t y α β ωφ + −′= = +             (15) 

where α  and β  are wavenumbers in streamwise and spanwise directions, 
and ω  is the transient frequency of the waves and c.c. represents the complex 
conjugate. Substituting (15) in (10) gives  

( ) ( )
( ) ( )( ) ( )

22 2 2 4 2 2

2 2 2

2

0,

yyyy yy

yy yy yy

r r

iR u w r u w

φ α β φ α β φ

α β ω φ α β φ α β φ

− + + +

 − + − − + − + = 

     (16) 

where the subscript y stands for differentiation with respect to y, and φ , for in-
stance, satisfies the boundary conditions  

( ) ( ) ( ) ( )0 0 and 0 0.y yφ φ φ φ= ∞ = = ∞ =               (17) 

in the boundary layer. Or φ  satisfies the boundary conditions  

( ) ( ) ( ) ( )0 and 0.y yφ φ φ φ−∞ = ∞ = −∞ = ∞ =             (18) 

This boundary condition, for example, shall be important in investigating the 
stability of the two dimensional wake. 

We importantly observe that (16) is the famous Orr-Sommerfeld equation but 
slightly modified by the aspect ratio 2r . Setting rα α= , rβ β= , =R rR  
and rω ω=  gives  

( ) ( )
( ) ( )( ) ( )

22 2 2 2

2 2

2

0,

yyyy yy

yy yy yyiR u w u w

φ α β φ α β φ

α β ω φ α β φ α β φ

− + + +

 − + − − + − + = 

 

 

  

   

     (19) 

which is the Orr-Sommerfeld equation. 
Next, grouping together the terms according to yyyyφ , yyφ  and φ  and 

rearranging terms, (16) is written as  

( ) ( )

( ) ( )( ) ( )

2 2 2

24 2 2 2 2 2

2

0.

yyyy yy

yy yy

r iR u w

r ir R u w iR u w

φ α β α β ω φ

α β α β ω α β α β φ

 − + + + − 
 + + + + − + + + =  

 (20) 

We further let 2 2 2k α β= +  so that ( )coskα θ=  and ( )sinkβ θ=  in (20), 
where θ  is the angle of orientation of the phase velocity in the xz-plane, then 
we obtain  

( ) ( )( )
( ) ( )( )

( ) ( )( )

2 2

4 4 2 3

2 cos sin

cos sin

cos sin 0.

yyyy yy

yy yy

r k iRk u w k

r k ir Rk u w k

iRk u w

φ θ θ ω φ

θ θ ω

θ θ φ

 − + + − 
+ + + −

+ + =

          (21) 

Moreover setting ( ) ( )cos sinU u wθ θ= +  and ( ) ( )cos sinyy yy yyU u wθ θ= +  
in (19) gives the two dimensional Orr-Sommerfeld equation 

( ) ( )2 2 4 4 2 32

0.
yyyy yy yyr k iRk U k r k ir Rk U k iRkUφ ω φ ω φ   − + − + + − +   
=

 (22) 

https://doi.org/10.4236/apm.2019.912049


V. Nijimbere 
 

 

DOI: 10.4236/apm.2019.912049 972 Advances in Pure Mathematics 

 

We consider two configurations as mentioned before. In one configuration, 
we assume that the spacial aspect ratio is large 1r  . This configuration is rep-
resentative for waves with relatively short wavelengths in the xz-plane since the 
wavelength in the streamwise direction ( )2 2x rλ α α= π = π  and that in the 
spanewise ( )2 2z rλ β β= π = π  become shorter and shorter as the aspect ratio 
becomes larger and larger ( r →∞ ). And so, this is a short-wave limit approxi-
mation. In that case, it is possible to write the two-dimensional Orr-Sommerfeld 
Equation (20) in terms of a system of two second ordinary differential equations. 
We will shortly see (Section 4) that WKB methods can be used to approximate 
eigenvalues. 

In the other configuration, the aspect ratio is small, 0 1r< 
 ( 0r +→ ). And 

so xλ  and zλ  become larger as the aspect ratio becomes small ( 0r +→ ). 
Therefore, this configuration is representative for waves with long wavelength in 
the xz-plane. Hence, this is a long-wave limit approximation, and we will illustrate 
it (Section 5) with two examples in which analytical solutions can be obtained. 

4. Short-Wave Limit Approximation ( r 1 ) 

According to (14), the Reynolds number R is proportional to 2r . Therefore, the 
last term in the coefficient for φ  in (20) which is proportional to 2r  is neglig-
ible compared to the other terms which are proportional to 4r . And so, it can be 
dropped in the short-wave limit configuration where 1r  . We then have  

( ) ( )2 2 4 4 2 32 0.yyyy yyr k iRk U k r k ir Rk U kφ ω φ ω φ   − + − + + − =       (23) 

We note that the assumption 1r   is quite important (see Section 4.1) since 
it helps us to write (21) in a form allowing us to make use of WKB methods to 
approximate solutions for (20). We further observe that (20) will become (21) if 
( )U y  is a linear function of y, e.g. Couette flow. 
Now let us consider the differential operator  

( ) ( )
2 2

2 2

d d, , , , ,
d d

Q k y P k y
y y

ω ω
   

+ +   
   

            (24) 

its expansion is 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

4 2

4 2

2

2

d d, , , ,
d d

d d d d, , , , 2 , ,
d dd d

d , , , , , , .
d

Q k y P k y
y y

PP k y Q k y k y
y yy y

P k y Q k y P k y
y

ω ω

ω ω ω

ω ω ω

   
+ +   

   

