

Mannich-Type Reaction of Aldimines with 2-Silyloxydienes Catalyzed by Ammonium Chloride

Shoichi Fukumoto, Miho Shigenobu, Kaori Ishimaru

Department of Applied Chemistry, National Defence Academy, Hashirimizu, Yokosuka, Japan Email: kaoriisi@nda.ac.jp

How to cite this paper: Fukumoto, S., Shigenobu, M. and Ishimaru, K. (2019) Mannich-Type Reaction of Aldimines with 2-Silyloxydienes Catalyzed by Ammonium Chloride. International Journal of Organic Chemistry, 9, 163-173. https://doi.org/10.4236/ijoc.2019.94014

Received: September 19, 2019 Accepted: November 23, 2019 Published: November 26, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/ **Open Access**

۲ (cc)

Abstract

Reaction of imines with 2-silyloxydiene catalyzed by ammonium chloride has been perfectly proceeded under environmentally friendly conditions to give Mannich-type product selectively. The reaction would proceed via Mannichtype mechanism, not cyclization/ring-opening process. Cyclopropanation of the corresponding Mannich-type product gave the precursor of prasugrel skeleton in high yield.

Keywords

Mannich-Type Reaction, Ammonium Chloride, Imine, 2-Silyloxydiene

1. Introduction

Mannich-type reactions are widely recognized as a powerful method for constructing a variety of b-aminoketones [1]-[6]. However, Mannich-type reaction of imines with 2-silyloxydienes, which provides easy access to β-aminoketones having a terminal olefin, is still challenging because [4 + 2] type cycloadducts [7]-[15] or mixtures of Mannich-type products and cycloadducts [16] [17] [18] are obtained in most cases, as shown in Figure 1. Previously we first reported a highly effective Mannich-type reaction of imine with 2-silyloxydiene in the presence of zinc triflate and water [19] [20] [21] [22], which gave the corresponding β' -amino- α , β -enones as attractive skeletons for pharmaceutically useful compounds [23] [24] [25] [26]. Although many vinylogous Mannich-type reactions have been developed [27]-[36], only a few examples that describe the selective preparation of β' -amino- α,β -enones by the reaction of imine with 2-silyloxybutadiene have been reported so far. Thus, Kawecki isolated the open-chain products from the aza-Diels-Alder reaction of sulfinimines with the

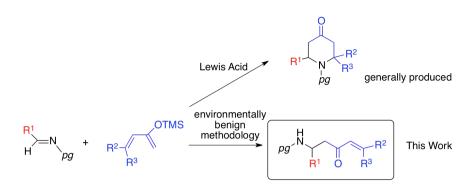


Figure 1. Reaction of imine with 2-silyloxydiene.

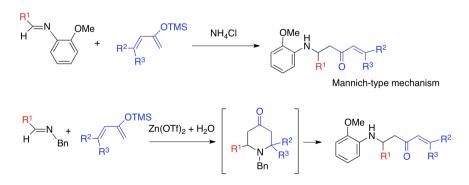
Rawal diene [37]. Pan *et al.* reported the addition of an α,β -unsaturated ketonederived enolate to chiral *N*-phosphonyl imines [38], and Prasad *et al.* developed the reaction of chiral sulfinimines with silyloxydiene using TMSOTF [39]. In spite of these recent achievements, a more economical and environmentally benign synthetic methodology using green and sustainable catalysts has not been reported yet that offer alternatives to metal catalysts. Here we report the ammonium chloride-catalyzed Mannich-type reaction of imines with 2-silyloxybutadienes under mild conditions.

2. Results and Discussion

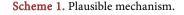
Initially, we examined the reaction of imine **1a**, derived from benzaldehyde and *o*-anisidine, with 2-silyloxybutadiene **2a** (**Table 1**). In contrast to the similar aza-Diels-Alder reaction of electron-rich Danishefsky's diene, reported by Ding et al., which afforded the cyclic product in MeOH in the absence of any acids [40], the reaction of imine **1a** with 2-silyloxybutadiene **2a** in EtOH or MeOH without additives gave no product (**Table 1**, entry 1). This result suggested that

$\begin{array}{c c} Ph & OMe & OTMS \\ H & H & Ph & Catalyst \\ H & H & T.t. 1 day \end{array} \xrightarrow{OMe} H & Ph & Ph \\ H & H & T.t. 1 day \end{array}$			
1a	1a 2a 3a		3a
Entry	Catalyst	Solvent	Yield $(\%)^b$
1	none	EtOH	0
2	NH ₄ Cl	EtOH	95
3	NH ₄ Cl	CH_2Cl_2	0
4	NH_4Cl	ether	<20
5	NH ₄ Cl	toluene	<20
6	NaCl	EtOH	0
7	$[BMIM]^+ BF_4^+$	EtOH	0

Table 1. Mannich-type reacton of imine (1a) with 2-silyloxydiene (2a)^a.


