

ISSN Online: 2168-4499 ISSN Print: 2168-4480

Effects of Co₃O₄ Cocatalyst on InTaO₄ for Photocatalytic Reduction of CO₂ to CH₃OH under Visible Light Irradiation

Pei-Wen Pan¹, Yu-Wen Chen^{1*}, Anton S. Brichkov², Vladimir V. Kozik²

¹Department of Chemical Engineering, National Central University, Taiwan ²Department of Chemistry, Tomsk State University, Tomsk, Russia Email: *ywchen@cc.ncu.edu.tw

How to cite this paper: Pan, P.-W., Chen, Y.-W., Brichkov, A.S. and Kozik, V.V. (2019) Effects of Co₃O₄ Cocatalyst on In-TaO₄ for Photocatalytic Reduction of CO₂ to CH₃OH under Visible Light Irradiation. *Modern Research in Catalysis*, **8**, 39-49. https://doi.org/10.4236/mrc.2019.84004

Received: September 23, 2019 Accepted: October 27, 2019 Published: October 30, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

InTaO₄ was synthesized by a solid-state reaction method using metal oxide as the starting materials. Co was added by incipient-wetness impregnation. The sample was pretreated by H₂ (200 Torr) reduction at 500°C for 2 h and subsequent O₂ (100 Torr) oxidation at 200°C for 1 h. The core-shell structure of metallic Co and Co₃O₄ was formed by this reduction-oxidation procedure. The catalysts were characterized by powder X-ray diffraction, scanning electron microscope, and ultraviolet-visible spectroscope. The photocatalytic reduction was carried out in a Pyrex reactor with KHCO3 or NaOH aqueous solution bubbled with ultra pure CO₂ gas under visible light illumination. SEM micrographs show many small Co₃O₄ particles on the surface of InTaO₄. The band gap of Co₃O₄-InTaO₄ was 2.7 eV, confirming that these catalysts have the ability to reduce CO2 to methanol. The methanol yield increased with the amount of Co₃O₄ cocatalysts. The catalyst had a higher activity in KHCO₃ aqueous solution than in NaOH solution. The InTaO₄ catalyst with 1 wt% Co₃O₄ cocatalyst had the highest activity among all catalysts. Co₃O₄ was incorporate into the surface structure of InTaO₄ to form Co_xInTaO_{4-x}. It resulted in more defect sites on the surface of InTaO4 and changed the valence band structure. It formed a Schottky barrier to suppress the electron-hole recombination.

Keywords

Carbon Dioxide, Utilization, Photoreduction, Methanol Formation, Visible Light Irradiation

1. Introduction

Photocatalytic reduction of carbon dioxide to methane and methanol has been

extensively studied by many researchers [1]-[6]. Anpo *et al.* [7] carried out a series of research on Ti-zeolite and Ti-mesoporous materials since 1997. Several photocatalysts were reported, such as Ti-oxide/Y-zeolite [8], Ti-MCM-41 [9], Ti-MCM-48 [9], FSM-16 [10] [11], Ti- β zeolite [12], and self-standing porous silica thin films [13] [14] [15], etc. It is important to use the catalysts with low energy band gap, because the lower the band gap is, the easier the photon excited [16] [17] [18] [19].

 $InMO_4$ (M = Ta, Nb, V) catalysts have been reported as photoactive for water splitting reaction under visible light [20] [21] [22] [23]. According to the band structures of $InTaO_4$, the photoreduction of carbon dioxide on $InTaO_4$ catalysts should be feasible. Our previous study [24] showed that $NiO-InTaO_4$ was active for photoreduction of CO_2 to produce methanol. It has been reported that other cocatalysts such as Co_3O_4 [25] [26] are effective. However, it has not been reported in literature for photoreduction of CO_2 [27] [28] [29].

In this study, the $\mathrm{Co_3O_4}$ -InTaO₄ with various $\mathrm{Co_3O_4}$ contents was synthesized. The catalysts were characterized by powder X-ray diffraction, scanning electron microscope, and ultraviolet-visible spectroscopy. The photocatalytic activities of $\mathrm{Co_3O_4}$ -InTaO₄ photocatalysts for $\mathrm{CO_2}$ reduction under visible light irradiation were investigated.

