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Abstract 
My previous work dealt finding numbers which relatively prime to factorial 
value of certain number, high exponents and also find the way for finding 
mod values on certain number’s exponents. Firstly, I retreat my previous 
works about Euler’s phi function and some works on Fermat’s little theorem. 
Next, I construct exponent parallelogram to find coherence numbers of Eu-
ler’s phi functioned numbers and apply to Fermat’s little theorem. Then, I test 
the primality of prime numbers on Pascal’s triangle and explore new ways to 
construct Pascal’s triangle. Finally, I find the factorial value for certain num-
ber by using exponent triangle. 
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1. Introduction 

We know Fermat’s little theorem and Euler’s φ (phi) function. Such are well 
defined operations on number theory and algebra. Euler’s φ (phi) function is 
considered as general proof of Fermat’s little theorem. We seek other ways to 
find mod values on Fermat’s little theorem, and generalize φ (phi) function 
for a certain integer’s exponentiation and factorial value. We construct the 
exponent parallelogram to find the coherence values of Euler’s φ (phi) func-
tion. We find higher valued exponents on Fermat’s little theorem according to 
this. We also specify Fermat’s last theorem by using prime numbers. Also we 
know binomial coefficients are constructing Pascal’s triangle, in which we see 
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the divisibility of prime numbers (primality test) in prime number exponen-
tiation on Pascal’s triangle. In addition, we construct Pascal’s triangle and 
seek other ways except for binomial coefficients, i.e. and construct Pascal’s 
triangle by arithmetic operations triangle. Finally instead of binomial coeffi-
cients in Pascal’ triangle, we use exponents value of certain integer to con-
struct Pascal’s triangle, and then use “n”th expansion to find factorial of such 
certain number. 

First Blaise Pascal (1623-1662) introduced Pascal’s triangle, after that, Isaac 
Newton (1643-1727) used the facts of Pascal’s triangle he developed binomial 
expansion. He and his followers used binomial theorem for Probability and Sta-
tistical problems. Factorial were used to count permutations at as early as the 
12th century, by Indian scholars. In 1677, Fabian Stedman described factorial as 
applied to change ringing, a musical art involving the ringing of many tuned 
bells. In his words “Now the nature of these methods is such that the change of 
one number comprehends (includes) changes on lesser numbers”. In that mean 
period, James Stirling (1692-1770) first introduced one approximation for 
finding nth factorial of a certain number. Then Adrien-Marrie Legendre used 
Leonhard Euler’s (1707-1783) second integral formula and notated a symbol 
for it and then named it as Gamma function. It was a good approximation find-
ing factorial of Real numbers. Jacques Philippe Marie Binet (1786-1856), 
modified James Stirling’s approximation. Finally, the notation n! was intro-
duced by the French mathematician Christian Kramp in 1808. Pierre de Fermat 
(1601-1665) stated Little theorem, for any two relatively prime numbers, in 
which exponent should be prime number; after that Leonhard Euler 
(1707-1783) found Totient function and then generalized Fermat’s little theo-
rem for any two relatively prime numbers.  

From this book “Prime numbers a computational Perspective” [1], we 
know prime numbers and primality test. From this paper “Fermat’s little 
theorem” [2], we know various types of explanations about Fermat’s little 
theorem.  

Prepositions 2 to 6 are worked by me. They are noted as PRB which means 
Prema. R. Balasubramani [3]. They are published in Fermat’s theorem one 
extension: Mathematical Sciences International Journal ISSN 2278-8697 
VOLUME 8 ISSUE 1 (JUNE 2019), P. 6-10. 

In this paper,  
1) I retreat my previous work Fermat’s theorem one extension. Here I ex-

tend my works to finding the coherence numbers (constructing exponent pa-
rallelogram) for Euler’s phi function and then generalize it for Fermat’s little 
theorem.  

2) I test the primality of prime numbers on Pascal’s triangle. 
3) I specify Fermat’s last theorem by prime numbers. 
4) I generate Pascal’s triangle by arithmetic operations. 
5) I find factorial value for certain number by using exponent triangle. 
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2. Discussion and Results 

Hint 1: Define ( ){ }| 0 and gcd , 1pG r N r pn n r= ∈ < < = . Then  
( )pG p n= Φ . 

Hint 2: Define ( ) ( ){ }| 1 and gcd , 1pG r N p n r pn n r= ∈ − < < = . Then  
( ) ( )1G p n= − Φ . 