= + + +  

 
+ + 
 

       (25) 

Applying this differential operator to φ  gives  

( ) ( )2 0.yyyy yy y y yyP Q P P QPφ φ φ φ+ + + + + =            (26) 

Comparing this with (21) yields  

( )2 22 ,P Q r k iRk U kω + = − + −                 (27) 
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( )4 4 2 3QP r k ir Rk U kω= + −                  (28) 

and 
constant.P =                        (29) 

This gives 
2 2 .P r k= −                         (30) 

and 

( ) ( )2 2 2 2 ,Q r k iRk U k r k i k U kω χ ω   = − + − = − + −          (31) 

where according to (14), 2 *R r LVχ ν= = . Hence, setting in (24)  
.yy Pφ φ+ = Ψ                       (32) 

implies that Ψ  has to satisfy  
0.yy QΨ + Ψ =                      (33) 

We use the following theorem to establish the boundary conditions for (33).  
Theorem 1.  
1) Consider Equation (22) with boundary conditions ( ) ( ) 0aφ φ= ∞ =  and 
( ) ( ) 0y yaφ φ= ∞ = , 0a ≥ . 
a) If φ  and Ψ  are solutions for (32) and (33) respectively, then ( ) 0Ψ ∞ = .  
b) There exist some constants 1 0δ >  and 2δ  such that ( )1 2a δ δΨ + = .  
c) And if further the aspect ratio 1r   then ( )1 2a δ δΨ + ≤ .  
2) Consider Equation (21) with boundary conditions ( ) ( ) 0aφ φ−∞ = =  and 
( ) ( ) 0y y aφ φ−∞ = = , 0a ≤ .  
a) If φ  and Ψ  are solutions for (32) and (33) respectively, then 
( ) 0Ψ −∞ = .  
b) There exist some constants 1 0δ >  and 2δ  such that ( )1 2a δ δΨ − = .  
c) And if further the aspect ratio 1r   then ( )1 2a δ δΨ − ≤ .  
Proof. 
1) 
a) We first observe that the solution φ  for (32) is  
( ) ( ) ( ) ( )e erky rky

h p py y y A B yφ φ φ φ−= + = + + , where A and B are constants and 

hφ  and pφ  are the homogeneous solution and particular solution respectively. 
Applying the method of undetermined coefficients to (32), the particular solu-
tion has to take the form ( ) ( ) ( )p y f y yφ = Ψ  where ( )f y  is a function that 
has to be chosen in order to make hφ  and pφ  independent. But the form of 
( )P y  and that of ( )Q y  given by (29) and (30) respectively, indicate that hφ  

and pφ  will always be independent for all y. And so ( )p yφ ε= Ψ  where ε  is 
some constant. Moreover A must vanish in order ( )yφ  to be finite as y →∞ . 
And so ( ) ( )e rkyy B yφ ε−= + Ψ . Therefore,  
( ) ( )( ) ( )lim e lim 0rky

y yB y yφ η ε−
→∞ →∞∞ = + Ψ = Ψ = . Hence, ( ) 0Ψ ∞ =  since 

ε  is a constant.  
b) ( ) ( )( ) ( ) ( )1

11 1lim e e rk arky
y aa B y B aδ

δφ δ ε ε δ− +−
→ ++ = + Ψ = + Ψ + = ∆ , some 

constant. And so, ( )
( )1

1 2
e rk aBa

δ

δ δ
ε ε

− +∆
Ψ + = − = .  
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c) If further the aspect ratio 1r  , then 
( )1e 0

rk aB δ

ε

− +

→ . Hence, 
( )1 2a δ δΨ + ≤ .  
2) 
a) From 1. (a), ( ) ( ) ( ) ( )e erky rky

h py y y A B yφ φ φ ε−= + = + + Ψ , where A, B 
and ε  are constants. And so B must vanish in order ( )yφ  to be finite as 
y → −∞ . This gives ( ) ( )erkyy A yφ ε= + Ψ . Therefore,  
( ) ( )( ) ( )lim e lim 0rky

y yB y yφ ε ε→−∞ →−∞−∞ = + Ψ = Ψ = . Hence, ( ) 0Ψ −∞ =  
since ε  is a constant.  

b) ( ) ( )( ) ( ) ( )1
11 1lim e erk arky

y aa B y B aδ
δφ δ ε ε δ−

→ −− = + Ψ = + Ψ − = ∆ , some 

constant. And so, ( )
( )1

1 2
erk aBa

δ

δ δ
ε ε

−∆
Ψ − = − = .  

c) If further the aspect ratio 1r  , then 
( )1e 0

rk aB δ

ε

−

→ . Hence, 
( )1 2a δ δΨ − ≤ .  
Corollary 1. Consider Equation (21) with boundary conditions  
( ) ( ) 0φ φ−∞ = ∞ =  and ( ) ( ) 0y yφ φ−∞ = ∞ = . If φ  and Ψ  are solutions for 

(32) and (33) respectively, then ( ) ( ) 0Ψ −∞ = Ψ ∞ = . 
Proof. Corollary 1’s proof follows from Theorem 1. To prove Corollary 1, we 

set A B=  and let 1 0δ →  in Theorem 1 so that we obtain  
( ) ( ) 0Ψ −∞ = Ψ ∞ = .  