2. Experimental

2.1. Catalyst Preparation

The polycrystalline $InTaO_4$ was synthesized by a solid-state reaction method as reported in literature [24]. The pre-dried In_2O_3 and Ta_2O_5 were used as the starting materials. The stoichiometric amounts of precursors were mixed and reacted in an aluminum crucible in air at 1100° C for 12 h. The material was stirred at least 3 times during preparation to ensure well mix of starting materials.

 ${\rm Co_3O_4\text{-}InTaO_4}$ samples with various ${\rm Co_3O_4}$ cocatalyst (0.3 wt%, 0.5 wt% and 1 wt%, respectively) were prepared by incipient-wetness impregnation with aqueous solution of ${\rm Co(NO_3)_2}$. After preparation, the sample was heated by a water bath at $100^{\circ}{\rm C}$. The dried powder was then calcined at $400^{\circ}{\rm C}$ for 4 h in an oven. The sample was pretreated by ${\rm H_2}$ (200 Torr) reduction at $500^{\circ}{\rm C}$ for 2 h and subsequent ${\rm O_2}$ (100 Torr) oxidation at $200^{\circ}{\rm C}$ for 1 h. The core-shell structure of metallic Co and ${\rm Co_3O_4}$ was formed by this reduction-oxidation procedure.

2.2. Catalyst Characterization

2.2.1 X-Ray Diffraction (XRD)

The XRD experiments were performed using a Siemens D-500 powder diffractometer with Cu- K_a radiation (40 kV, 41 mA), 0.024° step size and 1 sec step time from 5° to 90°. The detailed experimental procedure has been reported in the previous literature [25]. The Bragg-Brentano focusing geometry was em-

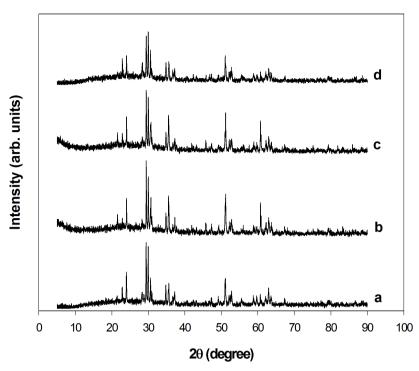
ployed with an automatic divergence slit (irradiated sample length was 12.5 nm), a receiving slit of 0.1 nm, a fixed slit of 4° and a proportional counter as a detector.

2.2.2. Scanning Electron Microscopy (SEM)

The detailed experimental procedure has been reported in previous literature [25]. Briefly, the samples were placed on an aluminum stage specially made for SEM. The samples were sputter-coated with Au for 90 s before the experiment began. The microstructure and morphology of the materials were examined using a scanning electron microscope (Hitachi S-800) with a field gun. An accelerating voltage of 20 kV was used. The composition of the samples was determined by X-ray energy dispersion spectrum (EDS) with accelerating voltage of 20 kV.

2.2.3. Ultraviolet-Visible Spectroscopy (UV-vis)

The diffuse reflectance UV-vis was measured with a Cary 300 Bio UV-visible Spectrophotometer. Powder samples were loaded in a quartz cell with Suprasil windows, and the spectra were collected in the range from 300 nm to 800 nm against quartz standard.


2.3. Photocatalytic Reaction

Photocatalytic reactions were carried out in a continuous flow reactor. The detailed reaction procedure was described in previous literature [25]. The catalyst powder (0.14 g) was dispersed in a reactant solution (50 mL) in a down-window type irradiation cell made of Pyrex glass (75 ml). 0.2 M Sodium hydroxide aqueous solution or 0.2 M potassium bicarbonate aqueous solutions were employed as an absorbent of carbon dioxide and the ultra pure CO2 were added continuously into the reactor for 1 h to remove the oxygen in the water, and saturated carbon dioxide in the solution. Using the cooling system combined with water pump, the temperature of the reactor was maintained at room temperature. Light on to start the reaction, and the irradiation was continued for 20 h. The light source was a 500 W halogen lamp (Ever bright; H-500). After reaction for 20 h, the reaction solution was centrifuged for 10 min to separate the reaction products from the powder catalyst. 10 mL of the upper stratum was taken for analyzing the concentration of methanol. The amount of methanol was determined by a gas chromatography equipped with a flame ionization detector, using Poropack-QS column.