2.1. Let’s Now Examine φ(pn) When p Is a Factor of n 

Lemma 1: Let p be a prime and p divides n, then ( ) ( )pn p nΦ = Φ . 
Proof: Notice that all the numbers that are relatively prime to pn are also rela-

tively prime to n. since ( )gcd ,pn n n=  and p divides n the following result fol-

lows: ( )gcd , 1n r =  if and only if ( )gcd , 1pn r =  for any natural number r. 
There are p intervals, each with Φ(n) numbers relatively prime to pn, hence 

by the hint 1: the set ( ){ }| 0 and gcd , 1pG r N r pn n r= ∈ < < =  has  

( )pG p n= Φ  elements. □ 

For our example we choose 20, so let’s consider 2 × 20;  
( ) ( )2 20 2 20 2 8 16Φ × = Φ = × = . Putting together the two sets mentioned in our 

previous examples we have {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}, 
exactly all 16 numbers are relatively prime to 40. 

2.2. Let’s Now Examine φ(pn) When p Is Not a Factor of n 
Lemma 2: Let p be a prime and p does not divide n, then  
( ) ( ) ( )1pn p nΦ = − Φ . 
Proof: We know that pΦ(n) is the number of numbers relatively prime to n 

and less than pn. Notice that all the multiples of p whose factors are relatively 
prime to n are counted, since ( )gcd , 1p n = . Notice the conditions imply 

( )gcd , 1pn r =  iff ( )gcd , 1n r =  and ( )gcd , 1p r = . 

Suppose the list of multiples is ( ){ }1 2 3, , , , nr p r p r p r pΦ
, where all the r’s are 

relatively prime to n. the set has Φ(n) numbers relatively prime to n and 0 rela-
tively prime to p, because they are all multiples of p. we subtract this many from 
our original count and we have ( ) ( ) ( ) ( ) ( )1pn p n n p nΦ = Φ −Φ = − Φ .□ 

For our examples we choose 20, so let’s consider 3 × 20; 
( ) ( ) ( )3 20 3 1 20 2 8 16Φ × = − Φ = × = . Putting together the two sets mentioned 

in our previous examples we have {1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 
49, 53, 59} exactly all 16 numbers relatively prime to 60. 

Preposition 1: Let n be a positive integer. Then ( ) ( )( )! 1 !n n nϕ ϕ= −  when n 

is composite number and ( ) ( ) ( )( )! 1 1 !n n nϕ ϕ= − −  when n is prime number.  

Proof: Let n be a positive integer.  
When n be a composite number and n divides ( )1 !n − , then  

( ) ( ) ( )! 1 ! 1 !n n n n nϕ ϕ ϕ= − = −       . 

Notice that all the numbers that are relatively prime to ( )1 !n n −  are also rel-

atively prime to ( )1 !n − . Since ( ) ( ) ( )gcd 1 !, 1 ! 1 !n n n n− − = −    And n divides 
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( )1 !n −  The following result follows: ( )gcd 1 !, 1n r− =    if and only if 

( )gcd 1 !, 1n n r− =    for any natural number r. 

There are n intervals, each with ( )( )1 !nϕ −  numbers relatively prime to 

( )1 !n n − , hence by the hint 1: the set  

( ) ( )( ){ }| 0 1 ! and gcd 1 !, 1nG r N r n n n r= ∈ < < − − =  has ( )( )1 !nG n nϕ= −  

elements. 
When n be a prime and n does not divide ( )1 !n − , then  
( ) ( ) ( )! 1 1 !n n nϕ ϕ= − −   . 
We know that ( )( )1 !n nϕ −  is the number of numbers relatively prime to 

( )1 !n −  and less than ( )1 !n n − . Notice that all the multiples of n whose factors 
are relatively prime to ( )1 !n −  are counted, since ( )gcd , 1 ! 1n n − =   . Notice 
the conditions imply ( )gcd 1 !, 1n n r− =    if and only if ( )gcd 1 !, 1n r− =    
and ( ), 1gcd n r = . 

Suppose the list of multiples is ( )( ){ }1 2 3  1 !, , , , nr n r n r n r nϕ − , where all the r’s are 

relatively prime to ( )1 !n − . The set has ( )( )1 !nϕ −  numbers relatively prime 

to ( )1 !n −  and 0 relatively prime to n, because they are all multiples of n. by 

this way we get ( ) ( ) ( ) ( ) ( ) ( )! 1 ! 1 ! 1 1 !n n n n n n nϕ ϕ ϕ ϕ ϕ= − = − = − −           . 