4.1. WKB Approximation for Eigenvalues on a Semi-Infinite  
Domain in the Short Wave-Limit Approximation 

Using Theorem 1, in the boundary layer, we solve  

.yy Pφ φ+ = Ψ                          (34) 

and  

0,yy QΨ + Ψ =                         (35) 

with boundary conditions  

( ) ( )0 0y yφ φ= ∞ =                       (36) 

and  
( ) ( )1 20 and 0,δ δΨ + = Ψ ∞ =                 (37) 

where 1δ  is a very small positive constant ( 1 0δ +→ ), and as before, 2 2P r k= −  
and ( )( )2 2Q r k i k U y kχ ω = − + −  . 

Following Theorem 1, 2δ  may be set to zero. In that case, we can restrict the 
domain to ( )0,R+ = ∞ , and thus use the WKB method described in 7.2 to ap-
proximate the eigenvalues k. We write Q as,  

( ) ( )( ) ( ) ( )2 2 2, , , ,Q k y r k i k U y k ir k k U yω χ ω χ λ ω   = − + − = −     (38) 

where ( ) ( )2,k i k i kλ ω χω χ= − . Now, (35) can be rewritten as the Schrodin-
ger equation [15],  

[ ]2 0,yy V EΨ − − Ψ =                      (39) 

where ( ) ( ) ( ), ,E i k k V y i kU yχ λ ω χ= =  and 2 21 0r= →  is a small con-
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stant since 2 1r  . 
It is shown in Appendix A2 that using the WKB method, the eigenvalues do 

satisfy  

( )
0

1d , 1, 0,1,2, ,
4

b

E V y y n r n
r
π − − = 

 ∫  
          (40) 

where the limits of integration 0y =  and y b=  are the turning points of 
V E− . On substituting ( ),E i k kχ λ ω=  and ( ) ( )V y i kU yχ=  in (40) gives  

( ) ( )
0

1 1, d , 1, 0,1,2, .
4

b

k U y y n r n
ri k

λ ω
χ

π − − = 
 ∫        (41) 

We consider two configurations and approximate the eigenvalues using WKB 
method [15]. In the first configuration (configuration 1), the background mean 
flow is given by ( ) ,0U y by c y= + < < ∞ , where b and c are constants, while in 
the second configuration (configuration 2), the background mean flow is given 
by ( ) 2 ,0U y ay by c y= + + < < ∞ , where a, b and c are constants. 

4.1.1. Configuration 1 ( r 1 ): The Linear Background Flow,  
( )U y by c y,0= + < < ∞  

Let us consider the linear background flow ( ) ,0U y by c y= + < < ∞ , where b 
and c are constants. The turning points are 0y =  and ( )( ),y k c bλ ω= − . 
Applying (41) gives the dispersion relation  

3 222 1 .
3 4

i k bc n
i k ri k

χω
χ χ

 − π − −   
  

                (42) 

Hence,  
2 3 2 3 2 32 3 1 .

42
n n

n n
k bk

i ck n
ri

ω
χ χ

  π   − + + −           
            (43) 

If the flow is steady (e.g. laminar boundary layer), 0ω =  and the eigenvalues 

nk  satisfy  
2 3 2 3 2 32 3 1 0

42
n n

n
k bk

i ck n
riχ χ

  π   − − − =           
             (44) 

which can be solved using basic numerical methods. In the special case where 
( )U y y=  ( 1b =  and 0c = ), (44) can be explicitly solved to obtain  

( )
1 2 1 2

1 22 3 11
2 2 4nk i n

r
χ   + − π   

   


              (45) 

If for example 6θ = π , then the streamwise wavenumber is  

( )
1 2 1 2

1 22 3 1cos 1 ,
4 2 4n nk i n

r
χα θ    = + − π   

   


           (46) 

while the spanewise wavenumber is  

( )
1 2 1 2

1 26 3 1sin 1 .
4 2 4n nk i n

r
χβ θ    = + − π   

   


           (47) 
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4.1.2. Configuration 2 ( r 1 ): The Quadratic Background Flow  

( )U y ay by c y2 ,0= + + < < ∞  

Here, we consider the quadratic background flow  
( ) 2 ,0U y ay by c y= + + < < ∞ , where a, b and c are constants. We rewrite (41) as  

( )

( )2
2

2

1 1d ,
4

b a

b a

n
ria k

µ µ
χ

Λ−

−

π Λ − − 
 ∫                (48) 

where ( )2 4b a c aλ Λ = + −   and ( )2y b aµ = + . This gives the dispersion 
relation  

2 21 1 1 .
4 4 4

i k b ac n
i k a i k r

χω
χ χ

 −  + − −   
  

              (49) 

Therefore, we obtain the asymptotic approximation for ω ,  
2 2 4 1 .

4 4
n n

n n
k akbi k c n

a r i
ω

χ χ
   − − − + −   

  
             (50) 

In the steady flow where 0ω = , nk  satisfies  
2 2 4 1 0.