3. Results and Discussion

3.1. XRD

Figure 1 shows the XRD patterns of the Co_3O_4 -InTa O_4 samples. The XRD patterns of InTa O_4 samples are well consistent with monoclinic InTa O_4 pattern and space group P2/c, indicating that the samples were fully crystallized in the wolframite-type structure. InTa O_4 has major peaks at around $2\theta = 23.967^{\circ}$ (-110),

Figure 1. XRD patterns of InTaO₄ with various amounts of Co₃O₄ cocatalysts. (a) InTaO₄, (b) 0.3 wt%, (c) 0.5 wt% and (d) 1.0 wt% Co₃O₄-InTaO₄.

29.356° (–111) and 29.899° (111) [20] [21] [22] [23] [24]. The lattice parameters of the crystal were refined as: a = 4.83300 (–1) Å, b = 5.77800 (1) Å, c = 5.15700 (1) Å and β = 91.380°. The indexed results are in good agreement with those reported in the JCPDS database card (No. 25-0391). Zou and his coworkers [20] have reported the structural refinements of InTaO₄. The InTaO₄ compound belongs to a monoclinic system with space group P2/c, a = 5.1552 (1), b = 5.7751 (1), c = 4.8264 (1) Å and β = 91.373 (1)°. The structure is composed of two kinds of octahedral: InO₆ octahedron and TaO₆ octahedron. The InO₆ octahedron connects to each other to form zigzag chains by sharing edge. These InO₆ chains are connected through TaO₆ octahedron to form the three dimensional network.

Figure 1 also shows that the characteristic XRD peaks corresponding to Co species such as Co₃O₄ were not observed in the XRD patterns, indicating that the Co species on InTaO₄ was too small to detect. There was no difference in XRD patterns between InTaO₄ and 1.0 wt% Co₃O₄-InTaO₄, indicating that the addition of Co₃O₄ cocatalyst on the surface of InTaO₄ did not change the bulk structure of InTaO₄. However, it could modify the surface of InTaO₄ as discussed in the latter section. One can conclude that Co₃O₄ nanoparticles were well dispersed on the surface of InTaO₄.

3.2. **SEM**

Figure 2 shows the SEM photographs of $InTaO_4$ samples with various amounts of Co_3O_4 cocatalysts. The particle size of $InTaO_4$ was about 0.5 µm. Many nano Co_3O_4 particles were present on $InTaO_4$ surface, in consistent with XRD results.

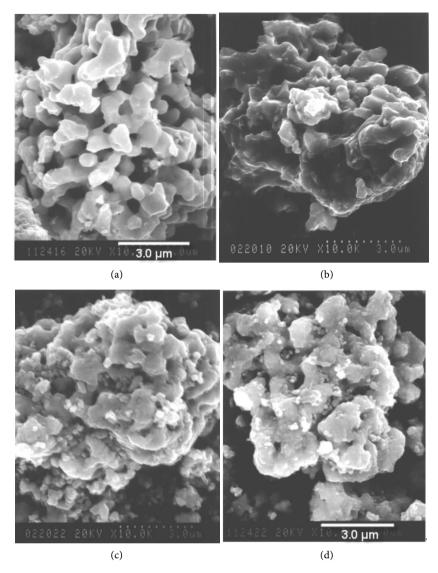


Figure 2. SEM micrographs, (a) $InTaO_4$, (b) 0.3 wt% Co_3O_4 - $InTaO_4$, (c) 0.5 wt% Co_3O_4 - $InTaO_4$, and (d) 1.0 wt% Co_3O_4 - $InTaO_4$.

3.3. UV-vis Spectroscopy

Photocatalytic activity is dependent on the band structure of semiconductor. The information of band structure is very important for understanding photocatalytic reaction. **Figure 3** shows the diffuse reflectance spectra of $InTaO_4$ samples with various amounts of Co_3O_4 loading. It shows higher light absorption ability of $Co_3O_4/InTaO_4$ in the visible light compared with $InTaO_4$. The band gap of $InTaO_4$ was 3.0 eV. For 0.3, 0.5, and 1.0 wt% Co_3O_4 - $InTaO_4$ catalysts after calcinations, an obvious absorption in the visible light region were observed on all catalysts. The absorbance of the sample increased with increasing the amount of Co_3O_4 cocatalysts. The band gap of 0.3, 0.5, and 1.0 wt% Co_3O_4 - $InTaO_4$ were calculated to be 2.8 eV, 2.7 eV and 2.6 eV, respectively (**Table 1**). The results indicate that adding Co_3O_4 cocatalyst on $InTaO_4$ changed the band gap. The bangap of the catalyst decreased with an increase of Co_3O_4 loading.