Preposition 2 (PRB): Let n be a positive integer. Then  
( ) ( ) ( )! 1 2i in n nϕ ϕ= −∏  where ni’s are composite numbers and ( )1 in − ’s are 

prime numbers not exceeding n. 
Proof: 
Using preposition 1, we obtained ( ) ( )( )! 1 !n n nϕ ϕ= −  when n is composite 

number and  
( ) ( ) ( )! 1 1 !n n nϕ ϕ= − −    when n is prime number. Since all even numbers 

are composites except 2 because 2 is prime. So we cannot find an even composite 
number less than four. And two is the only prime number less than three. Also 1 
is the only number relatively prime to two and below it. So we obtained from 
these two equations we get  

( ) ( ) ( )! 1 2i in n nϕ ϕ= −∏                    (1) 

Example 1: Find the value of ( )8!ϕ  
Solution:  
Let ( )8!ϕ  then we can write ( ) ( )8! 8 7!ϕ ϕ= × . So  

( ) ( ) ( ) ( ) ( )8 7! 8 7 6! 8 7 6! 8 6 6! 8 6 192 9216ϕ ϕ ϕ ϕ ϕ× = × = = × × = × × = . 

Example 2: Find the value of ( )13!ϕ  
Solution:  
Let ( )13!ϕ  then ( ) ( )13! 13 12!ϕ ϕ= × . So  

( ) ( )
( )

13 12! 12 12!

12 12 10 10 9 8 6 6 4 4 2 2
1194393600

ϕ ϕ

ϕ

× =

= × × × × × × × × × × ×

=
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Preposition 3 (PRB): Let n be a positive integer and “a” be an exponent to n. 
Then ( ) ( )1a an n nϕ ϕ−= . 

Proof: The positive integers less than na that are not relatively prime to n are 
those integers not exceeding na that are divisible by n. There are exactly na-1 such 
integers, so there are ( )1an nϕ−  integers less than na that are relatively prime to 
na.  

Hence,  

( ) ( )1a an n nϕ ϕ−=                        (2) 

Example 4: Find the value of φ(104). 
Solution:  
Let φ(104) then ( ) ( ) ( )4 3 310 10 10 10 10 1000 4 4000ϕ ϕ ϕ= × = = × = .  

Since 10 is a composite, 104 = 10,000 so φ(10,000) = 4000. 
Example 5: Find the value of φ(3315). 
Solution:  
Let φ(3315) then  

( ) ( ) ( )5 4 4331 331 331 331 331

12003612721 330 3961192197930

ϕ ϕ ϕ= × =

= × =
 

Since 331 is a prime, 3315 = 3,973,195,810,651 so φ(3,973,195,810,651) = 
3,961,192,197,930. 

2.3. Exponent Division on Fermat’s Little Theorem 

Preposition 4 (PRB): If p is prime and “a” is a positive integer with p does 
not divides “a”, ( )gcd , 1a p =  and n be an exponent to “a” then 

( )modn s ta r p+≡ . r is a congruent of “a” for mod p, where “s” is a quotient and 
“t” is a residue when “n” divided by p and n∈ N  is any exponent. 

Proof: Let p be a prime, and a is a positive integer with p does not divides a, 
( )gcd , 1a p =  and n be an exponent to a then   

( ) ( )modnn na qp r r p≡ + ≡ ; q Z∈  

( )1 1 1 1mod mods p t s tnr p r r p+ += ≡  if 1 1s t p+ ≥  then 

( )1 1 2 2 2 2 mods t s p t s tr r r p+ + +≡ ≡  if 2 2s t p+ ≥  then 
Do this again and again until we get ,k ks t p k N+ < ∈  

( )1 1 modk k k k k ks t s p t s tr r r p− −+ + +≡ ≡  if k ks t p+ < . 

Hence we get,  

( )modn s ta r p+≡                          (3) 

2.4. Proving Fermat’s Little Theorem, Using Preposition 4 

If p is prime and a is a positive integer with p does not divides “a” and 
( )gcd , 1a p =  then ( )1 1 modpa p− ≡ . 

 ( ) ( )1 0 11 1 1 0 1 modpa a a a p+ −− −≡ ≡ ≡ ≡ .  

Example 6: Find the value of 31900 mod 13. 
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Solution: We can write  
1900 = 146.13 + 2 
≡146 + 2 = 148 here 148 ≥ 13 so, 
148 = 11.13 + 5 
≡16 here 16 ≥ 13 so, 
19 = 1.13 + 3 
≡4 here 4 < 13 so, 
Apply this algorithm, then we get  

1900 43 3 81 3mod13≡ = ≡ . 

