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Abstract 
Reliability and safety are major issues in tower crane applications. A new 
adaptive neurofuzzy system is developed in this work for real-time health 
condition monitoring of tower cranes, especially for hoist gearboxes. Vibra-
tion signals are measured using a wireless smart sensor system. Fault detec-
tion is performed gear-by-gear in the gearbox. A new diagnostic classifier is 
proposed to integrate strengths of several signal processing techniques for 
fault detection. A hybrid machine learning method is proposed to facilitate 
implementation and improve training convergence. The effectiveness of the 
developed monitoring system is verified by experimental tests. 
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1. Introduction 

Tower cranes are used extensively at construction sites to lift and move materials. 
They often rise hundreds of feet into the air, and can reach out just as far. As il-
lustrated in Figure 1, a tower crane consists of several units: 1) the mast is the 
supporting tower of the crane; 2) slewing unit sits at the top of the mast, which 
allows the crane to rotate; 3) the operator cabin usually sits just above the slew-
ing unit; 4) the jib is the operating arm, along which a trolley runs to move the 
load; 5) counter jib is the shorter horizontal arm, which carries the hoist unit, 
control electronics, and the concrete counter weights. 

Reliability and safety are the main issues for tower crane applications. Machi-
nery failures in tower cranes could result in catastrophic damage to life and  

How to cite this paper: Adik, A.K. and 
Wang, W. (2019) An Intelligent System for 
Real-Time Condition Monitoring of Tower 
Cranes. Intelligent Control and Automa-
tion, 10, 155-167. 
https://doi.org/10.4236/ica.2019.104011 
 
Received: November 1, 2019 
Accepted: November 23, 2019 
Published: November 26, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ica
https://doi.org/10.4236/ica.2019.104011
https://www.scirp.org/
https://doi.org/10.4236/ica.2019.104011
http://creativecommons.org/licenses/by/4.0/


A. K. Adik, W. Wang 
 

 

DOI: 10.4236/ica.2019.104011 156 Intelligent Control and Automation 
 

 
Figure 1. Illustration of a tower crane structure: (1) mast, (2) slewing 
unit, (3) operator cabin, (4) jib, (5) counter jib, (6) hoist unit. 

 
properties [1]. Several techniques and tools have been proposed in literature for 
tower crane condition monitoring such as based on the maximum load, maxi-
mum moment, maximum lifting height, trolley position on the jib, arm positions 
to prevent collision, and structure strength [2]. However, unexpected failures 
always occur in tower crane applications. As a matter of fact, machinery failure 
of tower cranes has become the top hazard at construction sites [3]. As a result, 
more strict regulations and clauses have been imposed by the Canadian govern-
ment [4]; and the manufacturers and contractors have to develop and imple-
ment more efficient safety monitoring technologies for tower cranes [5].  

This work will focus on the condition monitoring of hoist units in tower 
cranes. The hoist unit is located in the counter jib as shown in Figure 1. The 
most dangerous failure in a hoist drive is related gear tooth breakage. The gear 
materials are subjected to dynamic loading and impacts. If a tooth is broken 
partly or completely due to fatigue, the following teeth in that gear will be dam-
aged quickly due to extra impacts. The gearbox could become “free rotation”, 
and the lifted load would drop to the ground freely, which could cause serious 
danger to the people underneath it [6]. New technologies and tools are critically 
needed for more accurate health condition monitoring of the hoist gearboxes of 
tower cranes.  

Condition monitoring is an act of fault diagnosis by means of appropriate in-
formation carriers such as temperature, acoustic signal, or vibration [7]. Vibra-
tion-based monitoring is the most commonly used approach because it is ease of 
measurement and has relatively high signal-to-noise ratio [8], which also will be 
used in this study.  