^aConditions: imine $\mathbf{1}$ (1 mmol), 2-silyloxydiene $\mathbf{2}$ (1.2 mmol), catalyst (0.1 mmol) in dry solvent (1 mL), r.t., 1 day. ^bIsolated yields.

using additive or catalyst was necessary to promote the reaction. We found that reaction with ammonium chloride (10 mol%) as a catalyst in EtOH gave the corresponding Mannich-type product **3a** selectively in 95% isolated yield (entry 2). Interestingly, no trace of cycloadduct was detected by 500 MHz ¹H NMR spectroscopy in the crude product. The previously reported reaction of imines having the *N*-benzyl group [19] did not give any products using ammonium chloride in EtOH, indicating that the reactivity of the imine is largely dependent on the *N*-protecting group. Finally, the attempt to perform the reaction using other additives and solvents was unsuccessful (**Table 1**, entries 3 - 7).


Having established the optimal reaction conditions for the Mannich-type reaction, we subsequently explored the scope of the reaction with respect to the imine substrates (**Table 2**). Imines **1b** and **1c** bearing an *o*- or *p*-tolyl group reacted to provide the corresponding products **3b** (90% yield) and **3c** (88% yield), respectively. Meanwhile, imines having an electron-donating or an electron-withdrawing group all reacted in a satisfactory way to provide the corresponding products **3d-3g** in high yield. The reaction with 2-silyloxybutadiene **2b**, derived from mesityl oxide, also proceeded to give **3h-3k** in 87% - 97% yields. Further investigation of the reaction with 2-silyloxydiene **2c** derived from acetylcyclohexene afforded the corresponding β '-amino- α , β -enones in 95% - 98% yields (**Table 3**).

To investigate the reaction mechanism, the reaction of **1a** and **2a** was quenched after 1 h and analyzed using 500 MHz ¹H NMR spectroscopy. No cycloadduct was detected but a Mannich-type product and starting materials were observed. We suspect that the Mannich-type products are not formed via cyclization/ring-opening mechanism, as in the case of our previous reaction between *N*-benzyl-protected imine and 2-silyloxybutadiene using zinc triflate and water (Scheme 1) [19]. Additionally, further HCl work-up of the acyclic product **3a** gave no cycloadducts but the β '-amino- α , β -enone was recovered. However, *N*-benzyl-protected acyclic products afforded piperidones upon reaction with HCl [19], indicating that the acyclic product **3a** is stable under acidic conditions.

To demonstrate the synthetic utility of the Mannich-type products, we performed the preparation of a precursor of the prasugrel skeleton [41] [42], as

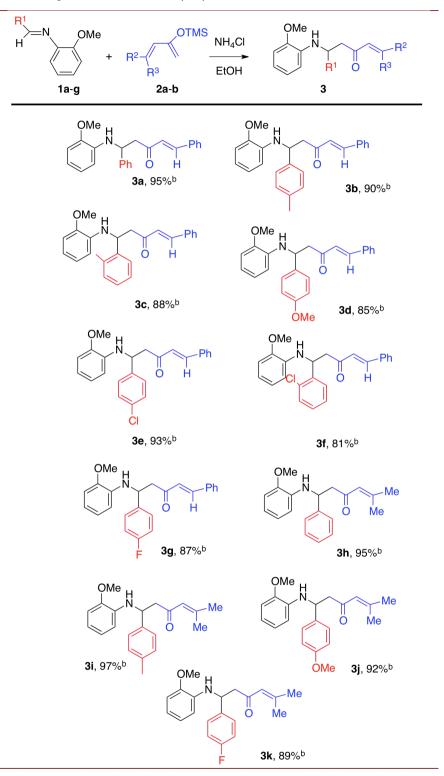


Table 2. Scope of imines (1) and 2-silyloxydienes (2a)^a.

 a Conditions: imine **1** (1 mmol), 2-silyloxydiene **2** (1.2 mmol), ammonium chloride (0.1 mmol) in dry EtOH (1 mL), r.t., 1 day. b Isolated yields.

shown in Scheme 2. Thus, the reaction of the imine (1h) derived from *o*-fluorobenzaldehyde with 2-silyloxybutadiene 2b proceeded smoothly to afford

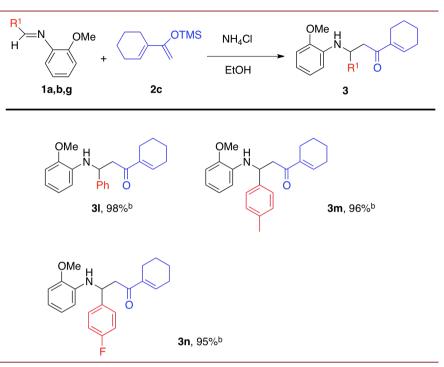


Table 3. Reaction of imines (1) with 2-silyloxydiene (2c) derived from acetylcyclohexene^a.

