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Abstract 
The Rosenbrock function optimization belongs to unconstrained optimiza-
tion problems, and its global minimum value is located at the bottom of a 
smooth and narrow valley of the parabolic shape. It is very difficult to find the 
global minimum value of the function because of the little information pro-
vided for the optimization algorithm. According to the characteristics of the 
Rosenbrock function, this paper specifically proposed an improved differen-
tial evolution algorithm that adopts the self-adaptive scaling factor F and 
crossover rate CR with elimination mechanism, which can effectively avoid 
premature convergence of the algorithm and local optimum. This algorithm 
can also expand the search range at an early stage to find the global minimum 
of the Rosenbrock function. Many experimental results show that the algo-
rithm has good performance of function optimization and provides a new 
idea for optimization problems similar to the Rosenbrock function for some 
problems of special fields. 
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1. Introduction 

Differential evolution (DE) is a simple yet powerful search technique introduced 
by Storn and Price in 1995  [1]. It soon became a popular tool for solving global 
optimization problems because of several attractive features like having fewer 
control parameters, ease in programming, efficiency, etc. DE has a very special 
connection with artificial life, especially evolutionary algorithms. DE and par-
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ticle swarm optimization (PSO) are optimization algorithms based on collective 
intelligence theory [2]. They all use collective intelligence to optimize the result 
of searching, which comes from individual cooperation and competition within 
the group. However, compared to the evolutionary algorithm, DE retains the 
global search strategy based on population and uses real number coding, diffe-
rential-based simple mutation operation and one-to-one competitive survival 
strategy, which reduces the complexity of genetic operations. At the same time, 
DE has special memory ability to track current search status dynamically to ad-
just the strategy of search. This capability indicates that the DE algorithm has 
strong global convergence ability and robustness without relying on the feature 
information of the problem, and the DE algorithm is suitable for solving opti-
mization problems that cannot be solved by conventional mathematical pro-
gramming methods in complex environments. Therefore, it is very academic 
and engineering value to conduct theoretical and applied research on DE [3], as 
an efficient parallel search algorithm. 

In the minimization of the function, the phenomenon of “super valley” often 
occurs (at least in the local range) on the contour plane of the objective function. 
This shape is similar to the parabola with an upward opening. The global mini-
mum value of the objective function is located at the bottom of the narrow val-
ley. The optimization algorithm should have the ability to gradually approach 
the global minimum of the objective function along a narrow valley, and the 
Rosenbrock function of Rosenbrock, as a typical test function, was created for 
testing whether the optimization algorithm has this capability of searching the 
global minimum [4]. 

Many optimization algorithms now have a good optimization performance for 
most test functions, but much literature shows that many efficient algorithms 
and even many intelligent search algorithms are difficult to find global mini-
mum values for the optimization of the Rosenbrock function, such as gradient 
descent, genetic algorithm (GA), particle swarm optimization (PSO) [5]. Specif-
ically, for the gradient descent: when the objective function f(x) is minimized by 
the gradient descent, the gradient of the function is the vector in the direction of 
maximum local growth of f(x), and the opposite direction of the vector is the 
steepest downward direction. Because at point x, the negative gradient of f(x) 
points to the direction in which f(x) decreases the fastest for each component of 
x and is orthogonal to the contour of f(x) at x. Since the response surface of the 
Rosenbrock function has a curved and narrow valley, and the steepest descend-
ing direction of the point in the valley is almost perpendicular to the best direc-
tion leading to the minimum value of f(x), the steepest drop around the curve in 
the valley. The gradient descent converges very slowly and does not converge at 
all even in a reasonable time. For GA, PSO and other intelligent search algo-
rithms: In the early stage of the algorithm, these algorithms are easy to fall into 
local optimum on one side of the valley and cannot jump out because the global 
minimum value of the Rosenbrock function is at the bottom of the valley. 
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This paper proposes an improved differential evolution algorithm with self- 
adaptive mutation and control parameters to solve this kind of problem and op-
timize the characteristic design of the Rosenbrock function. In this algorithm, 
the scaling factor F can be adaptively changed by the previous learning expe-
rience, and the level of the crossover rate CR depends on the fitness value of the 
individual. Experiments show that the improved DE algorithm has better con-
vergence speed and accuracy than other types of improved schemes. 