Fault diagnosis is a process of classifying the vibration features into different 
categories corresponding to different equipment health conditions. Automatic 
fault diagnosis can be conducted by either model-based or data-driven tech-
niques [9]. Although model-based approaches are relatively easy to develop and 
implement, accurate analytical models are difficult to derive especially for com-
plex machinery systems [10]. Data-driven paradigms conduct fault diagnosis by 
using some intelligent tools such as neural networks, fuzzy logic, or synergetic 
schemes [11] [12]. The author’s research team has also proposed neurofuzzy (NF) 
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schemes for machinery fault diagnostics [13] [14], in which the system parame-
ters are trained online/offline. Although these techniques have been applied ef-
fectively in many applications [15], these NF schemes could not be used effec-
tively for applications using a standalone computing device with limited RAM 
capability; in addition they do not have sufficient adaptive capability to accom-
modate time-varying dynamic effects as in tower crane monitoring applications.  

In summary, when a monitoring system is used in real-world applications, 
unreasonably missed alarms (i.e., the monitor cannot pick up existing faults) and 
false alarms (i.e., the monitor triggers alarms because of noise instead of real 
faults) will seriously mitigate its validity. In addition, machinery dynamics may 
also change suddenly, such as just after repair or regular maintenance. To tackle 
these aforementioned challenges, the objective of this work is to propose a new 
adaptive NF (i.e., ANF in short), system for real-time health condition monitor-
ing of hoist gearbox in tower cranes. It is new in the following aspects: 1) A new 
adaptive NF classifier is proposed for more accurate fault diagnosis in gear sys-
tems in order to provide a more reliable real-time condition monitoring tool for 
tower cranes. 2) A new hybrid training technique is proposed to facilitate train-
ing operation and improve training convergence. The effectiveness of the devel-
oped classifier is verified by experimental tests. 

The remainder of this paper is organized as follows: the proposed intelligent 
monitoring system is discussed in Section 2. The effectiveness of the proposed 
techniques is verified experimentally in Section 3. 

2. The Developed Intelligent Monitoring System 
2.1. Overview 

The developed intelligent monitor consists of several modules as illustrated in 
Figure 2. The hardware includes smart sensor-based data acquisition (DAQ) 
system and a computing device (e.g., a small laptop). The software module con-
sists of functions such as signal processing, database management, diagnostic 
classifier, and training, which will be discussed in this section. 
 

 
Figure 2. Architecture of the developed intelligent monitor. 
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2.2. Smart Sensor-Based DAQ 

A classical data acquisition system consists of hardware such as sensors, am-
plifiers, antialiasing filters, and a DAQ board. It is not only expensive but also 
inconvenient for real-world applications [4]. As the microprocessors become 
cheaper and faster in processing, it is possible to integrate the related DAQ 
functions onto chips for smart sensors. The authors’ research team has devel-
oped many smart sensor-based DAQ systems that can collect different types of 
signals [16] [17]. In this work, wireless smart vibration and distance sensors are 
used for tower crane condition monitoring. The vibration sensing unit uses 
ICP-accelerometers (e.g., PCB 320 series) with a bandwidth of 15,000 Hz, acce-
leration range of ±140 g, sensitivity of 150 mV/g, and measurement range of 
±4900 m/s2 pk. A distance smart sensor is used to measure gear rotation. Signal 
conditioning functions (e.g., amplification, rectification, and antialiasing filters) 
are implemented in IC filter chips so as to reduce size and cost. The wireless 
communication is based on SWAP protocol with frequency of 915 Hz. A user 
interface is developed to enable modification of DAQ reconfigurable parameters 
such as sensor calibration, sampling frequency, filter specifications, monitoring 
time interval, etc.  