Table 1. Band gap of Co₃O₄-InTaO₄.

Photocatalysts	E _g (eV)
InTaO ₄	3.0
$0.3~\rm wt\%~\rm Co_3O_4\text{-}InTaO_4$	2.8
$0.5 \text{ wt\% Co}_3\text{O}_4\text{-InTaO}_4$	2.7
$1.0 \text{ wt\% Co}_3\text{O}_4\text{-InTaO}_4$	2.6

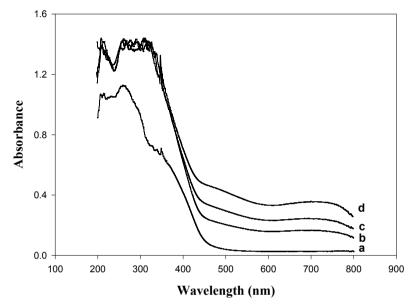
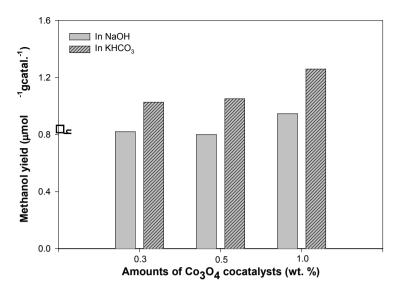



Figure 3. UV-vis spectra, (a) $InTaO_4$, (b) 0.3 wt% Co_3O_4 - $InTaO_4$, (c) 0.5 wt% Co_3O_4 - $InTaO_4$, and (d) 1.0 wt% Co_3O_4 - $InTaO_4$.

3.4. Photocatalytic Reaction

The activities of carbon dioxide reduction on InTaO₄ samples with various Co₃O₄ loadings are shown in **Figure 4**. All catalysts produced methanol from the photoreduction of CO₂ under visible light irradiation. No other products were detected in gas phase and liquid phase. The rate of the reaction product increased linearly with the visible light-irradiation time, and the reaction stopped immediately when the irradiation was ceased. The formation of the reaction product was not detected under dark conditions. The reaction rate varied with the smount of cocatalyst. The results in **Figure 4** were obtained from the InTaO₄ catalyst with Co₃O₄ cocatalyst suspended in 0.2 M NaOH and 0.2 M KHCO₃ aqueous solution. The highest methanol yield of 1.0 wt% Co₃O₄-InTaO₄ was 1.150 μmol.h⁻¹ g catal.⁻¹. In the NaOH solution, 0.5 wt% Co₃O₄-InTaO₄ demonstrated the highest methanol yield, and the Co₃O₄ cocatalyst enhanced the production of methanol. The Co₃O₄ cocatalyst not only provides reaction centers, which effectively transfer the electrons from the surface of catalysts to Co, but also enhances the light absorbance.

The results showed that the photocatalytic reduction was induced by the visible light irradiation. The formation rate of methanol increased with the presence

Figure 4. Methanol yield of photoreduction of CO₂ on InTaO₄ with various amounts of CO₃O₄ cocatalysts after pretreatment in 0.2 M NaOH and 0.2 M KHCO₃ aqueous solutions, under visible light irradiation. Catalyst: 0.14 g; Volume of the solution: 50 ml.

of cocatalysts on InTaO₄ photocatalysts. The photocatalyst had a higher activity in KHCO₃ aqueous solution than in NaOH solution, in agreement with literature results [17]. The InTaO₄ catalyst with 1.0 wt% Co₃O₄ cocatalyst in KHCO₃ aqueous solution gave the highest yield of methanol among all catalysts.

In the case of 1.0 wt% Co_3O_4 -InTaO₄, Co_3O_4 species were loaded on InTaO₄ as nanoparticles, which were not observed by SEM analysis. However, after pretreatment, there was a formation of bulky Co_3O_4 particles on InTaO₄ due to aggregation of Co_3O_4 nanoparticles, leading to low photocatalytic activity. Bulk Co_3O_4 is a p-type semiconductor, which induces the formation of positive holes. For photoreduction of CO_2 , hole scavengers are necessary to facilitate photoreduction; consequently, bulk Co_3O_4 reduced the photocatalytic activity of 1.0 wt% Co_3O_4 -InTaO₄ catalyst. Hence, it is necessary to avoid the formation of bulk Co_3O_4 .