^aConditions: imine **1** (1 mmol), 2-silyloxydiene **2c** (1.2 mmol), ammonium chloride (0.1 mmol) in dry EtOH (1 mL), r.t., 1 day. ^bIsolated yields.

the corresponding acyclic product **30**, which was then cyclopropanated to give **40** in 65% yield.

3. Conclusion

In summary, a Mannich-type reaction of imine with 2-silyloxybutadiene that provides access to versatile β '-amino- α , β -enones has been developed under green conditions. We found that the use of ammonium chloride in EtOH is critical for the efficient outcome of the reaction, and this non-metal method is useful for various dienes and aldimines compared to reports so far [37] [38] [39]. According to our results, the reaction proceeds via Mannich-type mechanism, instead of through a cyclization/ring-opening process. Additionally, we prepared a precursor of the prasugrel skeleton by cyclopropanation of **30**. Further investigation of the applicability of this reaction and mechanistic elucidation is currently in progress.

4. Experimental

Typical Procedure for Mannich-Type reaction of imine 1 with 2-silyloxydiene 2

To a stirred solution of NH_4Cl (0.006 g, 0.1 mmol), imine **1** (1 mmol) in dry ethanol (1 mL) was added 2-silyloxydiene **2** (1.2 mmol) at r.t.. The reaction mixture was stirred at r.t. for 24 h, the solvent was evaporated at reduced pressure.

The crude product was purified by flash column chromatography (ethyl acetate: *n*-hexane = 1:6) to afford **3**.

Data for **3a**; colorless oil, 0.34 g, 95%. ¹H NMR (CDCl₃, 500 MHz) δ 3.17 (dd, 1H, J = 15.4 Hz, 5.7 Hz), 3.23 (dd, 1H, J = 15.4 Hz, 7.5 Hz), 3.85 (s, 3H), 4.97 (dd, 1H, J = 6.9 Hz, 6.9 Hz), 6.44 (d, 1H, J = 7.5 Hz), 6.45 - 6.76 (m, 4H), 7.22 - 7.25 (m, 1H), 7.32 - 7.49 (m, 10H); HRMS (EI) m/z [M]⁺ calcd. for C₂₄H₂₃NO₂ 357.1729, found: 357.1727.

Data for **3b**; colorless oil. 0.30 g, 90%. ¹H NMR (CDCl₃, 300 MHz) δ 2.02 (s, 3H), 2.87 (dd, 1H, *J* = 15.4 Hz, 5.9 Hz), 2.95 (dd, 1H, *J* = 15.4 Hz, 6.9 Hz), 3.54 (s, 3H), 4.69 (dd, 1H, *J* = 6.6 Hz, 6.6 Hz), 6.23 (d, 1H, *J* = 6.9 Hz), 6.35 - 6.51 (m, 4H), 6.78 - 6.87 (m, 2H), 7.04 - 7.24 (m, 8H); HRMS (EI) *m*/*z* [M]⁺ calcd. for C₂₅H₂₅NO₂ 371.1885, found: 371.1894.

Data for **3c**; colorless oil. 0.32 g, 88%. ¹H NMR (CDCl₃, 300MHz) δ 2.06 (s, 3H), 2.92 (dd, 1H, *J* = 15.4 Hz, 5.9 Hz), 2.96 (dd, 1H, *J* = 15.4 Hz, 7.0 Hz), 3.58 (s, 3H), 4.67 (dd, 1H, *J* = 6.3 Hz, 6.3 Hz), 6.23 (d, 1H, *J* = 7.7 Hz), 6.35 - 6.51 (m, 3H), 6.78 - 6.85 (m, 1H), 6.87 - 7.07 (m, 4H), 7.08 - 7.18 (m, 2H), 7.20 - 7.26 (m, 3H); HRMS (EI) *m*/*z* [M]⁺ calcd. for C₂₅H₂₅NO₂ 371.1885, found: 371.1902.

Data for **3d**; colorless oil. 0.32 g, 85%. ¹H NMR (CDCl₃, 500 MHz) δ 3.12 (dd, 1H, J = 15.5 Hz, 5.7 Hz), 3.20 (dd, 1H, J = 15.5 Hz, 6.9 Hz), 3.74 (s, 3H), 3.83 (s, 3H), 4.91 (dd, 1H, J = 6.3 Hz, 6.3 Hz), 6.46 (d, 1H, J = 1.7 Hz), 6.61 - 6.63 (m, 4H), 6.81 - 6.85 (m, 2H), 7.25 - 7.37 (m, 5H), 7.42 - 7.47 (m, 3H); HRMS (EI) m/z [M]⁺ calcd. for C₂₅H₂₅NO₃ 387.1834, found: 387.1838.