2.3. Adaptive Neurofuzzy Diagnostic Classifier 

A novel ANF diagnostic classifier is developed for gear system monitoring. To 
improve monitoring accuracy, fault diagnosis is performed gear by gear by the 
use of time synchronous average filtering [15]. The conditions of each gear are 
classified into three categories: healthy ( 1C ), possibly damaged ( 2C ), and dam-
aged ( 3C ), respectively. Consider L input variables, { }1 2, , , Lx x x

; three mem-
bership functions (MFs), Small, Medium, and Large, are assigned to each input 
variable. The diagnostic classification, in terms of the diagnostic indicator y, can 
be formulated as 

jℜ : If ( 1x  is 1 jA ) and ( 2x  is 2 jA ) 
and   and ( Lx  is LjA ) ⇒  ( jy C⊂  with jw )         (1) 

where ljA  are linguistic MFs of lx , 1,2, ,l L=  , 1,2, ,j J=  ; J is the num-
ber of rules; jw  is the weight factor (contribution) of the rule jℜ  to the diag-
nostic operation.  

The number of rules is associated with the diagnostic reasoning operations of 
input variables. For example, if the classifier has three inputs { }1 2 3, ,x x x  (i.e., 

3L = ), then diagnostic classification will be performed by the following criteria: 
Four rules are associated with healthy condition ( 1C ) reasoning: If (all three 

indices are Small), or (two are Small and one is Medium), then (the object is 
Healthy).  

Four rules are associated with damage condition ( 3C ) formulation: If (all 
three indices are Large), or (two are Large and one is Medium), then (the object 
is Damaged).  
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Except for these two states, the object is possibly damaged ( 2C ), and the clas-
sification of 2C  is performed by 9 rules. In all of these cases, different feature 
association (rule) corresponds to a different weight grade wj. 

Figure 3 schematically shows the network architecture of this diagnostic clas-
sifier. Unless specified, all the network links have unity weights. The input nodes 
in layer 1 transmit the monitoring indices { }1 2, , , Lx x x

 to the next layer. Each 
node in layer 2 acts as an MF. The nodes in layer 3 perform the fuzzy T-norm 
operations. If a product operator is used, the firing strength of rule jℜ  is 

( )
1

L

j lj l
l

A xη
=

=∏                         (2) 

where ( )ljA •  denote MF grades.  
Defuzzification is performed in layer 4. If 1J , 2J  and 3J  are the number 
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The diagnostic indicator will be 

1 2 3y S S S= ∨ ∨ .                       (4) 

 

 
Figure 3. The network architecture of the diagnostic classifier. 
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2.4. Diagnostic Decision-Making 

In machinery health condition monitoring, if the diagnostic indicator 1y ε≤ , 
the object is considered healthy; 1ε  is a threshold ( 1 0.50ε =  in this case). If 

1 2yε ε< ≤ , the monitored object is possibly damaged; 2ε  is another threshold 
( 2 0.70ε =  in this case). Otherwise, if 2y ε> , the object is damaged. An ap-
propriate alarm should be given to the user for the occurrence of the defect.  

When the indicator y values are formulated, the corresponding historical in-
dicator y' in the database will be used to verify the diagnostic results so as to im-
prove diagnostic reliability. In operation, the objective is to minimize the match 
error, e y y′= − , between the current value of the diagnostic indicator y and its 
comparator value y'. If y and y' belong to different classes, for example 1C  
(healthy) and 2C  (possibly damaged), there are three possible reasons: 1) the 
defect recognized by the ANF classifier is caused by noise instead of real com-
ponent damage; 2) the historical comparator data sets are not accurate; and 3) 
the convergence of the ANF classifier deteriorates due to local minima. These 
problems can be solved by the training process. For the first reason, the er-
ror-making rules will be punished to reduce their weight factors wj to the diag-
nostic classification. If the database is not accurate, it will be updated using more 
accurate data sets for future monitoring and training application. If the errors 
are caused by possible trapping of location minima, the rule boundary properties 
in the decision space will be modified by appropriate training operations. 

2.5. Hybrid System Training 

Once the ANF classifier is set up, it should be properly trained to improve its 
performance. In this case, a hybrid training strategy is suggested to update sys-
tem parameters. The linear parameters will be trained by the use of the classical 
least squires estimator (LSE). 