2. Basic Differential Evolution Algorithm 

Starting from a population of randomly initialized solutions, the DE algorithm 
employs simple mutation and crossover operators to generate new candidate 
solutions and utilizes a one-to-one competition scheme to deterministically de-
cide whether the offspring will replace their parents in the next generation. The 
steps of the standard DE algorithm are as follows:  

1) Population initialization 
The matrix X defining N × D is used to store the data of the current popula-

tion, where D is the dimension of the individual in the population, N is the size 
of the population. At first, it randomly generates N × D data obeying the uni-
form distribution law and satisfying the specific constraint conditions. Put them 
into the matrix X to form the initial population  

( ) ( ) ( ) ( ){ }1 20 0 , 0 , , 0NX X X X=  . 

2) Variation operation 
Let the population size be N, the current evolutionary individual is represented 

by ( )iX t  ( 1,2, ,i N=  ) and t is the current number of evolutions. Randomly 
select three different individuals from the current evolutionary group and meet 
the conditions { }1 2 3, , 1, 2, ,r r r N∈  . Individual ( )2rX t , ( )3rX t  and difference 

( ) ( )2 3r rX t X t−  are regarded as the disturbance factors of ( )1rX t . Add the fac-
tors and ( )1rX t  to obtain the current mutant individual ( )iV t , as shown in Eq-
uation (1): 

( ) ( ) ( ) ( )( )2 3i ri r rV t X t F X t X t= + −                 (1) 

where F is the scaling factor that controls the disturbance factor. Individuals in a 
group are composed of D components, then variant individuals ( )iV t  also com-
posed of D components, so ( ) ( ) ( ) ( )( )1 2, , ,i r r iDV t v t v t v t=  . 

3) Crossover operation 
Generate random integers { }4 1, 2, ,r D∈  . The discrete variant individual 
( )iV t  crosses the current evolutionary individual ( )iX t  to obtain an intermediate 

test individual ( )iU t , which will compete with the ( )iX t  for the selection op-
eration and ( )iU t  consists of D component, ( ) ( ) ( ) ( )( )1 2, , ,i i i iDU t u t u t u t=  . 
The jth component (the chromosome in the individual) is as shown in Equation 
(2): 

( )
( ) ( )
( ) ( )

4

4

0,1 or

0,1 or
ij

ij
ij

v t randj CR j r
u t

v t randj CR j r

≤ =


> ≠
                (2) 
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{ }4 1, 2, ,r D∈   and ( )0,1randj  represents a uniformly distributed random 
number obeying (0,1), which can guarantee that the individual is mutated ( )iV t  
at least one dimension component exists in the test individual ( )iU t  to ensure 
the effectiveness of the mutation operation. [ ]0,1CR∈  is the probability of 
crossover. The lower the probability of CR, the similarity of the intermediate test 
individual ( )iU t  for current evolutionary individual ( )iX t  is greater. This will 
help ensure the diversity of the population and the global optimization of the algo-
rithm. 

4) Selection operation 
In the case of seeking a minimum solution, the smaller the fitness value, the 

better. If the fitness value of ( )iU t  is less than the fitness value, the intermediate 
individual ( )iU t  will replace the current individual ( )iX t  with the new indi-
vidual ( )1iX t + . Otherwise, the current evolutionary individual ( )iX t  will inhe-
rit directly into the next generation. If the individual fitness value is ( )( )if X t , 
the selection operation can be expressed as follows (3): 

( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

if
1

if
i i i

i
i i i

U t f U t f X t
X t

X t f U t f X t

 ≤+ = 
>

             (3) 

5) Evaluation 
In summary, the DE algorithm has the following advantages: 
a) The algorithm is generic and does not depend on the problem information; 
b) The algorithm principle is simple and easy to implement; 
c) Group search, with the ability to memorize the optimal solution of individ-

uals; 
d) Collaborative search, with the ability to further search using individual lo-

cal information and group global information guidance algorithms; 
e) It is easy to mix with other algorithms to construct an algorithm with better 

performance. 
The search performance of the DE algorithm depends on the balance between 

the global exploration of the algorithm and the local development capability, 
which depends to a large extent on the selection of the control parameters of the 
algorithm, including population size, scaling factor and crossover probability. 
Compared with other evolutionary algorithms, the DE algorithm requires fewer 
parameters to adjust. It is necessary to select reasonable parameters for the guid-
ance of selection. 