Preposition 5 (PRB): If m is a positive integer and a is an integer with (a, m) 
= 1, 

Then ( ) ( )! 1 modm wa mϕ +   ≡ .  
where  

w W∈                             (4) 

Proof:  
Let ( ) !m w ka aϕ +   = . So we can write ( )k n m kϕ ′= +  for some integer m. now 

we can write ( )n mka a ϕ= . Here 0k ′ = , since k value has φ(m) as a one factor 
and n is a positive integer. 

It gives  

( )( ) ( )1 1 mod
nm na mϕ ≡ ≡ .□ 

Example 8: Find the value of ( )9 5 !5 mod9ϕ +     
Solution:  

( ) [ ] [ ]6652800 66528009 5 ! 6 5 ! 11! 65 5 5 5 1 1mod9ϕ +  +   = = ≡ ≡ ≡  . 

Preposition 6 (PRB): If m is a positive integer and a is an integer with (a, m) 
= 1,  

Then ( ) ( )1 mod
nma mϕ ≡ .  

where  

n N∈                             (5) 

Proof: Let ( ) n
m kϕ =    then ( ) mod

nm ka a mϕ = . So we can write 

( )k h m kϕ ′= +  for some integer m. Now ( )h mka a ϕ= . Here 0k ′ = . Since k has 
φ(m) as a one factor and h is a positive integer. It gives 

( )( ) ( )1 1 mod
hm ha mϕ ≡ ≡ .                                            □ 

2.5. Exponent Parallelogram 

Definition 1: Let { }0m Z∈ −  and n Z∈  be the exponent to m then do 1st 
operation is subtracting each element with its successive element of 1st line ele-
ments. Result will be ( )1 nm m− , we shall name ( )1m −  as “a”. 2nd operation is 
subtracting each element with its successive element of 1st operation, result will 
be ( )21 nm m−  then we shall name ( )21m −  as “a2”. 3rd operation is subtracting 
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each element with its successive element of 2nd operation, result will be 
( )31 nm m−  then we shall name ( )31m −  as “a3”. By this way we do the same 
up to nth operation. These 1st line to nth operation diagonal elements coeffi-
cients construct exponent parallelogram. 

Now we construct exponent parallelogram: 
3 2 1 0 1 2 3

3 2 1 0 1 2 3

3 2 2 2 1

st

st

n 2 0 2 1 2 2 2 3 2

3 2 1 0 1 2 3

d

1 line :
1 opn :
2 opn :

th opn : k k k k k k k

m m m m m m m
m a m a m a m a m a m a m a

m a m a m a m a m a m a m a

m a m a m a m a m a m ak m a

− − −

− − −

− − −

− − −





 

        

 

        

 

Note: n km a  should be placed between 1n km a −  and 1 1n km a+ −  in kth opera-
tion. Because 1 1 1n k n k n km a m a m a+ − −= − . 

Let we construct exponent plane for 5: for ,m k I∈  and n Z∈  
3 2 1 0 1 2 3

3 2 1 0 1 2 3

3 2 2 2 1 2 0 2 1 2 2 2 3 2

3 2 1 0 1 2 3

5 5 5 5 5 5 5
5 4 5 4 5 4 5 4 5 4 5 4 5 4

5 4 5 4 5 4 5 4 5 4 5 4 5 4

5 4 5 4 5 4 5 4 5 4 5 4 5 4k k k k k k k

− − −

− − −

− − −

− − −

 

 

 

        

 

        

 

Now we get, 

3 2 1 0 1 2 3

1 1 1 1 5 25 125
125 25 5

4 4 4 4 20 100 500
125 25 5

16 16 16 16 80 400 2000
125 25 5

5 4 5 4 5 4 5 4 5 4 5 4 5 4k k k k k k k− − −

 

 

 

        

 

        

 

By the above results we define, 
1) If “E” is a 1st line prime exponent and “a” is an integer with (a, E) = 1, then 

( )modEa Ea≡ . 
2) If “E” is a prime exponent and “a” is an integer with (a, E) = 1, then 

( ) ( )mod1E E k Ea ϕ   ≡ , where “k” is any positive integer of 1st operation to k-th 
operation coherence numbers of φ(E). 