Many algorithms have been proposed in literature for nonlinear parameter 
optimization, each having its merits and limitations. The Levenberg-Marquardt 
(L-M) algorithm possesses quadratic convergence close to a minimum [18]. Its 
convergence is still reasonably well even if the initial estimates are relatively poor. 
This characteristic is important in the developed real-time monitoring applica-
tions. In addition, the L-M algorithm has been proven globally convergent in 
many applications by properly choosing the step factors. In this monitoring ap-
plication, the system uses a less powerful standalone computing device (e.g., a 
small laptop computer), which has limited RAM space. In using the L-M algo-
rithm, when the number of intermediate variables becomes large in operation, 
the computation of the inverse of a large size Hessian matrix will take a very 
long time. The excessive computing load can dramatically slow down or even 
block the computing operations. To solve this problem, a novel recessive L-M 
training method is suggested in this work to facilitate its implementation and 
improve its convergence.  

The objective or error function with respect to adjustable parameters kθ  at 
the current time instant k is defined as 
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( ) ( ) ( ) ( ) ( )2 2 T

1 1

1 1
2 2

K K

k k k d k k k k k k
k k

E y y r
= =

 = − = = ∑ ∑θ θ θ r θ r θ        (5) 

where ( )k ky θ  is the kth output, 1,2, ,k K=  ; dy  is the desired output. 
( )k kr θ  is the error vector that can be either linear or nonlinear. 
To simplify expression, the variable kθ  is dropped in the related terms in 

these manipulations. By taking the Tayler series expansion and neglecting higher 
order terms,  

( )
( )

1T T 1 T
1

1 T1

k k k k k k k k k k k k k

k k k k k

λ η λ

α

− −
+

−

≈ + + = +

= + −

θ θ J J I J r θ H J r

θ H J r
         (6) 

where Z
k

Z×∈J R  is the Jacobin matrix; Z is dimension of kθ  (or the number 
of parameters to be trained); Z

k
Z×∈H R  is the Hessian matrix; Z Z×∈I R  is 

an identity matrix; 1k kλ α= − ; kα  is the forgetting factor; kη  is the learning 
that can be adapted by a line search method.  

The Hessian matrix can be expressed as 

( )( )T
1 1k k k k k k kα α η−= + − +H H J J I .               (7) 

In implementation, instead of computing the Z Z×  matrix tη I  at each 
time step, tη  is added to one of the diagonal elements of T

k kJ J  at each time 
instant  

( )( )T
1 1k k k k k k kZα α η−= + − +H H J J Λ                (8) 

where Z Z×∈Λ R  has only one nonzero element located at ( ){ }mod 1t Z +  di-
agonal position, or 

( ){ }1,      if mod 1 ,  and 
Λ

0,     otherwise
ii

i k Z k Z = + >∈


             (9) 

Correspondingly, Equation (8) can be rewritten as 

( )( )1 T
1 1k k k kα α −
−= + −H H UV U                 (10) 

where 
T

T

0 0 1 0 0
k 

=  
 

J
U

 

, and 1 1 0
0 kZη

−  
=  
 

V . 

The computation of 1
k
−H  in Equation (6) is very time consuming, and it not 

suitable for real-time applications. Here 1
k
−H  is computed by using following 

approach: 

( ) ( ) 11 1 1 1 1 1−− − − − − −+ = − +A BCD A A B C DA B DA          (11) 

where A, B, C and D are matrices such that A and ( 1 1− −+C DA B ) are nonsin-
gular matrices.  