Data for **3e**; colorless oil. 0.36 g, 93%. ¹H NMR (CDCl₃, 300MHz) δ 3.12 (dd, 1H, J = 15.7 Hz, 5.5 Hz), 3.20 (dd, 1H, J =15.7 Hz, 5.5 Hz), 3.85 (s, 3H), 4.93 - 4.99 (m, 2H), 6.36 (d, 1H, J = 6.2 Hz), 6.61 - 6.76 (m, 4H), 7.26 - 7.53 (m, 10H); HRMS (EI) m/z [M]⁺ calcd. for C₂₄H₂₂NO₂Cl 391.1339, found: 391.1328.

Data for **3f**; colorless oil. 0.32 g, 81%. ¹H NMR (CDCl₃, 500 MHz) δ 3.02 (dd, 1H, J = 14.9 Hz, 8.6 Hz), 3.28 (d, 1H, J = 3.5 Hz), 3.71 (s, 3H), 5.28 (dd, 1H, J = 9.1 Hz, 3.4 Hz), 6.21 (dd, 1H, J = 6.2 Hz, 1.8 Hz), 6.59 - 6.74 (m, 4H), 7.17 - 7.59 (m, 10H); HRMS (EI) m/z [M]⁺ calcd. for C₂₄H₂₂NO₂Cl 391.1339, found: 391.1335.

Data for **3g**; colorless oil. 0.33 g, 87%. ¹H NMR (CDCl₃, 500 MHz) δ 3.13 (dd, 1H, J = 15.5 Hz, 5.7 Hz), 3.20 (dd, 1H, J = 15.5 Hz, 5.7 Hz), 3.83 (s, 3H), 4.93 (dd, 1H, J = 6.3 Hz, 6.3 Hz), 6.35 - 6.39 (m, 1H), 6.59 - 6.80 (m, 4H), 6.95 - 6.99 (m, 2H), 7.18 - 7.25 (m, 3H), 7.33 - 7.38 (m, 3H), 7.45 - 7.53 (m, 2H); HRMS (EI) m/z [M]⁺ calcd. for C₂₄H₂₂NO₂ 375.1634, found: 375.1628.

Data for **3h**; colorless oil. 0.29 g, 95%. ¹H NMR (CDCl₃, 300 MHz) δ 1.72 (s, 3H), 2.00 (s, 3H), 2.76 (dd, 1H, J = 16.9 Hz, 5.9 Hz), 2.82 (dd, 1H, J = 16.9 Hz, 5.9 Hz), 3.81 (s, 3H), 4.77 (dd, 1H, J = 6.6 Hz, 6.6 Hz), 5.91 (brs, 1H), 6.30 - 6.35 (m, 1H), 6.45 - 6.55 (m, 1H), 6.58 - 6.64 (m, 2H), 7.06 - 7.15 (m, 1H), 7.17 - 7.20 (m, 2H), 7.26 - 7.28 (m, 2H); HRMS (EI) m/z [M]⁺ calcd. for C₂₀H₂₃NO₂ 309.1729, found: 309.1722.

Data for **3i**; colorless oil. 0.31 g, 97%. ¹H NMR (CDCl₃, 500 MHz) δ 1.85 (s, 3H), 2.11 (s, 3H), 2.30 (s, 3H), 2.90 (dd, 1H, J = 13.2 Hz, 5.7 Hz), 2.93 (dd, 1H, J

= 13.2 Hz, 5.7 Hz), 3.85 (s, 3H), 4.85 (dd, 1H, J = 6.9 Hz, 6.9 Hz), 6.04 (brs, 1H), 6.44 - 6.50 (m, 1H), 6.58 - 6.52 (m, 1H), 6.55 - 6.73 (m, 2H), 7.10 - 7.13 (m, 2H), 7.20 - 7.28 (m, 2H); HRMS (EI) m/z [M]⁺ calcd. for C₂₁H₂₄NO₂ 323.1885, found: 323.1894.

Data for **3j**; colorless oil. 0.31 g, 92%. ¹H NMR (CDCl₃, 300 MHz) δ 1.80 (s, 3H), 2.08 (s, 3H), 2.80 (dd, 1H, J = 15.4 Hz, 6.2 Hz), 2.90 (dd, 1H, J = 15.4 Hz, 6.2 Hz), 3.70 (s, 3H), 3.80 (s, 3H), 4.81 (dd, 1H, J = 6.6 Hz, 6.6 Hz), 5.95 - 6.00 (m, 1H), 6.34 - 6.44 (m, 1H), 6.52 - 6.58 (m, 1H), 6.67 - 6.72 (m, 2H), 6.79 - 6.84 (m, 2H), 7.24 - 7.28 (m, 2H); HRMS (EI) m/z [M]⁺ calcd. for C₂₁H₂₅NO₃ 339.1834, found: 339.1836.