4 4
n n

n
k akbi k c n

a r iχ χ
   + − − − =   

  
              (51) 

which can be solved using basic numerical methods. In the special case where 
( ) 2U y y=  ( 1, 0a b= =  and 0c = )  

( )
1 3 2 3

2

2 13 .
4nk i n

r
χ   + −   

   


                (52) 

If 4θ = −π  for example, the streamwise and spanewise wavenumbers are 
respectively given by  

( )
1 3 2 3

2

2 2 1cos 3
2 4n nk i n

r
χα θ    = + −   

   


          (53) 

while 

( )
1 3 2 3

2

2 2 1sin 3 .
2 4n nk i n

r
χβ θ    = − + −   

   


         (54) 

4.2. Green’s Function Approximation for Eigenfunctions 

In this section, we approximate the eigenfunctions nφ  by means of Green’s 
functions. We first solve (35) for Ψ  and then use Green’s functions to solve the 
inhomogeneous Equation (34). In that case, solutions to (34) will be given by  

( ) ( ) ( )
0

, d ,n ny G yφ ξ ξ ξ
∞

= Ψ∫                  (55) 

where ( ),G y ξ  are Green’s functions. Green’s functions associated with the 
boundary value problem defined by (34) and (36) are given by (103) (see 7.1). 

4.2.1. Configuration 1 ( r 1 ): ( )U y by c y,0= + < < ∞  

We consider that the background flow is linear, U by c= + , where b and c are 
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constants as before. We first solve, for Ψ ,  

( )2 , 0yy ir k by c kχ λ ωΨ − + − Ψ =                  (56) 

subject to boundary conditions  

( ) ( )1 10 0, 0 and 0,δ δ +Ψ + = → Ψ ∞ =              (57) 

as before. We make the change of variable ( ) ( )1 32ir kb yη χ λ= −  , where 
( )2 ,ir k c k bλ χ λ ω= − −  

 . Rearranging terms gives the Airy equation [16]  

0ηη ηΨ − Ψ =                         (58) 

which has solution  

( ) ( ) ( )1 2Ai Bi ,D Dη η ηΨ = +                   (59) 

where 1D  and 2D  are constants. 
A solution satisfying the boundary conditions (57) is thus given by  

( ) ( ) ( )1 32Ai , 0,1, 2, .n n ny ir k b y nχ λ Ψ = − =  


           (60) 

Hence, applying (55) gives  

( ) ( ) ( ) ( )
( ) ( ) ( )

1 32

0

1/32

e cosh Ai d

cosh
e Ai d , 0,1,2, .

n

n

yrk y

n n n n
n

n rk
n n

n y

y rk ir k b
rk

rk y
ir k b n

rk
ξ

φ ξ χ ξ λ ξ

χ ξ λ ξ

−

∞
−

 −  

 + − =  

∫

∫









 (61) 

4.2.2. Configuration 2 ( r 1 ): ( )U y ay by c y2 ,0= + + < < ∞  

The background mean flow is ( ) 2 ,0U y ay by c y= + + < < ∞ , where a, b and c 
are constants as before. Then, Ψ  satisfies  

( )2 2 , 0yy ir k ay by c kχ λ ω Ψ − + + − Ψ =              (62) 

subject to boundary conditions  

( ) ( )1 10 0, 0 and 0δ δ +Ψ + = → Ψ ∞ =              (63) 

as before. Now, setting ( )2 4r i k b a c aλ χ λ = + − 
 , making the change of 

variable ( ) ( )
1 42 2ir ka y b aη χ= +   , and rearranging terms gives the Hermite 

equation [16]  

( ) ( )2 0ηη η η λ η Ψ − − Ψ = 
                    (64) 

which has eigen-solutions  

( ) ( )
21 4e , 0,1, 2, ,

2 2!
n nn

H n
η

η η
− −π

Ψ = =               (65) 

where nH  are Hermite polynomials of n [16]. 
The boundary condition (63) shall be satisfied if and only if n is odd. In that 
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case, solutions to (62)-(63) take the form  

( )

( )
( )

1
2 22

2 1 1
2 4

2 1 2 11
2 14

exp
, 0,1,2, ,

2
2 2!

m

m

m m
m

y

ir k y
bH ir k a y m
a

χ
χ

+

+ +
+

Ψ

 
− 

   = + =  
  π



 (66) 

where 2 1mH +  are Hermite polynomials of order 2 1m + , and to obtain the ei-
gen-solutions ( )m yφ , we apply (55) as in configuration 1. 

4.3. Outer Solution Approximation for the Eigenfunctions 

The analysis of the eigenfunctions obtained by means of Green’s functions does 
not seem to be an easy task due to the complexities involved in the computations 
of the integrals. In order to understand the behaviors of these solutions we can 
instead look at the outer solutions. Outer solutions are valid for small   
( 1 0r= → ) and give insight into the behavior of the solution if 1y  . How-
ever, in the short-wave limit approximation, the homogeneous solution is pro-
portional to e erky ky− −=  . Therefore, we expect the homogeneous solution to 
quickly vanish with y as 0→ . In that case, the outer solution would be accu-
rate even for small values of y of order ( ) , 0O k →  . Hence, outer solutions 
shall be valid on +  as long as 0→ . 