3. The Analysis of the Rosenbrock Function 

The Rosenbrock function is a classic function in unconstrained optimization theory 
and method. It is an important tool to measure the advantages and disadvantag-
es of unconstrained algorithms. In the field of numerical optimization, this func-
tion was proposed by Howard H. Rosenbrock in 1960. The function is a typical 
non-convex function, mainly used to optimize the performance test of the algo-
rithm, and is known as the Rosenbrock valley function or the Rosenbrock bana-
na function. 
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3.1. Definition of the Rosenbrock Function 

The Rosenbrock function is defined as follows: 

( ) ( ) ( )22 2, 1 100f x y x y x= − + −                 (4) 

Each contour of the Rosenbrock function is roughly parabolic, whose global 
minimum is also in a parabolic valley (banana-type valley). It is easy to find this 
valley but quite difficult to find the minimum of the whole domain because the 
value in the valley does not change much. 

The global minimum of the function is at (x, y) = (1, 1) and the value is f(x, y) 
= 0. Sometimes the coefficient of the second term (100 in the above formula) is 
different, but it does not affect the position of the global minimum. This paper 
mainly focuses on the Rosenbrock function in the two-dimensional case. 

The three-dimensional map of the two variables of the Rosenbrock function is 
shown in Figure 1. 

The more complex form of Rosenbrock function under multivariate  [6] as fol-
lows: 

( ) ( ) ( )221 2
11 1 100 ,N N

i i iif x x x x x R−
+=

 = − + − ∀ ∈  ∑          (5) 

It can be proved that when N = 3, this form of Rosenbrock function has only a 
minimum value, and the position is ( )1,1,1 , in 4 7N≤ ≤ , there are only two 
minimum values. When all variables are 1, there is a global minimum  

( )( )1 2, , , 1,1, ,1Nx x x = −  . There is a local minimum nearby. This result is ob-
tained after the gradient of the function is zero. The Rosenbrock function is an 
unconstrained function optimization problem, which exhibits the characteristics 
of a multimodal function with a dimension greater than 3 and a unimodal indi-
visible function with other dimensions. 
 

 
Figure 1. 3D graph of Rosenbrock function. 
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3.2. The Analysis of the Rosenbrock Function 

As you can see in Figure 1, the global minimum of the Rosenbrock function is at 
the bottom of a valley with a smooth and narrow parabola shape. It is difficult 
for general optimization algorithms to distinguish the search direction because 
of the less search information provided. It becomes difficult to find the global 
minimum value and easy to fall into a local optimum on one side of the valley. 
In the final search phase, these algorithms cannot jump out when the algorithm 
optimizes the Rosenbrock function. 

This paper proposes a further improvement of the original differential evolu-
tion algorithm, which combines the multi-strategy crossover operation and the 
self-adaptive dynamic adjustment algorithm parameters so that the algorithm 
takes into account both global search and local search. The new algorithm im-
proves the convergence speed and accuracy of the optimization on the Rosen-
brock function. The test results below verify the superiority of the algorithm. 

4. Improved Differential Evolution Algorithm 

4.1. Scaling Factor F 

By literature [7], it can be seen that when the scaling factor F is between [0.5, 1], 
the algorithm obtains better results. When F < 0.5 or F > 1, the quality of the so-
lution obtained by the algorithm is not high. And the literature shows that the 
average optimal value is ideal for almost all test functions at F = 0.5. Therefore, 
we take the benchmark value min max0.5, 1F F= =  in the paper. 

It can be known from Equation (1) that the value of F directly affects the con-
vergence speed and convergence of the algorithm: the scaling factor F controls 
the amplitude of the difference vector, and its value also affects the convergence 
and convergence speed. When F is small, the convergence speed is faster, but if it 
is too small, it tends to converge to the non-optimal solution; if F is large, it is 
conducive to convergence to the optimal solution, but the convergence speed is 
slower. 

We need to maintain the diversity of the population in the initial stage of the 
search, and we should get as many individuals as possible globally optimal when 
doing a global search. We should also strengthen the ability of local search in the 
later stage of the search to improve the accuracy of the algorithm. 