Based on Equation (11), Equation (6) can be rewritten as 

( )
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     (12) 
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Let 1k kα −=A H , ( )1 kα= −B U , 1−=C V , and T=D U . From Equation 
(12), the recursive L-M algorithm can then be represented by  

1k k k k k+ = +θ θ J rΦ                        (13) 

where 1 T
1 1 1

1
k k k k

kα
−

− − − = − US UΦ Φ Φ Φ , 

T
1k kα −= +S V U UΦ .                     (14) 

S is a matrix with dimension 2 × 2; its inverse computation is simple and can 
be implemented for real-time monitoring applications. 0 =θ 0 ; tΦ  is a cova-
riance matrix with initial condition 0 ρ= IΦ , where 2 610 ,10ρ  ∈   , 

[ ]0.001,10kη ∈ , and [ ]0.95,1kα ∈ .  
In hybrid training, as each data sample is inputted to the ANF classifier, the 

linear consequent parameters jw  are updated by using the LSE. The nonlinear 
classifier MF parameters are trained by the use of the recursive L-M method. On 
the other hand, adaptive training is preferred in real-time applications because: 1) 
it is necessary for time-varying systems; 2) it possesses randomness that may 
help to escape from a local minimum; and 3) it is useful when the number of 
training data is large.  

3. Performance Evaluation 

The effectiveness of the proposed ANF classifier techniques will be verified in this 
section by the use of experimental tests. 

3.1. Experimental Setup 

The experimental setup used in this study is schematically shown in Figure 4. 
The system is driven by a 3-HP induction motor. A pair of gears are tested in this 
case. The loading is provided by heavy-duty magnetic breaks connected to the 
gearbox. The motor rotation is controlled by a speed controller, which allows 
tested gearbox operation in the range of 20 to 3600 rpm. The vibration is meas-
ured using two smart vibration sensors (accelerometers) mounted on the gearbox 
housing. A displacement sensor is used to provide gear rotating information, 
which is used as a reference for time synchronous average filtering. The collected 
signals are wirelessly fed to a receiver that is connected to a computer through a 
USB port.  

3.2. Monitoring Indices 

Gear fault consists of localized damage and distributed defects (e.g., wear and 
pitting). This work focuses on localized gear fault diagnosis because a localized 
fault can not only generate transmission errors but also may cause sudden fail-
ures [15] [19]. For example, a tiny crack may occur at a gear tooth due to dy-
namic loading, stress concentration, or impacts. As the gear system continues in 
operation, the crack propagates continuously. Unfortunately, by the time that 
the crack is visible, the gear may be more than 90% used up. When a tooth is  
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Figure 4. Experimental setup: (1) the smart displacement sensor, (2) the driving 
gear, (3) the load drive, (4) the smart vibration sensor, (5) the driven gear.  

 
broken out, the following teeth will be damaged quickly due to extra impacts, 
which could induce severe accidents in tower crane applications.  

One of the initiatives of this work is to perform fault diagnosis of the gearbox 
gear by gear. Because the measured vibration is an overall signal generated from 
various rotary sources, the first step is to differentiate the signal specific to each 
gear by using the time synchronous average filter [15]. In this filtering process, 
all of the signals that are non-synchronous to the rotation of the gear of interest 
(e.g., those from bearings and shafts) are filtered out. As a result, each gear signal 
is computed and represented in one full revolution, called the signal average, 
which will be used for advanced analysis. 

Several techniques have been proposed in the literature for gear fault detection; 
however, each has its own advantages and limitations, and is efficient for specific 
applications only [13] [14]. As a result, the more features are applied in diagnos-
tic classification, the more possible it is to achieve conflicting diagnostic results. 
The selected features should be robust, that is, sensitive to component defects 
but insensitive to noise (i.e., the signal not carrying health information). By in-
vestigation, three features are selected in this work from different information 
domains: energy, amplitude, and phase:  

1) wavelet energy function, using the overall residual signal that is obtained by 
bandstop filtering out the gear mesh frequency Rf N  and its harmonics, where 

Rf  is the rotation frequency (in Hz) of the gear of interest and N is the number 
of teeth of the gear;  

2) beta kurtosis, using the overall residual signal;  
3) phase demodulation using the signal average. Details of these techniques 

can be found from [15]. 