The characterization results of 0.5 wt% Co_3O_4 -loaded $InTaO_4$ photocatalyst showed the presence of ultra-fine Co_3O_4 thin films on metallic cobalt particles. The high dispersion of Co_3O_4 particles on the surface and interface of $InTaO_4$ plays a major role in determining its photocatalytic activity. The metallic cobalt acts as a bias for electron transfer from $InTaO_4$ to Co_3O_4 layer and the excited electron can migrate easily to the surface to facilitate photoreduction of CO_2 . Methanol acts as a hole scavenger to improve the yield.

It should be noted that for dry InTaO₄, all the donor states are occupied and no optical transitions from the valence band to the donor state occurs. Instead, when InTaO₄ is immersed in water, partial depletion of the donor states will occur. This leads to band bending and the formation of a depletion layer, as reported in literature [23] [27] [28] [29]. The ionized donor states can be filled through optical excitation of valence band electrons, which explains the sub-bandgap optical absorption of InTaO₄ and high photoactivity of InTaO₄ in

liquid phase reduction of CO₂. Zou *et al.* [20] reported that the bottom of conduction band of Ta_{3d} is lower than conduction band level of Co₃O₄. Accordingly, the conduction band level of the Co₃O₄/InTaO₄ is not high enough for electrons transfer across InTaO₄ and Co₃O₄ interface. Co cations are presumably located on the Ta³⁺ sites, especially when one considers that the formation of singly charged acceptor defects is energetically much more favorable than the formation of the triply charged defects that would be formed if any Co would substitute for Ta⁵⁺. Since Co₃O₄ was added after formation of full crystallite of InTa₄. Co₃O₄ did not incorporate into bulk InTaO₄ crystal. Co₃O₄ was incorporate into the surface structure of InTaO₄ as Co_xInTaO_{4-x}. It resulted in more defect sites on the surface of InTaO₄ and changed the valence band structure and the surface became a Schottky barrier to suppress the recombination of electron and holes. The higher light absorption ability of Co₃O₄/InTaO₄ in the visible light compared with InTaO₄ was also responsible for the high activity of Co₃O₄/inTaO₄ catalysts.

4. Conclusion

InTaO₄ was synthesized by a solid-state reaction method using metal oxide as the starting materials. Various amounts of Co were added by incipient-wetness impregnation method. The catalysts were characterized by powder X-ray diffraction, scanning electron microscope, and ultraviolet-visible spectroscope. The photocatalytic reduction was carried out in a Pyrex reactor with KHCO3 or NaOH aqueous solution bubbled with CO₂ gas under visible light illumination. SEM micrographs show the appearance of many small Co₃O₄ particles on In-TaO₄. The band gap of Co₃O₄-InTaO₄ was 2.7 eV, showing that these catalysts have the ability to reduce CO2 to methanol. The effect of adding various amounts of cocatalysts on the photocatalytic reduction was investigated. The methanol yield increased with the amount of Co₃O₄ cocatalyst. The photocatalyst had a higher activity in KHCO3 aqueous solution than in NaOH aqueous solution. The reaction on InTaO₄ catalyst with 1.0 wt% Co₃O₄ cocatalyst had the highest yield of methanol among all catalysts. Co₃O₄ was incorporate into the surface structure of InTaO₄ as Co_xInTaO_{4-x}. It resulted in more defect sites on the surface of InTaO4 and changed the valence band structure. The surface became a Schottky barrier to suppress the recombination of electron and holes. The higher light absorption ability of Co₃O₄/InTaO₄ in the visible light compared with InTaO₄ was also responsible for the high activity of Co₃O₄/inTaO₄ catalysts.