Therefore, we take such a measure for the value of F: The previous F takes a 
larger value to increase the mutation rate and ensure the ability of global search. 
And we reduce the F as the number of iterations increases, which can improve 
the ability of local search. We can propose an improved scheme of self-adaptive  

F: By literature [8], a linearly decreasing 
( )max min

max

t F F
F F

T
−

= −  ( maxF  and  

minF  are the maximum and minimum values of F, t is the current number of 
iterations, and T is the maximum number of iterations) was proposed instead of 
the traditional fixed value F. By literature [9], a nonlinearly decreasing F strategy  
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was proposed: ( )
2

max max min
max

gF F F F
G

 
= − −  

 
 (g is the current number of  

iterations, maxG  is the maximum number of iterations), the function of the 
strategy is similar to a parabola with an opening down. 

This paper uses an exponential declining strategy that is flatter and smoother 
than the first two. 

1
1e

0 2
T

T t
F F

 − + − 
∗=                          (6) 

In the above formula, 0F  is equivalent to minF , t and T are the current num-
ber of iterations and the maximum number of iterations, respectively. At the be-
ginning of the algorithm, the self-adaptive mutation operator F is 02F , which 
means that the individual diversity can be maintained at the initial stage because 
of a large mutation rate; as the algorithm progresses, the mutation rate decreases 
gradually and will be close to 0F  at the end of the algorithm, thus avoiding the 
destruction of the optimal solution. 

4.2. Crossover Rate CR 

The size of the crossover rate CR has a great influence on the convergence and 
convergence speed of the algorithm. It can be seen from Equation (2) that the 
larger the value of CR, the more Vi(t) contributes to Ui(t), which means that 
there will be more variant individuals in the crossover operation. This trend is 
conducive to opening up new space and accelerating convergence.  

However, the mutated individuals tend to be the same at a later stage (the 
self-adaptive values of the mutated individuals tend to be the same), which is not 
conducive to maintaining diversity, so it is easy to fall into the local optimal so-
lution, and the stability of this kind of algorithm is poor; the smaller the value of 
CR, the more Xi(t) contributes to Ui(t). In this way, the ability of the algorithm 
to develop new space is weakened, and the convergence speed is relatively slow, 
but it is beneficial to maintain the diversity of the population (retaining the 
original individual characteristics), and thus the algorithm has a higher success 
rate. Therefore, we should choose to preserve the diversity of the population 
more stable in the early stage, and develop slowly, gradually increasing the CR to 
accelerate the accurate convergence in the later stage, and not easily fall into the 
local optimum.  

By literature [10], four improvement strategies were proposed to improve the 
original fixed value CR. As a result, the optimization performance of the open-up 
parabola form is the best. The parameters are as follows: 

( )
2

max min min
max

gCR CR CR CR
G

 
= − + 

 
              (7) 

max min max, , ,CR CR g G  are the maximum and minimum values of CR, the cur-
rent iteration number and the maximum number of iterations, respectively. 

In this paper, we consider that the differential evolution algorithm only eva-
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luates the fitness of the function in the final selection. Is it possible to filter the 
mutated individuals in advance at the crossover operation, which provides more 
opportunities for excellent individuals to be selected at the crossover opera-
tion; while disadvantaged individuals are given a lower probability and constantly 
being eliminated. Therefore, this paper proposes a kind of elimination mechan-
ism based on the fitness of individuals (taking the minimum value as an exam-
ple): 

( )min max min
max

min

, if

, otherwise

i av
i av

av

f f
CR CR CR f f

f fCR
CR

− + − ∗ < −= 



       (8) 

Set up a CR with maximum and minimum values called max min,CR CR . At the 
same time, the average value of all fitness functions is calculated at each iteration

avf  and search for maximum fitness maxf . We use a mechanism for self-adaptive 
CR regulation at the crossover operation: 

Suppose we are looking for a global minimum. If the average value of the 
population avf  is lower than the current fitness value of the individual if , we 
can treat this individual as a dominant individual. The crossover rate CR for the 
individual will increase with the degree of approximation to the maximum fit-
ness. If the average value of the population avf  is higher than the current fit-
ness value of the individual if , we can treat this individual as an inferior indi-
vidual. The crossover rate CR for the individual will be set to the lowest minCR . 
Therefore, the dominant individual will be continued, and the inferior individu-
al will gradually decrease. The method also follows the principle that the CR in-
creases with the number of iterations. 