Examples: 
1) Let 7 is a first line prime exponents i.e. (1, 7, 49, 343,  ) and 4 I∈  with 

(4, 7) = 1, then ( ) ( )1,7,49,343,4 4 mod 7≡ .  
2) Let 7 is a first line prime exponents, (6, 42, 294, 2058,  ) are 1st operation 

to kth operation and 4 I∈  with (4, 7) = 1, then ( ) ( )6,42,294,2058, mod 74 1≡ . 
Where 6, 42, 294, 2058,   are coherence numbers of φ(7). 
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3) Let 5 is a first line prime exponents, (4, 5 × 4, 25 × 4, 125 × 4,  , 16, 5 × 
16, 25 × 16,  , 64, 5 × 64, 25 × 64,  ) are 1st operation to kth operation and 
4 I∈  with (4, 5) = 1, then ( )5 54 1kϕ   ≡ , ( )25 54 1kϕ   ≡ , ( )125 54 1kϕ   ≡ ,  , 

( ) ( )5 5 mo 54 1 d
n kϕ   ≡ . Where (4, 5 × 4, 25 × 4, 125 × 4,  , 16, 5 × 16, 25 × 16, 

 , 64, 5 × 64, 25 × 64,  ) are coherence numbers of φ(5) and ,k n I∈ . 

2.6. Prime Bases on Fermat’s Last Theorem 

Let we see following summations. 
Let ip  are prime numbers then  
2 3 5 7 11 13 41+ + + + + = ; 
For squared primes: 

( ) ( )2 24 9 13 3.6055 3 0.6055+ = = = +  ; 
( ) ( )2 24 9 25 38 6.1644 5 1.1644+ + = = = +  ; 

( ) ( )2 24 9 25 49 87 9.3273 7 2.3273+ + + = = = +  ; 
( ) ( )2 24 9 25 49 121 208 14.4222 11 3.4222+ + + + = = = +  ; 

For cubed primes: 
( ) ( )3 38 27 35 3.2710 3 0.2710+ = = = +  ; 

( ) ( )3 38 27 125 160 5.4288 5 0.4288+ + = = = +  ; 
( ) ( )3 38 27 125 343 503 7.9528 7 0.9528+ + + = = = +  ; 

( ) ( )3 38 27 125 343 1331 1724 12.2405 11 1.2405+ + + + = = = +  ; 
For fourth exponent primes: 

( ) ( )4 416 81 97 3.1382 3 0.1382+ = = = +  ; 
( ) ( )4 416 81 625 722 5.1836 5 0.1836+ + = = = +  ; 

( ) ( )4 416 81 625 2401 3123 7.4755 7 0.4755+ + + = = = +  ; 
( ) ( )4 416 81 625 2401 14641 17764 11.5447 11 0.5447+ + + + = = = +  ; 

By this way we concluded, 
( )1 2 3 42 3 5 7 11 13 . nn n n n n n n

i ip p B b b b b+ + + + + + + = +  .  
where 1 2 3 4.B b b b b R∈ . 

From the above recursion, we formulate the result then we get, 

( )1 2 3 4
2

.
k nn

i i
n

p p B b b b b
=

= +∑  . 

where  

1 2 3 4.B b b b b R∈                         (6). 

Theorem 1: Let ip  are prime numbers then 
2

k
n n
i

n
p q

=

≠∑ . Where q is any 
prime. 

Proof: 

Let 
2

k
n
i

n
p P

=

=∑  then  

Case 1: If P is prime, result is obvious. 
Case 2: If P is composite, we can write P st k= + . if 0k ≠  then result is ob-

vious. 
Case 3: If P is composite and 0k = , then we can write P st= . If ,s t  are 
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distinct primes then result is obvious. But if s t=  we get 
2

k
n n
i

n
p q

=

=∑ . This result 

contradict with (1). So 
2

k
n n
i

n
p q

=

≠∑ . Where q is any prime. 

2.7. Primality of Pascal’s Triangle 
Definition 2: For all n N∈  and for all reals ,a b R∈  we have the formula 

( )
0

nn n k k

k

n
a b a b

k
−

=

 
+ =  

 
∑ . For every p n=  we have ( )

0

p
p p k k

k

p
a b a b

k
−

=

 
+ =  

 
∑  

then p divides 
1

p

k

p
k=

 
 
 

∑  and every p
k
 
 
 

; where 1,2, , 1k p= −  is called Pri-

mality of binomial expansion. 
Prime number Pascal’s triangle coefficients 
0  1 
1  1 1 
2  1 2 1 
3  1 3 3 1 
4  1 4 6 4 1 
5  1 5 10 10 5 1 
6  1 6 15 20 15 6 1 
7  1 7 21 35 35 21 7 1 
… 
11 1 11 55 165 330 462 462 330 … 1 
… 

p  
0
p 

 
 

 
1
p 

 
 

 
2
p 

 
 

   
p
k

 
 
 

 where 0 k p≤ ≤  

Examples:  
1) 7 divides 7 + 21 + 35 + 35 + 21 + 7 i.e. 126/7 = 18 
2) 11 divides 2(11 + 55 + 165 + 330 + 462) i.e. 2046/11 = 186. 