Data for **3k**; colorless oil. 0.29 g, 89%. ¹H NMR (CDCl₃, 300 MHz) δ 1.85 (s, 3H), 2.10 (s, 3H), 2.88 (dd, 1H, *J* = 15.4 Hz, 5.9 Hz), 2.92 (dd, 1H, *J* = 15.4 Hz, 5.9 Hz), 3.11 (s, 3H), 4.84 (dd, 1H, *J* = 6.6 Hz, 6.6 Hz), 5.99 - 6.01 (m, 1H), 6.36 (d, 1H, *J* = 7.7 Hz), 6.59 - 6.76 (m, 3H), 6.95 - 7.01 (m, 2H), 7.32 - 7.37 (m, 2H); HRMS (EI) *m*/*z* [M]⁺ calcd. for C₂₀H₂₂NO₂F 327.1635, found: 327.1628.

Data for **31**; colorless oil. 0.33 g, 98%. ¹H NMR (CDCl₃, 300 MHz) δ 1.50 - 1.65 (m, 4H), 2.15 - 2.28 (m, 4H), 3.12 (d, 2H, *J* = 6.6 Hz), 3.85 (s, 3H), 4.82 - 4.90 (m, 1H), 4.92 - 5.05 (m, 1H), 6.37 (dd, 1H, *J* = 5.9 Hz, 1.8 Hz), 6.57 - 6.84 (m, 4H), 7.18 - 7.39 (m, 5H); HRMS (EI) *m*/*z* [M]⁺ calcd. for C₂₂H₂₅NO₂ 335.1885, found: 335.1876.

Data for **3m**; colorless oil. 0.27 g, 78%. ¹H NMR (CDCl₃, 300 MHz) δ 1.50 - 1.65 (m, 4H), 2.15 - 2.25 (m, 4H), 2.30 (s, 3H), 3.11 (d, 2H, *J* = 6.6 Hz), 3.85 (s, 3H), 4.82 (dd, 1H, *J* = 6.6 Hz, 6.6 Hz), 6.40 (d, 1H, *J* = 6.2 Hz), 6.57 - 6.75 (m, 3H), 6.83 - 6.86 (m, 1H), 7.10 (d, 2H, *J* = 8.0 Hz), 7.27 (d, 2H, *J* = 8.4 Hz); HRMS (EI) *m*/*z* [M]⁺ calcd. for C₂₃H₂₇NO₂ 349.2042, found: 349.2044.

Data for **3n**; colorless oil. 0.34 g, 95%. ¹H NMR (CDCl₃, 300 MHz) δ 1.56 - 1.59 (m, 4H), 2.17 - 2.21 (m, 4H), 3.11 (dd, 2H, *J* = 5.9 Hz, 1.8 Hz), 3.86 (s, 3H), 4.80 - 4.87 (m, 1H), 4.96 (brs, 1H), 6.33 (dd, 1H, *J* = 7.7 Hz, 1.5 Hz), 6.59 - 6.77 (m, 3H), 6.82 - 6.87 (m, 1H), 6.93 - 7.02 (m, 2H), 7.33 - 7.37 (m, 2H); HRMS (EI) *m*/*z* [M]⁺ calcd. for C₂₂H₂₄NO₂F 353.1791, found: 353.1797.

Data for **30**; colorless oil. 0.24 g, 97%. ¹H NMR (CDCl₃, 500 MHz) δ 1.85 (s, 3H), 2.09 (s, 3H), 2.92 (dd, 1H, J = 15.4 Hz, 7.7 Hz), 2.97 (dd, 1H, J = 15.4 Hz, 7.7 Hz), 3.86 (s, 3H), 5.14 - 5.18 (m, 1H), 6.06 - 6.07 (m, 1H), 6.40 - 6.45 (m, 1H), 6.58 - 6.65 (m, 1H), 6.68 - 6.80 (m, 2H), 7.00 - 7.08 (m, 2H), 7.17 - 7.25 (m, 1H), 7.35 - 7.37 (m, 1H); HRMS (EI) m/z [M]⁺ calcd. for C₂₀H₂₂NO₂F 327.1635, found: 327.1637.

Cyclopropanation of 30 using trimethyloxosulfonium iodide

To a stirred solution of **3o** (0.243 g, 0.74 mmol) in DMSO (1 mL) was added trimethyloxosulfonium iodide (0.22 g, 1.0 mmol) and NaH (0.024 g, 1.0 mmol) at r.t. The mixture was stirred for 1 day and quenched with ice-water (20 mL). The mixture was extracted with ether, washed twice with water, and the organic layers were dried by Na_2SO_4 . The solvent was removed at reduced pressure to give the product **4o** as a white solid (0.21g, 65%).