As the algorithm reaches the end, the better fitness value of the function will 
be retained, the CR will be closer to the minimum value of the current iteration, 
which will help accelerate the convergence of the algorithm and improve the ac-
curacy. The following Figure 2 shows the flow chart of the improved differential 
evolution algorithm. 

We can call this strategy of simultaneously improved F-CR parameters as 
IEDE (Index-Elimination Differential Evolution Algorithm). 

5. Experimental Results and Performance Analysis 
5.1. Parameter Settings 

In the experiment, we select the standard DE algorithm and the improved algo-
rithm for performance test comparison. The parameters selected in the experi-
ment are as follows: the population size is N = 5D - 10D and N = 50 in this pa-
per. CR = 0.5, F0 = 0.5, fmin = 0.5, fmax = 1, CRmin = 0.3, CRmax = 0.9 in the im-
proved algorithm. The maximum number of iterations is 200 under the two- 
dimensional variable of the Rosenbrock function. The accuracy of the experi-
mental test is set to 1e − 4, which means that if the result reaches a difference of 
1e − 4 from the target value and tends to be constant, then we can conclude that 
the iteration is over. 
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Figure 2. Flow chart for the improved DE algorithm. 

5.2. Experimental Results and Performance Analysis 

Take the standard differential evolution algorithm and the improved algorithm 
(IEDE) as an example, and use python to make graphs and compare them. As 
shown in Figure 3 below. 
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Figure 3. Performance comparison of the two algorithms. 

 
It can be seen from Figure 3 that the fitness of the newly improved differential 

evolution algorithm is closer to the optimal value (f = 0) than the standard diffe-
rential evolution algorithm, and the best solution of this iteration in the figure is 
(x0, x1) = (0.9999999999935465, 0.9999999999860919), the final function value is 
1.4186545766642806e − 22. 

At the same time, we perform each algorithm of the other literature20 times 
and record the number of times it takes to reach the number of stable iterations 
to verify the superiority of the newly improved differential evolution algorithm. 
The results are shown in Table 1 and Table 2. 

It can be seen from Table 2 that in the two improved schemes of the crossover 
rate CR, the CR-elimination mechanism is obviously superior to the CR para-
bolic line, and it has achieved excellent results. It can be seen from the compari-
son of the standard deviation that the standard deviation corresponding to the 
CR-elimination mechanism is the smallest, indicating that the scheme has high 
repeatability. 

Among three schemes of the scaling factor F, the effect of the F-parameter in 
the exponential form is better than that of the linear and parabolic methods (we 
adopt the control variable method: The CR is consistent with the parameters in 
the standard DE algorithm when we test F), but the iteration cost is more than 
the standard DE algorithm. This is because the self-adaptive characteristics of 
the F parameter are not reflected when the dimension is low, and the global op-
timum can be easily found without changing the F. 

Therefore, the second round of testing is carried out to increase the dimension 
and increase the maximum number of iterations. In all the schemes with im-
proved F parameters, the CR factor uniformly adopts the CR-elimination me-
chanism proposed in this paper. This time, we take a maximum number of itera-
tions of 1000 and a dimension of 5. Considering that only D = 5 is taken, the  
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Table 1. The number of iterations required for each scheme to stabilize. 

Experiment 
number 

Normal 
DE 

F-linear 
[8] 

F-parabola 
[9] 

F-index 
CR-parabola 

[10] 
CR-elimination 

1 88 103 126 101 146 34 

2 94 166 143 132 150 30 

3 89 98 193 119 132 44 

4 81 142 161 115 135 26 

5 87 140 160 132 93 43 

6 88 72 141 110 113 28 

7 125 109 144 111 112 27 

8 68 123 172 127 131 38 

9 86 112 131 120 135 26 

10 95 115 157 129 118 20 

11 93 105 145 133 117 46 

12 86 129 150 118 145 50 

13 113 127 133 106 146 50 

14 96 162 132 109 152 50 

15 77 132 129 117 139 33 

16 75 149 152 85 139 38 

17 89 133 98 144 166 49 

18 101 158 157 155 166 49 

19 97 139 134 113 151 42 

20 90 140 160 136 173 35 

 
Table 2. Experimental results under different improvement schemes. 