Acknowledgements

This research was supported by Ministry of Science and Technology, Taiwan.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- [1] Li, K., An, X., Park, K.H., Khraisheh, M. and Tang, J. (2014) A Critical Review of CO₂ Photoconversion: Catalysts and Reactors. *Catalysis Today*, 224, 3-15. https://doi.org/10.1016/j.cattod.2013.12.006
- [2] Guan, G., Kida, T., Harada, T., Isayama, M. and Yoshida, A. (2003) Photoreduction of Carbon Dioxide with Water over K₂Ti₆O₁₃ Photocatalyst Combined with Cu/ZnO Catalyst under Concentrated Sunlight. *Applied Catalysis B: Environmental*, 41, 387-394. https://doi.org/10.1016/S0926-860X(03)00205-9
- [3] Neaţu, Ş., Maciá-Agulló, J.A. and Garcia, H. (2014) Solar Light Photocatalytic CO₂ Reduction: General Considerations and Selected Bench-Mark Photocatalysts. *International Journal of Molecular Sciences*, 15, 5246-5524. https://doi.org/10.3390/ijms15045246
- [4] Anpo, M. and Kamat, P.V. (2010) Environmentally Benign Photocatalysts, Applications of Titanium Oxide-Based Materials. Springer, New York. https://doi.org/10.1007/978-0-387-48444-0
- [5] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. and Bahnemann, D.W. (2014) Understanding TiO₂ Photocatalysis: Mechanisms and Materials. *Chemical Reviews*, 114, 9919-9925. https://doi.org/10.1021/cr5001892
- [6] Anpo, M. (2013) Photocatalytic Reduction of CO₂ with H₂O on Highly Dispersed Ti-Oxide Catalysts as a Model of Artificial Photosynthesis. *Journal of CO₂ Utilization*, **1**, 8-20. https://doi.org/10.1016/j.jcou.2013.03.005
- [7] Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y. and Honda, M. (1997) Photocatalytic Reduction of CO₂ with H₂O on Titaniun Oxide Anchored within Micropores of Zeolite: Effect of the Structure of the Active Sites and the Addition of Pt. *The Journal of Physical Chemistry B*, **101**, 2632-2636. https://doi.org/10.1021/jp962696h
- [8] Anpo, M., Takeuchi, M., Ikeue, K. and Dohshi, S. (2002) Design and Development of Titanium Oxide Photocatalysts Operating under Visible and UV Light Irradiation. The Application of Metal Ion-Implantation Techniques to Semiconducting TiO₂ and Ti/Zeolite Catalysts. *Current Opinion in Solid State & Materials Science*, 6, 381-388. https://doi.org/10.1016/S1359-0286(02)00107-9
- [9] Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S.G., Ichihashi, Y., Park, D.R., Suzuki, Y., Koyano, K. and Tatsumi, T. (1998) Photocatalytic Reduction of CO₂ with H₂O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts. *Catalysis Today*, 44, 327-334. https://doi.org/10.1016/S0920-5861(98)00206-5
- [10] Ikeue, K., Mukai, H., Yamashita, H., Inagaki, S., Matsuoka, M. and Anpo, M. (2001) Characterization and Photocatalytic Reduction of CO₂ with H₂O on Ti/FSM-16 Synthesized by Various Preparation Methods. *Journal of Synchrotron Radiation*, 8, 640-646. https://doi.org/10.1107/S0909049500013674
- [11] Ikeue, K., Yamashita, H. and Anpo, M. (1999) Photocatalytic Reduction of CO₂ with H₂O on Titanium Oxide Prepared within the FSM-16 Mesoporous Zeolite. *Chemistry Letters*, **28**, 1135-1139. https://doi.org/10.1246/cl.1999.1135
- [12] Ikeue, K., Yamashita, H. and Anpo, M. (2001) Photocatalytic Reduction of CO₂ with H₂O on Ti-β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties. *The Journal of Physical Chemistry B*, **105**, 8350-8358. https://doi.org/10.1021/jp010885g
- [13] Ikeue, K., Nozaki, S., Ogawa, M. and Anpo, M. (2002) Characterization of Self-Standing Ti-Containing Porous Silica Thin Film and Their Reactivity for the Photocatalytic Reduction of CO₂ with H₂O. Catalysis Today, 74, 241-246. https://doi.org/10.1016/S0920-5861(02)00027-5