2.8. Constructing Pascal’s Triangle by Arithmetic Triangles  

Addition triangle 
Definition 3: Let , , ,A B C Z∈  then do 1st operation is adding each ele-

ment with its successive element of 1st line elements, 2nd operation is adding each 
element with its successive element of 1st operation, and 3rd operation is adding 
each element with its successive element of 2nd operation. By this way we do the 
same up to nth operation. These 1st line to nth operation diagonal elements coef-
ficients construct Pascal’s triangle. 

Now we construct addition triangle:  
1st line:       A               B               C               D               E               F  
1st operation:         B A+            C B+           D C+            E D+            F D+  
2nd operation:              2C B A+ +        2D C B+ +       2E D C+ +        2F E D+ +  
3rd operation:                   3 3D C B A+ + +     3 3E D C B+ + +     3 3F E D C+ + +  
4th operation:                         4 6 4E D C B A+ + + +  4 6 4F E D C B+ + + +  
5th operation:                                5 10 10 5F E D C B A+ + + + +  
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From the above, using the colored diagonal we can construct a Pascal’s trian-
gle: 

1 
1  1 
1  2 1 
1  3 3 1 
1  4 6 4 1 
1  5 10 10 5 1 
1  6 15 20 15 6 1 
-  - - - - - - - 

0
n 
 
 

 
1
n 
 
 

 
2
n 
 
 

 
3
n 
 
 

 - - - 
1

n
k
 
 − 

 
n
k
 
 
 

. 

2.9. Backward Difference Triangle 

Definition 4: Let , , ,A B C Z∈  then do 1st operation is subtracting each 
element with its predecessor element of 1st line elements, 2nd operation is sub-
tracting each element with its predecessor element of 1st operation, and 3rd op-
eration is subtracting each element with its predecessor element of 2nd opera-
tion. By this way we do the same up to nth operation. These 1st line to nth opera-
tion diagonal elements coefficients construct Pascal’s triangle with negative coef-
ficients. 

Now we construct backward difference triangle:  
1st line:       A               B               C               D               E               F  
1st operation:         B A−            C B−            D C−           E D−            F D−  
2nd operation:              2C B A− +        2D C B− +       2E D C− +        2F E D− +  
3rd operation:                    3 3D C B A− + −    3 3E D C B− + −    3 3F E D C− + −  
4th operation:                         4 6 4E D C B A− + − +  4 6 4F E D C B− + − +  
5th operation:                                5 10 10 5F E D C B A− + − + −  

From the above, using the colored diagonal we can construct a negative Pas-
cal’s triangle: 

1 
−1 1 
1  −2  1 
−1 3  −3  1 
1  −4  6  −4  1 
−1 5  −10  10  −5  1 
1  −6  15  −20  15  −6  1 
-  -  -  -  -  -  -  - 

0
n 
 
 

 
1
n 

− 
 

 
2
n 
 
 

  
3
n 

− 
 

 -  -  -  
1

n
k
 
 − 

 
n
k
 
 
 

, 

where 
0
n 
 
 

 sign depends upon whether n is odd or even. If n is odd we get 
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0
n 

− 
 

, else we get 
0
n 
 
 

. 

2.10. Forward Difference Triangle 

Definition 5: Let , , ,A B C Z∈  then do 1st operation is subtracting each 
element with its successive element of 1st line elements, 2nd operation is sub-
tracting each element with its successive element of 1st operation, and 3rd opera-
tion is subtracting each element with its successive element of 2nd operation. By 
this way we do the same up to nth operation. These 1st line to nth operation di-
agonal elements coefficients construct Pascal’s triangle with negative coeffi-
cients. 

Now we construct forward difference triangle:  
A                 B                 C                 D                 E                 F  

        A B−              B C−             C D−              D E−              E F−  
               2A B C− +         2B C D− +          2C D E− +         2D E F− +  
                      3 3A B C D− + −     3 3B C D E− + −      3 3C D E F− + −  
                            4 6 4A B C D E− + − +  4 6 4B C D E F− + − +  
                                  5 10 10 5A B C D E F− + − + −  

From the above, using the colored diagonal we can construct a negative Pas-
cal’s triangle: 

1 
1  −1 
1  −2  1 
1  −3  3  −1 
1  −4  6  −4  1 
1  −5  10  −10  5  −1 
1  −6  15  −20  15  −6  1 
-  -  -  -  -  -  -  - 

0
n 
 
 

 
1
n 

− 
 

 
2
n 
 
 

  
3
n 

− 
 

 -  -  -  
1

n
k
 
 − 

 
n
k
 
 
 

where 
n
k
 
 
 

 sign depends upon whether n is odd or even. If n is odd we get 
n
k
 

− 
 

, 

else we get 
n
k
 
 
 

. 