Algorithm 
The maximum 

number of iterations 
The average 

number of iterations 
Minimum number 

of iterations 
Standard 
deviation 

Normal DE 125 90.9 68 12.57357 

F-linear [8] 166 127.7 72 23.60664 

F-parabola [9] 193 145.9 98 19.94967 

F-index 155 120.6 85 15.90895 

CR-parabola [10] 173 137.95 93 20.19764 

CR-elimination 50 31 20 9.62945 

Normal DE refers to the standard DE algorithm without any changes; F-linear refers to changing F to 

self-adaptive 
( )max min

max

t F F
F F

T
−

= − ; F-parabola refers to changing F to self-adaptive 

( )
2

max max min
max

gF F F F
G

 
= − −  

 
; F-index refers to changing F to self-adaptive 

1
1e

0 2
T

T tF F
 −  + − 

∗= ; CR-parabola 

refers to changing CR to self-adaptive ( )
2

max min min
max

gC C C CR
G

R R R
 

= − + 
 

; CR-elimination refers to 

changing CR to self-adaptive 
( )min max min

max

min

, if

, otherwise

i av
i av

av

f fC CR CR f f
f f

CR

R
CR

− + − ∗ > −= 



. 
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third round of testing is performed, taking D = 10, and the maximum number of 
iterations is 3000. We perform 20 times for each scheme and calculate the mean 
and standard deviation.  

The experimental results are shown in Table 3, Table 4 below. 
It can be seen from the table that the standard DE algorithm cannot adapt to 

the computational difficulty brought by high-dimensional with the improvement 
of the dimension. At this time, the self-adaptive change advantage of F is re-
flected. The original standard algorithm cannot meet the requirements of high- 
dimension, so we draw a graph comparison in these three schemes. As shown in 
Figure 4 and Figure 5 below. 
 

 
Figure 4. Changing curves of fitness value under three schemes (D = 5). 

 

 
Figure 5. Changing curves of fitness value under three schemes (D = 10). 
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Table 3. Experimental results at D = 5. 

Algorithm Mean Standard deviation 

Normal DE 852 60.25529 

F-index 373 30.12806 

F-parabola [9] 400 49.33322 

F-linear [8] 470 49.09888 

 
Table 4. Experimental results at D = 10. 

Algorithm Mean Standard deviation 

Normal DE 2456 195.3286 

F-index 1239 181.0064 

F-parabola [9] 1440 173.6327 

F-linear [8] 1478 203.6981 

 
We can see from Figure 4 and Figure 5 that in the three improved schemes, 

the improved DE algorithm in the F-index form proposed in this paper takes the 
least number of times to achieve stable iteration. When D = 5, the efficiency of 
the IEDE is increased by 128.4% compared with the standard DE algorithm, and 
the standard deviation is the lowest among the four schemes, which means that 
the scheme of the IEDE is the most efficient and stable, and the repeatability of 
the IEDE is higher than other schemes. It can be seen that the improved DE al-
gorithm (IEDE) using the F-index-CR elimination mechanism can effectively 
improve the operation speed of the original algorithm. 

6. Conclusion 

Many optimization algorithms are difficult to find its global minimum because 
of the fact that the global minimum of the Rosenbrock function is at the bottom 
of a narrow valley. This paper proposes a new improved DE algorithm (IEDE). 
The improved algorithm studies and analyzes various improvement schemes and 
proposes a new exponential strategy of a self-adaptive scaling factor in the muta-
tion, and adopts the individual elimination mechanism which can adjust the 
crossover rate by distinguishing between superior individuals and inferior indi-
viduals in the crossover. Experimental studies show that the IEDE algorithm 
has very good performance for the optimization of the Rosenbrock function 
and further improves the convergence speed and accuracy of the algorithm 
and it can maintain certain stability even in high dimensions. At the same 
time, the Rosenbrock function also proves that the IEDE algorithm is a good 
performance optimization algorithm. The next research work is how to further 
improve the efficiency of the IEDE algorithm and to extend it to all optimiza-
tion problems. 
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