Data for **4o**; ¹H NMR(CDCl₃, 500MHz) δ 0.71 - 0.72 (m, 1H), 0.86 (s, 3H), 1.06 (s, 3H), 1.15 - 1.16 (m, 1H), 1.75 - 1.80 (m, 1H), 3.06 (dd, 1H, *J* = 16.1 Hz, 5.7 Hz), 3.09 (dd, 1H, *J* = 16.1 Hz, 5.7 Hz), 3.77 (s, 3H), 5.08 (brs, 1H), 5.16 (dd, 1H, *J* = 6.3 Hz, 6.3 Hz), 6.40 - 6.42 (m, 1H), 6.60 - 6.65 (m, 1H), 6.71 - 6.74 (m, 2H), 7.01 - 7.05 (m, 2H), 7.17 - 7.25 (m, 1H), 7.36 - 7.37 (m, 1H); HRMS (EI) *m*/*z* [M]⁺ calcd. for C₂₁H₂₄NO₂F 341.1791, found: 341.1796.

Acknowledgements

We acknowledge JEOL Ltd. and Nihon Waters K. K. for measurement of HRMS.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Saranya, S., Harry, N.A., Krishman, K.K. and Anilkumar, G. (2018) Developments and Perspectives in the Asymmetric Mannich Reaction. *Asian Journal of Organic Chemistry*, 7, 613-633. <u>https://doi.org/10.1002/ajoc.201700679</u>
- [2] Bala, S., Sharma, N., Kajal, A., Kamboj, S. and Saini, V. (2014) Mannich Bases: An Important Pharmacophore in Present Scenario. *International Journal of Medicinal Chemistry*, 2014, Article ID: 191072. <u>https://doi.org/10.1155/2014/191072</u>
- Karimi, B., Enders, D. and Jafari, E. (2013) Recent Advances in Metal-Catalyzed Asymmetric Mannich Reactions. *Synthesis*, 45, 2769-2812. https://doi.org/10.1055/s-0033-1339479
- [4] Subramaniapillai, S.G. (2013) Mannich Reaction: A Versatile and Convenient Approach to Bioactive Skeletons. *Journal of Chemical Science*, 125, 467-482. https://doi.org/10.1007/s12039-013-0405-y
- [5] Córdova, A. (2004) The Direct Catalytic Asymmetric Mannich Reaction. Accounts of Chemical Research, 37, 102-112. <u>https://doi.org/10.1021/ar0302311</u>
- [6] Roman, G. (2015) Mannich Bases in Medicinal Chemistry and Drug Design. *European Journal of Medicinal Chemistry*, 89, 743-816. https://doi.org/10.1016/j.ejmech.2014.10.076
- [7] Boger, D.L. and Weinreb, S.N. (2012) In Hetero-Diels-Alder Methodology in Organic Synthesis. Academic Press, Inc., London.
- Buonora, P., Olsen, J.-C. and Oh, T. (2001) Recent Developments in Imino Diels-Alder Reactions. *Tetrahedron*, 57, 6099-6138. https://doi.org/10.1016/S0040-4020(01)00438-0
- [9] Kumatabara, Y., Kaneko, S., Nakata, S., Shirakawa, S. and Maruoka, K. (2016) Hydrogen-Bonding Catalysis of Tetraalkylammonium Salts in an Aza-Diels-Alder Reaction. *Chemistry: An Asian Journal*, **11**, 2126-2129. https://doi.org/10.1002/asia.201600781
- [10] Shang, D., Xin, J., Liu, Y., Zhou, X., Liu, X. and Feng, X. (2008) Enantioselective Aza-Diels-Alder Reaction of Aldimine with "Danishefsky-Type Diene" Catalyzed by Chiral Scandium(III)-*N*,*N*-Dioxide Complexes. *Journal of Organic Chem*istry, **73**, 630-637. <u>https://doi.org/10.1021/jo7021263</u>
- [11] Itoh, J., Fuchibe, K. and Akiyama, T. (2006) Chiral Brönsted Acid Catalyzed Enan-

tioselective Aza-Diels-Alder Reaction of Brassard's Doeme with Imines. *Angewandte Chemie International Edition*, **45**, 4796-4798. https://doi.org/10.1002/anie.200601345