- [14] Ikeue, K., Nozaki, S., Ogawa, M. and Anpo, M. (2002) Photocatalytic Reduction of CO₂ with H₂O on Ti-Containing Porous Silica Thin Film Photocatalysts. *Catalysis Letters*, **80**, 111-116.
- [15] Shioya, Y., Ikeue, K., Ogawa, M. and Anpo, M. (2003) Synthesis of Transparent Ti-Containing Mesoporous Silica Thin Film Materials and Their Unique Photocatalytic Activity for the Reduction of CO₂ with H₂O. Applied Catalysis A: General, 254, 251-258. https://doi.org/10.1016/S0926-860X(03)00487-3
- [16] Yamashita, H., Fujii, Y., Ichihashi, Y., Zhang, S.G., Ikeue, K., Park, D.R., Koyano, K., Tatsumi, T. and Anpo, M. (1998) Selective Formation of CH₃OH in the Photocatalytic Reduction of CO₂ with H₂O on Titantium Oxide Highly Dispersed within Zeolites and Mesoporous Molecular Sieves. *Catalysis Today*, 45, 221-227. https://doi.org/10.1016/S0920-5861(98)00219-3
- [17] Ku, Y., Lee, W.H. and Wang, W.Y. (2004) Photocatalytic Reduction of Carbonate in Aqueous Solution by UV/TiO₂ Process. *Journal of Molecular Catalysis A: Chemical*, 212, 191-198. https://doi.org/10.1016/j.molcata.2003.10.047
- [18] Matsuoka, M. and Anpo, M. (2003) Review, Local Structures, Excited States, and Photocatalytic Reactivities of Highly Dispersed Catalysts Constructed within Zeolites. *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, 3, 225-240. https://doi.org/10.1016/S1389-5567(02)00040-0
- [19] Inoue, T., Fujishima, A., Konishi, S. and Honda, K. (1979) Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. *Nature*, **277**, 637-644. https://doi.org/10.1038/277637a0
- [20] Zou, Z., Ye, J. and Arakawa, K. (2000) Structural Properties of InNbO₄ and InTaO₄: Correlation with Photocatalytic and Photophysical Properties. *Chemical Physics Letters*, 332, 271-277. https://doi.org/10.1016/S0009-2614(00)01265-3
- [21] Matsushima, S., Obata, K., Nakamura, H., Arai, M. and Kobayashi, K. (2003) First-Principles Energy Band Calculation for Undoped and N-Doped InTaO₄ with Layered Wolframite-Type Structure. *Journal of Physics and Chemistry of Solids*, 64, 2417-2421. https://doi.org/10.1016/S0022-3697(03)00283-X
- [22] Zeng, G.S., Yu, J., Zhu, H.Y., Liu, H.L., Xing, Q.J., Bao, S.K., He, S., Zou, J.P. and Au, C.T. (2015) Controllable Synthesis of InTaO₄ Catalysts of Different Morphologies Using a Versatile Sol Precursor for Photocatalytic Evolution of H₂. RSC Advances, 5, 37603-37609. https://doi.org/10.1039/C5RA03638K
- [23] Singhal, N., Goyal, R. and Kumar, U. (2017) Visible-Light-Assisted Photocatalytic CO₂ Reduction over InTaO₄: Selective Methanol Formation. *Energy Fuels*, **31**, 12434-12438. https://doi.org/10.1021/acs.energyfuels.7b02123
- [24] Pan, P.W. and Chen, Y.W. (2007) Photocatalytic Reduction of Carbon Dioxide on NiO/InTaO₄ under Visible Light Irradiation. *Catalysis Communications*, 8, 1546-1549. https://doi.org/10.1016/j.catcom.2007.01.006
- [25] Lee, D.S. and Chen, Y.W. (2015) Photocatalytic Reduction of Carbon Dioxide with Water on InVO₄ with NiO Cocatalysts. *Journal of CO₂ Utilization*, 10, 1-6. https://doi.org/10.1016/j.jcou.2015.02.005
- [26] Lee, D.S., Chen, H.J. and Chen, Y.W. (2012) Photcatalytic Reduction of Carbon Dioxide with Water using InNbO₄ Catalyst with NiO and Co₃O₄ Cocatalysts. *Journal of Physics and Chemistry of Solids*, 73, 661-667. https://doi.org/10.1016/j.jpcs.2012.01.005
- [27] Malingowski, A.C., Stephens, P.W., Huq, A., Huang, Q., Khalid, S. and Khalifah, P.G. (2012) Substitutional Mechanism of Ni into the Wide-Band-Gap Semiconductor InTaO₄ and Its Implications for Water Splitting Activity in the Wolframite

- Structure Type. *Inorganic Chemistry*, **111**, 6096-6103. https://doi.org/10.1021/ic202715c
- [28] Botella, P., Errandonea, D. and Garg, A.B. (2019) High-Pressure Characterization of the Optical and Electronic Properties of InVO₄, InNbO₄, and InTaO₄. *Applied Sciences*, **1**, 389-396. https://doi.org/10.1007/s42452-019-0406-7
- [29] Scaife, D.E. (1980) Oxide Semiconductors in Photoelectrochemical Conversion of Solar Energy. Solar Energy, 25, 42-54. https://doi.org/10.1016/0038-092X(80)90405-3