For small enough  , we obtain from (32) that Pφ Ψ . This gives  

( ) ( ) ( ) ( )2

2 2 2 .
y y y

y
P r k k

φ
Ψ Ψ Ψ

= − = −


                (67) 

This means that the solution φ  of the Orr-Sommerfeld Equation (16) is dri-
ven by Ψ  whenever 0→  or the aspect ratio is large ( 1r  ) since the ho-
mogeneous solution which is proportional to e erky ky− =   rapidly vanishes with 
y. Thus, the constant ε  in Theorem 1 should be 2 2r kε = . We look at two 
special cases of configurations 1 and 2 (see Section 4.2), for which the outer so-
lutions and the eigenvalues can explicitly be obtained. 

4.3.1. Case 1: ( )U y y y,0= < < ∞  

This case corresponds to the configuration 1 in Section 4.2 with the constants 
1b =  and 0c = . Then we have λ λ=  in (60). We also consider that 0ω =  

(laminar flow) and let the phase velocity angle orientation 0θ =  so that k α=  
the streamwise wavenumber. Using (60) and (67) gives the outer solution  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 32

2 2 2 2

2 2
1 3

2 2

Ai

Ai , 0,1,2, ,

n n n
n

n
n n

n
n n n

n n

ir yy
y

r r

y
iR y n

χα λ α
φ

α α

α λ α
α α

 − Ψ
− = −

Ψ
 = − = − − =  

 



 (68) 

where nλ  (see Section 4.1) is given by  
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( )
2 3 2 3

3 1 1 3 1 1 ,
2 4 2 4n n

n n

n n
r i iR

λ α
χα α

      = − π = − π      
         

    (69) 

with, see Equation (45), 

( )

( )

1 2 1 2
1 2

1 2 1 2
1 2

2 3 11
2 2 4

2 3 11 .
2 2 4

n i n
r

Ri n

χα    + − π   
   

   = + − π   
   










            (70) 

Some plots of the outer eigen-solution nφ  as a function of y are shown on 
Figure 1. It is seen that the amplitude of nφ  increases as the Reynolds number 
R decreases. 

4.3.2. Case 2: ( )U y y y2 ,0= < < ∞  

This case corresponds to the configuration 2 in section 4.2 with the constants 
1, 0a b= =  and 0c =  in (62). We also consider that 0ω =  (laminar flow)  

 

 
Figure 1. Plot of the eigenfunction 5φ  as a function y. The corresponding Reynolds 
number are (a) 1000R = , (b) 2000R = , (c) 5000R =  and (d) 10000R = , 
( ) ,0U y y y= < < ∞  and the parameter 0.2= . 
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and let 0θ =  so that k α=  the streamwise wavenumber. We use (62) and 
(67), and then we obtain  

( ) ( ) ( )
( )

( ) ( )
( )

1
2 22

2 1 1
2 4

2 1 2 12 2 1
2 2 2 14

2 1

1
222 2 12 1

42 1 2 12 2 1
2 14

exp

2 2!

exp
, 0,1,2, ,

2 2!

m
m

m m m
mm

m

m
m

m m
mm m

ir y
y

y H ir y
r

r

iR y
y

H iR y m

χα
φ χα

α
α

α
α

α α

+

+ +
+

+

+

+ +
+

 
− 

 Ψ  − = −  
 π

 − Ψ   = − = − = 
 π



 



 (71) 

where, as before, 2 1mH +  are Hermite polynomials of order 2 1m + , and  

( ) ( )( )
1 3 2 3 2 3

1 34
2

2 3 33 2 3 2 2 .
4 4m mk i m i R m

r
χα      = + + = + +     

     


 (72) 

Some results are shown in Figure 2. It is seen that the amplitude of nφ  in-
creases as the Reynolds number R decreases as in case 1, where ( )U y y= . 
 

 
Figure 2. Plot of the eigen function 2φ  as a function y. The corresponding Reynolds number 

are (a) 1000R = , (b) 2000R = , (c) 5000R =  and (d) 10000R = , ( ) 2 ,U y y=  
0 y< < ∞  and the parameter 0.2= . 
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4.4. Stability of the Two-Dimensional Wake in the Short-Wave  
Limit 

We write our solutions in terms of the hypergeometric function 2 1F . For refer-
ence, we shall first define the generalized hypergeometric function. Functions of 
this type are also used in Section 5. 

Definition 1. The generalized hypergeometric function, denoted as p qF , is a 
special function given by the series [16] [17] 

( )
( ) ( ) ( )
( ) ( ) ( )

1 2
1 2 1 2

0 1 2

, , , ; , , , ; ,
!

n
pn n n

p q p q
n qn n n

a a a xF a a a b b b x
nb b b

∞

=

= ∑


 



      (73) 

where 1 2, , , pa a a
 and 1 2, , , qb b b

 are arbitrary constants,  
( ) ( ) ( )n nϑ ϑ ϑ= Γ + Γ  (in Pochhammer’s notation) for any complex ϑ , with 
( )0 1ϑ = , and Γ  is the standard gamma function.  