- [12] Sundén, H., Ibrahem, I., Eriksson, L. and Córdova, A. (2005) Direct Catalytic Enantioselective Aza-Diels-Alder Reactions. *Angewandte Chemie International Edition*, 44, 4877-4880. <u>https://doi.org/10.1002/anie.200500811</u>
- [13] Loncaric, C., Manabe, K. and Kobayashi, S. (2003) AgOTf-Catalyzed Aza-Diels-Alder Reaction of Danishefsky's Diene with Imines in Water. *Advanced Synthesis and Catalysis*, 345, 475-477. <u>https://doi.org/10.1002/adsc.200390052</u>
- [14] Mancheño, O.G., Arrayás, R.G. and Carretero, J.C. (2004) Chiral Copper Complexes of Phosphino Sulfenyl Ferrocenes as Efficient Catalysts for Enantioselective Formal Aza Diels-Alder Reaction of *N*-Sulfonyl Imines. *Journal of American Chemical Society*, **126**, 456-457. <u>https://doi.org/10.1021/ja038494y</u>
- [15] Kobayashi, S., Kusakabe, K. and Ishitani, H. (2000) Chiral Catalyst Optimization Using Both Solid-Phase and Liquid-Phase Methods in Asymmetric Aza Diels-Alder Reactions. Organic Letters, 2, 1225-1227. <u>https://doi.org/10.1021/ol005656b</u>
- [16] Girling, P.R., Kiyoi, T. and Whiting, A. (2011) Mannich-Michael versus Formal Aza-Diels-Alder Approaches to Piperidone Derivatives. *Organic and Biomolecular Chemistry*, 9, 3105-3121. <u>https://doi.org/10.1039/c0ob00996b</u>
- [17] Waldmann, H. and Braun, M. (1992) Asymmetric Tandem Mannich Reactions of Amino Acid Ester Imines with Danishefsky's Diene. *Journal of Organic Chem*istry, 57, 4444-4451. <u>https://doi.org/10.1021/jo00042a027</u>
- [18] Kunz, H. and Pfrengle, W. (1989) Carbohydrates as Chiral Templates: Stereoselective Tandem Mannich-Michael Reactions for the Synthesis of Piperidine Alkaloids. *Angewandte Chemie International Edition*, 28, 1067-1068. https://doi.org/10.1002/anie.198910671
- [19] Ishimaru, K. and Kojima, T. (2000) A Novel Approach for Mannich-Type Bases Having a Terminal Olefin: Zinc Triflate and Water-Promoted Cyclization/C-N Bond Cleavage Process. *Journal of Organic Chemistry*, 65, 8395-8398. https://doi.org/10.1021/jo0011888
- [20] Ishimaru, K. and Kojima, T. (2003) Stereoselective Mannih-Type Reaction of Chiral Aldimines with 2-Silyloxybutadienes by Using Trifluoromethanesulfonic Acid. *Tetrahedron Letters*, 44, 5441-5444. <u>https://doi.org/10.1016/S0040-4039(03)01314-5</u>
- [21] Ishimaru, K. and Kojima, T. (2003) Addition of Water to Zinc Triflate Promotes a Novel Reaction: Stereoselective Mannich-Type Reaction of Chiral Aldimines with 2-Silyloxybutadiene. *Journal of Organic Chem*istry, **68**, 4959-4962. https://doi.org/10.1021/jo0300338
- [22] Ishimaru, K. and Kojima, T. (2001) Stereoselective Synthesis of Mannich-Type Products Having a Terminal Olefin by Use of Benzaldiminetricarbonylchromium Derivatives. *Tetrahedron Letters*, **42**, 5037-5039. https://doi.org/10.1016/S0040-4039(01)00912-1
- [23] Adamo, I., Benedetti, F., Berti, F. and Campaner, P. (2006) Stereoselective Hydroazidation of Amino Enones: Synthesis of the Ritonavir/Lopinavir Core. Organic Letters, 8, 51-54. <u>https://doi.org/10.1021/ol0524104</u>
- [24] Edwards, M.L., Ritter, H.W., Stemerick, D.M. and Stewart, K.T. (1983) Mannich Bases of 4-phenyl-3-buten-2-one. A New Class of Antiherpes Agent. *Journal of Medicinal Chemistry*, 26, 431-436. <u>https://doi.org/10.1021/jm00357a020</u>
- [25] Dimmock, J.R., Nyathi, C.B. and Smith, P.J. (1979) Synthesis and Bioactivities of

1-(hydroxyphenyl)-I-nonen-3-ones and Related Ethers and Esters. *Journal of Pharmaceutical Science*, **68**, 1216-1221. <u>https://doi.org/10.1002/jps.2600681006</u>