2.11. Multiplication Triangle 

Definition 6: Let , , ,A B C Z∈  then do 1st operation is multiplying each 
element with its successive element of 1st line elements, 2nd operation is multip-
lying each element with its successive element of 1st operation, and 3rd operation 
is multiplying each element with its successive element of 2nd operation. By this 
way we do the same up to nth operation. These 1st line to nth operation diagonal 
elements degrees construct Pascal’s triangle. 

Now we construct multiplication triangle:  
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A                 B                 C                 D                 E                 F  
         AB                BC                CD               DE                EF  
                 2AB C               2BC D             2CD E              2DE F  
                          3 3AB C D           3 3BC D E            3 3CD E F  
                                 4 6 4AB C D E          4 6 4BC D E F  
                                         5 10 10 5AB C D E F  

From the above, using the colored diagonal exponents, we can construct a 
Pascal’s triangle: 

1 
1  1 
1  2  1 
1  3  3  1 
1  4  6  4  1 
1  5  10  10  5  1 
1  6  15  20  15  6  1 
-  -  -  -  -  -  -  - 

0
n 
 
 

 
1
n 
 
 

  
2
n 
 
 

  
3
n 
 
 

  -  -  -  
1

n
k
 
 − 

 
n
k
 
 
 

 

2.12. Forward Division Triangle 

Definition 7: Let , , ,A B C Z∈  then do 1st operation is dividing each ele-
ment with its successive element of 1st line elements, 2nd operation is dividing 
each element with its successive element of 1st operation, and 3rd operation is 
dividing each element with its successive element of 2nd operation. By this way 
we do the same up to nth operation. These 1st line to nth operation diagonal 
elements degrees construct Pascal’s triangle. 

Now we construct forward division triangle:  

2 2 2 2

3 3 3

3 3 3

6 6

4 4 4 4

10 5

5 10

A B C D E
B C D E F

AC BD CE DF
B C D E

AC BD

A

CE
B D C E D F

AC E BD F
B D C E

AC

B C D

B

F

D

E

E
F

 

From the above, using the colored diagonal exponents, we can construct a 
Pascal’s triangle: 

1 
1  −1 
1  −2  1 
1  −3  3  −1 
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1  −4  6  −4  1 
1  −5  10  −10  5  −1 
1  −6  15  −20  15  −6  1 
-  -  -  -  -  -  -  - 

0
n 
 
 

 
1
n 

− 
 

 
2
n 
 
 

  
3
n 

− 
 

 -  -  -  
1

n
k
 
 − 

 
n
k
 
 
 

, 

where 
n
k
 
 
 

 sign depends upon whether n is odd or even. If n is odd we get 
n
k
 

− 
 

, 

else we get 
n
k
 
 
 

. 

Upon whether n is odd or even. If n is odd we get 
n
k
 
 
 

, else we get 
n
k
 

− 
 

. 

2.13. Backward Division Triangle 

Definition 8: Let , , ,A B C Z∈  then do 1st operation is dividing each ele-
ment with its successive element of 1st line elements, 2nd operation is dividing 
each element with its successive element of 1st operation, and 3rd operation is 
dividing each element with its successive element of 2nd operation. By this way 
we do the same up to nth operation. These 1st line to nth operation diagonal 
elements degrees construct Pascal’s triangle. 

Now we construct backward division triangle:  

2 2 2 2

3 3 3

3 3 3

4 4 4 4

6 6

5 10

10 5

B C D E F
A B C D E

B C D E
AC BD CE DF

B D C E D F
AC BD CE

B D C E
AC E BD F

B D F
A

A B C

C

D E

E

F

 

From the above, using the colored diagonal exponents, we can construct a 
Pascal’s triangle: 

1 
−1  1 
−1  2  −1 
−1  3  −3  1 
−1  4  −6  4  −1 
−1  5  −10  10  −5  1 
−1  6  −15  20  −15  6  −1 
-   -  -  -  -  -  -  - 

0
n 

− 
   

 
1
n 
 
 

  
2
n 

− 
 

 
3
n 
 
 

  -  -  -  
1

n
k
 
 − 

 
n
k
 
 
 

, 
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where 
n
k
 
 
 

 sign depends  

2.14. Backward Exponent Difference Triangle 

Definition 9: Let , , ,A B C Z∈  then do 1st operation is multiplying each 
element with its successive element of 1st line elements, 2nd operation is multip-
lying each element with its successive element of 1st operation, and 3rd operation 
is multiplying each element with its successive element of 2nd operation. By this 
way we do the same up to nth operation. These 1st line to nth operation diagonal 
elements degrees construct Pascal’s triangle. 