In this section, we apply our method to a problem where ( )yφ  is defined on 
infinite domain rather than on a semi-infinite domain as in Section 4.3. We in-
vestigate the stability of a two-dimensional wake. We let the background flow 
resemble a Bell shape function given by 

( ) ( )2
0 sech , ,U y U y yϕ= −∞ < < +∞               (74) 

where 0U  and ϕ  are positive constants. 
We make use of Corollary 1 to establish the values of Ψ  at the boundaries of 

the domain. Hence, we solve  
2 2 .yy r kφ φ− = Ψ                        (75) 

and 

( ) ( )2 2
0 sech , 0,yy ir k U y kχ ϕ λ ω Ψ − − Ψ =             (76) 

subject to boundary conditions 

( ) ( ) 0y yφ φ−∞ = ∞ =                     (77) 

and 

( ) ( ) 0,Ψ −∞ = Ψ ∞ =                     (78) 

whereas before 2R rχ =  and ( ) ( )2i k i kλ χω χ= − . 
The Sturm-Liouvile problem defined by the Schrodinger Equation (76) with 

the boundary condition (78) is a well known problem in quantum mechanics, 
see for example the Appendix A in Nyengeri [18] for details about the derivation 
of the solution. nΨ  is thus given by  

( )
( )

( )

2 2
0 0

2 1 2 2
1 1 1 1, ;1 ;
2 4 2 4

, 0,1,2, ,
cosh n

n n
n n n

n

ir k U ir k UF y

y n
yϑ

χ χ
ϑ ϑ ϑ σ

ϕ ϕ

ϕ

 − −
+ + + + − + + 

  Ψ = = 
 (79) 

where ( ) ( )1 tanhy yσ ϕ= −  and ( )
1 22 2

01 2 1 4n nn ir k Uϑ χ ϕ = − + + − +  . 
We also have 

( )
2

2 0
2

1 1, .
2 4

n
n n

ir k U
k n

χ
λ ω ϕ

ϕ

 −  = − + − + 
   

         (80) 
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Using the fact that ( ) ( )2i k i kλ χω χ= − , we obtain the dispersion relation 

2 2
2 0

2

1 1 .
2 4

n n
n n

k ir k U
i k n

χ
ω ϕ

χ ϕ

 −  − − + − + 
   

            (81) 

Green’s functions associated with the boundary value problem defined by (75) 
and (77) are given by (105) in Appendix A1. Thus, applying (55) gives the 
asymptotic eigenfunctions  

( ) ( ) ( )e ee d e d , 0,1,2, ,
2 2

yrky rky
rk rk

n n n
y

y n
rk rk

ξ ξφ ξ ξ ξ ξ
+∞−

−

−∞

= Ψ + Ψ =∫ ∫    (82) 

where nΨ  is given by (79). 

5. Long-Wave Limit Approximation ( r 0+→ ) on a  
Semi-Infinite Domain 

In this section, we consider the semi-infinite domain 0 y< < ∞ . As seen in Sec-
tion 4.3, the analysis of the solutions obtained by means of Green’s functions is 
not an easy task, here we use a different procedure. However, in the long-wave 
limit approximation, WKB methods cannot be applied, but (20) can be reduced 
to a form that allows us to readily obtain solutions in terms of hypergeometric 
functions whose properties are known. 

In the long-wave limit approximation ( 0r +→ ), the terms proportional to 
4r  in the coefficient of φ  in (20) are quite negligible in amplitude compared 

to those proportional to 2r , and so they can be dropped. Therefore, (20) reduc-
es to 

( )2 2 2 22 0.yyyy yy yyr k ir k U k ir kUφ χ ω φ χ φ − + − + =         (83) 

with boundary conditions  

( ) ( ) ( ) ( )0 0 and 0 0.y yφ φ φ φ= ∞ = = ∞ =             (84) 

in the boundary layer. 
Here, we consider two velocity mean profiles, the linear velocity mean profile 
( )U y by c= +  and the quadratic velocity mean profile ( ) 2U y y by cδ= + +  

and solve the boundary value problem (83)-(84). For the quadratic mean flow 
profile, we assume that δ  is a small constant. This implies that yyU δ=  is al-
so small, and consequently the third term involving yyU δ=  may be dropped. 

5.1. Configuration 3 ( r 0+→ ): ( )U y by c y,0= + < < ∞  

We have 0yyU = . Then Equation (83) becomes  

( )2 2 22 0.yyyy yyr k ir k by c kφ χ ω φ − + + − =            (85) 

Setting ( ), 2yy k c k i bφ λ ω χΨ = = − −    and making the change of varia-
ble ( ) ( )

1 32ir kb yη χ λ= −  gives the Airy equation as in Section 4.2. Its solution 
can also be written in terms of the hypergeometric function 0 1F . We then ob-
tain  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 3 1 32 2
1 2

3 32 2

1 0 1 2 0 1

Ai Bi

2 4; ; ; ; ,
3 9 3 9

y d ir kb y d ir kb y

ir kb y ir kb y
d F d y F

χ λ χ λ

χ λ χ λ
λ

   Ψ = − + −      
   − −
   = + −
   
   

 (86) 

where 1d  and 2d  are constants. To approximate φ , we integrate Ψ  twice 
and we obtain, see (113) and (114) in Appendix 7.3, 

( ) ( ) ( ) ( )

( ) ( )

32
22

1 1 2

32
3

2 2 3 3 4

1 4 5d ; , ;
3 3 3 9

2 4 5,1; , , 2; , 0 ,
3 3 3 9

y

ir kb y
y y y d y F

ir kb y
d y F d y d r

χ λ
φ λ

χ λ
λ +

 −
 = Ψ = −
 
 

 −
 + − + + →
 
 

∫
  (87) 

where 1d , 2d , 3d  and 4d  are constants. 
The second terms is obtained by integrating twice Bi with respect y. So, we 

expect the second term to go to infinite as y →∞  since Bi →∞  as y →∞ . 
Therefore, 2 3 4 0d d d= = =  in order φ  to satisfy the boundary condition 
( ) ( )0 0φ φ= ∞ = . Hence, the eignfunctions are given by  