- [26] Dimmock, J.R., Nyathi, C.B. and Smith, P.J. (1978) Synthesis and Evaluation of 1-(hydroxyphenyl)-I-nonen-3-ones and Related Compounds for Antineoplastic and Antimicrobial Activities. *Journal of Pharmaceutical Science*, 67, 1543-1546. https://doi.org/10.1002/jps.2600671113
- [27] Roselló, M.S., Pozo, C. and Fustero, S. (2016) A Decade of Advance in the Asymmetric Vinylogous Mannich Reaction. *Synthesis*, 48, 2553-2571. https://doi.org/10.1055/s-0035-1561650
- [28] Lindemann, C. and Schneider, C. (2016) Quinolizine-Based Alkaloids: A General Catalytic, Highly Enantio and Diastereoselective Synthetic Approach. *Synthesis*, 48, 828-844. <u>https://doi.org/10.1055/s-0035-1561289</u>
- [29] Ye, J.-L., Zhang, Y.-F., Liu, Y., Zhang, J.-Y., Ruan, Y.-P. and Huang, P.-Q. (2015) Studies on the Asymmetric Synthesis of Pandamarliactonines: An Unexpected *syn*-Selective Vinylogous Mannich Reaction of *N-tert*-cutanesulfimines. *Organic Chemistry Frontiers*, 2, 697-704. <u>https://doi.org/10.1039/C5QO00098J</u>
- [30] Wang, Q., Gemmeren, M. and List, B. (2014) Asymmetric Disulfonimide-Catalyzed Synthesis of d-amino-b-ketoester Derivatives by Vinylogous Mukaiyama-Mannich Reactions. Angewandte Chemie International Edition, 53, 13592-13595. https://doi.org/10.1002/anie.201407532
- [31] Liu, L.-J. and Liu, J.-T. (2014) 2-Chlorotetrafluoroethanesulfinamide Induced Asymmetric Vinylogous Mannich Reaction. *Tetrahedron*, 70, 1236-1245. <u>https://doi.org/10.1016/j.tet.2013.12.071</u>
- [32] Guo, Y., Zhang, Y., Qi, L., Tian, F. and Wang, L. (2014) Organocatalytic Direct Asymmetric Vinylogous Mannich Reactions of g-butenolides with Isatin-Derived Ketimines. *RSC Advances*, 4, 27286-27289. <u>https://doi.org/10.1039/c4ra04824e</u>
- [33] Sickert, M., Abels, F., Lang, M., Sieler, J., Birkemeyer, C. and Schneider, C. (2010) Brönsted Acid Catalyzed, Enantioselective Vinylogous Mannich Reaction. *Chemi*stry: An European Journal, 16, 2806-2818. <u>https://doi.org/10.1002/chem.200902537</u>
- [34] Gu, C.-L., Liu, L., Wang, D. and Chen, Y.-J. (2009) Tunable and Highly Regio- and Diastereoselective Vinylogous Mannich-Type Reaction of Dioxinone-Derived Silyl Dienolate. *Journal of Organic Chem*istry, **74**, 5754-5757. https://doi.org/10.1021/jo900977y
- [35] Sickert, M. and Schneider, C. (2008) The Enantioselective, Brönsted Acid Catalyzed, Vinylogous Mannich Reaction. *Angewandte Chemie International Edition*, **47**, 3631-3634. <u>https://doi.org/10.1002/anie.200800103</u>
- [36] Martin, S.F. (2002) Evolution of the Vinylogous Mannich Reaction as a Key Construction for Alkaloid Synthesis. *Accounts of Chemical Research*, **35**, 895-904.
- [37] Kawęcki, R. (2006) Aza Diels-Alder Reactions of Sulfinimines with the Rawal Diene. *Tetrahedron: Asymmetry*, 17, 1420-1423. https://doi.org/10.1016/j.tetasy.2006.04.026
- [38] Xiong, Y., Mei, H., Han, J., Li, G. and Pan, Y. (2014) Asymmetric Synthesis of β-Amino-a,β-Enones via Addition of a,β-Unsaturated Ketone-Derived Enolates to Chiral N-Phosphonyl Imines. *Tetrahedron Letters*, 55, 2476-2479. https://doi.org/10.1016/j.tetlet.2014.03.005
- [39] Reddy, A.A., Reddy, P.O. and Prasad, K.R. (2016) Synthesis of β -Amino-Substituted Enones by Addition of Substituted Methyl Enones to Sulfinimines: Application to the Total Synthesis of Alkaloids (+)-Lasubine II and (+)-241D and the Formal Total

Synthesis of (–)-Lasubine I. *Journal of Organic Chem*istry, **81**, 11363-11371. https://doi.org/10.1021/acs.joc.6b01541

- [40] Yuan, Y., Li, X. and Ding, K. (2002) Acid-Free Aza Diels-Alder Reaction of Danishefsky's Diene with Imines. *Organic Letters*, 4, 3309-3311. https://doi.org/10.1021/ol0265822
- [41] Pan, X., Huang, R., Zhang, J., Ding, L., Li, W., Zhang, Q. and Liu, F. (2012) Efficient Synthesis of Prasugrel, a Novel P2_{Y12} Receptor Inhibitor. *Tetrahedron Letters*, 53, 5364-5366. <u>https://doi.org/10.1016/j.tetlet.2012.07.071</u>
- [42] Jakubowski, J.A., Winters, K.J., Naganuma, H. and Wallentin, L. (2007) Prasugrel: A Novel Thienopyridine Antiplatelet Agent. A Review of Preclinical and Clinical Studies and the Mechanistic Bases for Its Distinct Antiplatelet Profile. *Cardiovascular Drug Reviews*, 25, 357-374. https://doi.org/10.1111/j.1527-3466.2007.00027.x