Theorem 2: Let n I∈  be an exponent of any m Z∈  then “n”th difference 
of nm  would be n!. 

Let we construct backward difference triangle, in which first line numbers are 
“n”th exponent of whole numbers. For any 0 k n≤ ≤ , 

1st line:         0n               1n               2n              3n              4n              5n  
1st operation:          1 0n n−            2 1n n−           3 2n n−          4 3n n−           5 4n n−  
2nd operation:               2 2 1 0n n n− × +     3 2 2 1n n n− × +    4 2 3 2n n n− × +    5 2 4 3n n n− × +  
3rd operation:                  3 3 2 3 1 0n n n n− × + × −  4 3 3 3 2 1n n n n− × + × −  5 3 4 3 3 2n n n n− × + × −  
… 

nth operation: ( ) ( ) ( )1 2
0 1 2

n n nnn n n n
m m m m k

k
       

− − + − − + −       
       

 .                                     □ 

2.15. Forward Exponent Difference Triangle 

Definition 10: Let , , ,A B C Z∈  then do 1st operation is subtracting each 
element with its successive element of 1st line elements, 2nd operation is sub-
tracting each element with its successive element of 1st operation, and 3rd opera-
tion is subtracting each element with its successive element of 2nd operation. By 
this way we do the same up to nth operation. These 1st line to nth operation di-
agonal elements degrees construct Pascal’s triangle. 

Theorem 3: Let n I∈  be an exponent of any m Z∈  then “n”th difference 
of nm  would be ( ) ( )1 !n n− . 

Proof:  
Let we construct forward difference triangle, in which first line numbers are 

“n”th exponent of whole numbers. For any 0 k n≤ ≤ ,  
1st line:      0n               1n               2n               3n               4n               5n  
1st operation:       0 1n n−            1 2n n−           2 3n n−           3 4n n−            4 5n n−   
2nd operation:            0 2 1 2n n n− × +     1 2 2 3n n n− × +     2 2 3 4n n n− × +     3 2 4 5n n n− × +  
3rd operation:                0 3 1 3 2 3n n n n− × + × −  1 3 2 3 3 4n n n n− × + × −  2 3 3 3 4 5n n n n− × + × −  
… 

nth operation: ( ) ( ) ( )1 2
0 1 2

n n nnn n n n
m m m m k

k
       

− + + + − + +       
       

 . ■ 

Examples for backward exponent difference method: 
1) Let m = 0 and n = 5 then  
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( ) ( ) ( ) ( ) ( )5 5 5 5 551 0 5 1 10 2 10 3 5 4 5
0 5 320 2430 5120 3125 120 5!
× − × − + × − − × − + × − − −

= + − + − + = =
 

2) Let m = −1 and n = 5 then  

( ) ( ) ( ) ( ) ( ) ( )5 5 5 5 5 51 1 5 2 10 3 10 4 5 5 6
1 160 2430 10240 15625 7776 120 5!

× − − × − + − − × − + × − − −

= − + − + − + = =
 

3) Let m = 1 and n = 5 then  

( ) ( ) ( ) ( )5 5 5 55 51 1 5 0 10 1 10 2 5 3 4
1 0 10 320 1215 1024 120 5!
× − × + × − − × − + × − − −

= − − + − + = =
 

Examples for backward exponent difference method: 
1) Let m = 0 and n = 4 then  

4 4 4 4 41 0 4 1 6 2 4 3 4
0 4 96 324 256 24 4!
× − × + × − × +
= − + − + = =

 

2) Let m = −1 and n = 4 then  

( )4 4 4 4 41 1 4 0 6 1 4 2 3
1 0 6 64 81 24 4!
× − − × + × − × +

= − + − + = =
 

3) Let m = 1 and n = 5 then  
5 5 5 5 5 51 1 5 2 10 3 10 4 5 5 6

1 160 2430 10240 15625 7776 120 5!
× − × + × − × + × −
= − + − + − = − = −
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