( ) ( )
( ) 32

2
1 2

,1 4 5, ; , ; , 0,1, 2, .
3 3 3 9

n n n
n n n

ir k b y k
y y k F n

χ λ ω
φ λ ω

  −   = − =   
 

 (88) 

where nd  are constants. To compute the eigenvalues or to obtain the disper-
sion relation, we solve ( )( )0; , , 0y y k kφ λ ω= = , or equivalently, we find the 
zeros of 

2 3

1 2
1 2 4; , ; 0.
3 3 3 9

ir kbF χ λ −
= 

 
                (89) 

5.2. Configuration 4 ( r 0+→ ): ( )U y y by c2= + +δ , δ  = a Small  

Constant 

We consider the mean flow profile given by ( ) 2U y y by cδ= + + , where δ  is a 
small constant. We also consider that ( )2

yyU O rδ=   to make sure the third 
term in (83) is negligible compared to the other terms and can therefore be 
dropped. This gives 

( )2 2 2 22 0.yyyy yyr k ir k y by c kφ χ δ ω φ − + + + − =            (90) 

Setting ( ) ( )2, 2 2yy r i k k b c k iφ λ χ ω δ χ δ Ψ = = + − −  , making the 
change of variable ( ) ( )

1 42 2ir k y bη χ δ δ= +    gives Hermite equation as in 
Section 4.2. We then obtain, in terms of the Reynolds number,  

( )
( )

21
2

1
4

1
4

exp
2

, 0,1,2, ,
2

2 2

n

n n n
n

biRk y
bH iRk y n

δ

δ

  − +        Ψ + =  
  π


 (91) 

whereas before nH  are Hermite polynomials of order n. 

https://doi.org/10.4236/apm.2019.912049


V. Nijimbere 
 

 

DOI: 10.4236/apm.2019.912049 984 Advances in Pure Mathematics 

 

We note that we have to chose Hermite polynomials with even order in order 
the solution to satisfy the boundary condition ( ) ( )0 0y yφ φ= ∞ = , and then in-
tegrate (91) twice to approximate the eigen-solutions for (83)-(84). The disper-
sion relation can be approximated as ( ) ( ), 2 1 4 , 0,1,2,m mk m mλ ω = + =  . In 
that case, in the laminar boundary layer, the eigenvalues can be approximated by  

1 3 2 33 12 , 0,1,2, ,
2 4 4m

i Rk m m+    + =   
   


            (92) 

while we have  

( )
( )

21
22

1
42 21

4

exp
2

, 0,1,2, .
2

2 2

m

m m m
m

biRk y
bH iRk y m

δ

δ

  − +        Ψ + =  
  π


 (93) 

Example 1. If 0m = , for example, ( )0 1H y = . Then using Proposition 1 in 
Nijimbere [19] gives  

( )
( )

( )

21
20 2

0 0 01
4

21
21 1 01

4

1d e d
2

1 32 , ; ,
2 2 2

2

biRk y

y y H y y

by
bF iRk y

δφ

δ
δ

 − + 
 = Ψ =

π
 +     = − +     π

∫ ∫
        (94) 

where the constant of integration is set to zero in order to satisfy the boundary 
condition ( ) ( )0 0y yφ φ= ∞ = . Integrating (94), see Equation (115) in Appendix 
A3, gives  

( )

2

21
20 0 2 2 01

4

1 32d ,1; , 2; ,
2 2 2

4
y

by
by F iRk yδφ ψ
δ

 +     = = − +     π
∫    (95) 

where the constant of integration is set to zero in order to satisfy the boundary 
condition ( ) ( )0 0φ φ= ∞ = .  

6. Concluding Remarks and Discussion 

Squire’s transformation was used to transform the three-dimensional model into 
a two-dimensional one. In two dimensions, the mean flow became ( )U y =

cos sinu wθ θ+  where u , w  are the streamwise and spanwise background 
fluid flow respectively, and θ  is the phase velocity orientation angle in the ho-
rizontal plane (xz-plane). For instance, if 6θ = π , ( )2 tanhu y y= − , 

( )2 3 tanhw y= , then ( ) ( ) ( ) ( ) ( )2 tanh cos 6 2 3 tanh sin 6 .U y y y y y= − π + π =  
This applies to ( ) 2U y y=  showing that a large class of three-dimensional 
background mean flow profiles can be represented in two dimensions by 
( ) 2U y ay by c= + + , a, b and c being constants, using Squire’s transformation. 

For the two-dimensional wake, the mean flow profile, ( ) ( )2
0 sech ,U y U yϕ=

0, 0, 0y U ϕ−∞ < < +∞ > > , having a form of a Bell (Gaussian) function was 
used. 
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Making non-dimensional all variables and parameters, a spacial aspect ratio 
was introduced. This mainly allowed us to consider two configurations, the 
short-wave limit approximation which is obtained by letting the aspect ratio 
taking large values, and the long-wave limit approximation in which the aspect 
ratio takes small values in the Orr-Sommerfeld equation. This also allowed us to 
utilize analytical and asymptotic methods to obtain asymptotic solutions of the 
Orr-Sommerfeld equation and their corresponding eigenvalues. Most impor-
tantly, the procedure used in the present paper works regardless of the value of 
the Reynolds number. 

In the short-wave limit approximation, the dispersion relation, the asymptotic 
eigenvalues and their corresponding asymptotic eigenfunctions were derived for 
configurations where the velocity mean flow profiles can, using Squire’s trans-
formation, be represented either as linear function or as a quadratic function. 
The eigenvalues were approximated using WKB method. Asymptotic eigenva-
lues and asymptotic eigenfunctions were also derived for the two-dimensional 
wake. The eigenfunctions were written in terms of Green’s functions, and their 
corresponding outer approximate solutions were obtained as well. The results 
showed that the amplitude of the wave becomes larger as the Reynolds number 
becomes small. This is in agreement with the fact that small viscosity induces 
viscous instabilities. In the long-wave limit approximation, solutions were de-
rived in terms of hypergeometric functions whose properties are known. 

Due to the evolution of computer technology, Computational Fluid Dynamics 
(CFD) should help more in predicting transition from laminar flows to turbulent 
flows in three-dimensional shear flows. But starting simulations within a good 
range of eigenvalues allowing convergence of simulations to correct solutions 
remains a challenging problem. For this reason, we have approximated eigenva-
lues in the present paper which may, for instance, be used as a starting point in 
CFD simulations. 
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Appendix 

A1. Green’s Functions 

We want to solve, using Green’s functions, the equation 
2 2

yy r kφ φ− = Ψ                         (96) 

subject to boundary conditions  

( ) ( )0 0.y yφ φ= ∞ =                       (97) 

In that case, Green’s functions are some functions ( ),G y ξ  that solve the 
equation  

( )2 2 0yyG r k G yδ− = −                    (98) 

where δ  is the delta Dirac function, and the functions G satisfy the boundary 
conditions  

( ) ( )0, , 0.y yG Gξ ξ= ∞ =                      (99) 

Green’s functions are given by  

( )

( ) ( )

( ) ( )

1 2

1 2

, if 0
,

, if

u y u
y

WG y
u u y

y
W

ξ
ξ

ξ
ξ

ξ


≤ <= 

 < < +∞

             (100) 

where 1u  and 2u  are solutions of the homogeneous equation  
2 2 0yyu r k u− =                      (101) 

subject to boundary conditions  

( ) ( )0 0,y yu u= ∞ =                    (102) 

with 1u  satisfying the boundary conditions ( )1 0 0yu = , while 2u  satisfies 
( )2 0yu ∞ = , and ( ) 1 2 1 2y yW y u u u u= −  is the associated Wronskian. Then, 
( )1 e erky rkyu y −= + , ( )2 e rkyu y −= , and so 2W rk= − . This gives  

( )

( )

( )

cosh e
, if 0

,
cosh e

, if

rk

rky

rky
y

rkG y
rk

y
rk

ξ

ξ
ξ

ξ
ξ

−

−


≤ <= 

 < < +∞

           (103) 

If on the other hand φ  satisfies the boundary conditions  

( ) ( ) 0,y yφ φ−∞ = ∞ =                     (104) 

then Green’s functions are given by  

( )

e e , if
2,

e e , if
2

rky rk

rk rky

y
rkG y

y
rk

ξ

ξ

ξ
ξ

ξ

−

−


−∞ < <= 

 < < +∞

               (105) 

A2. WKB Method Approximation for the Eigenvalues 

We are interested in computing the eigenvalues for the Schrodinger equation  
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( ) 0, 0yyu V y E u− − = →                     (106) 

subject to boundary conditions  
( ) ( )0 0.u u= ∞ =                        (107) 

The physical-optics approximation requires that the valid solution in the re-
gion between ( )0,∞  is a linear combination of two rapidly oscillating WKB 
expressions [15]  

( ) ( )
( )

( )
( )

0 0
d d1 4 1 4

e e ,

y yi iE V E V

u y A E V y B E V y
µ µ µ µ− − −− −∫ ∫

= − + −      
   (108) 

where A and B are constants. 
If ( )0,b∈ ∞ , and 0 and b are the turning points of P, i.e. ( )0 0E V− =  and 

( ) 0E V b− = , it can be readily shown using WKB methods that the constants A 
and B have be chosen in a such way  

( ) ( ) ( )1 4

0

12 sin d .
4

y

u y C E V y E V µ µ
−  π

= − − +    
 
∫        (109) 

This gives  

( )
0

1 d , 0, 0,1,2, .
4

y

E V n nµ µ π
− + = π → =∫ 


          (110) 

Hence,  

( )
0

1d , 0, 0,1,2, ,
4

y

E V n nµ µ  − − π → = 
 ∫            (111) 

or 

( )
0

1d , 1, 0,1,2, .
4

y

E V n r n
r

µ µ π − − = 
 ∫            (112) 

in terms of the aspect ratio. 

A3. Some Useful Integrals 

Some useful integrals involving the generalized hypergeometric function (73) are 
evaluated here. The method used is similar to that in Nijimbere [19]. 

( )( )

3
2

0 1

3

2 3 2

0 0

3 2
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n nn

y
y C y C

n n n n

∞ ∞
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∞
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 
 
 
      
   = =
   
   
   
 
 
 = + +

+ + 
 
 
   Γ   
   = + +

    Γ + + +    
    

∫

∑ ∑∫ ∫

∑
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