3.3. Performance Evaluation by Experiment 

To verify the effectiveness of the developed intelligent monitor and the related 
techniques, systematic tests have been conducted corresponding to different 
machinery conditions. Three gear cases are tested in this case, as illustrated in 
Figure 5: (a) healthy gears, (b) cracked gears, and (c) scored gears.  

Drive Motor
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(a)               (b)              (c) 

Figure 5. Tested gears: (a) Healthy gears; (b) Cracked gears; (c) Scored gear. 
 

To make a comparison, two other related diagnostic classifiers are considered:  
1) Classifier-1: A general ANFIS classifier, but using the proposed hybrid 

training technique with the LSE and the recursive L-M for training. It is to com-
pare the proposed ANF classification scheme. 

2) Classifier-2: It has the same network architecture with the ANF classifier, 
but the training is using the LSE and the classical L-M algorithm. It is to com-
pare training efficiency of the proposed hybrid training based on the recursive 
L-M algorithm. 

A series of tests have been conducted corresponding to different gear condi-
tions. Firstly, both gears are healthy. The tests are undertaken with different load 
levels and speed. 225 data sets are collected for system training (120 pairs) and 
testing (105 pairs). Then the driven gear with a simulated crack is installed and 
tested. 300 data sets are collected; 200 pairs are used for training and 100 pairs 
for testing. In scored gear testing, similarly, 300 sets of data are collected; 200 
pairs are used for training and 100 pairs for testing. Test results are summarized 
in Table 1, in which FA stands for False Alarms, and MA stands for Missed 
Alarms. 

It is seen the developed ANF classifier provides best performance in this test, 
which has recorded 3 missed alarms and 2 false alarms during the testing periods. 
The missed alarms are mainly induced when the motor rotates at a very low 
speed, and the resulting signature modulation due to a small tooth crack is very 
weak. The false alarms are caused by the dramatic speed and load variations in 
testing. ANF classifier performs better than Classifier 1 that generates 5 missed 
alarms and 7 false alarms. It can verify the better classification efficiency of the 
proposed ANF diagnostic classification scheme. The developed ANF classifier 
also outperforms Classifier-2 that has recorded 4 missed alarms and 4 false 
alarms during the testing periods. It can verify the effective convergence of the 
proposed the recursive L-M algorithm.  

3.4. Monitoring of the Hoist Gearbox 

The purpose of the developed ANF classifier is for hoist gearbox condition mon-
itoring and diagnostics. Figure 6 schematically shows the structure of a hoist 
drive in a tower crane. The gearbox consists of two pairs of gears. The monitor-
ing is taken gear-by-gear. Vibration signals are collected using the smart vibra-
tion sensors. The gear rotation signal is measured by a wireless encoder, which 
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provides a reference for time synchronous average filtering.  
Figure 7 shows a demo of an interface for this application example. The 

processing results are from the developed ANF monitoring system. It shows the 
current diagnostic indicator values of each gear, as well as the comparator values. 
To facilitate monitoring, the green color is used to specify the “healthy state”, 
whereas yellow and red colors indicate “possibly damaged” and “damaged” con-
ditions, respectively.  

 
Table 1. Summary of the testing results using different classifiers (FA: False Alarms, MA: 
Missed Alarms). 

Diagnostic 
Classifier 

Healthy 
Gears 

Cracked 
Gears 

Chipped  
Gears 

Overall 
Accuracy 

% 

MA FA MA FA MA FA  

Classifier-1 1 3 2 2 2 2 88.4 

Classifier-2 0 2 3 1 1 1 94.2 

ANF  
Classifier 

0 1 2 1 1 1 98.8 

 

 
Figure 6. A hoist drive unit: (1) drive motor, (2) gearbox, (3) smart vibration sen-
sors, (4) brake clutch, (5) encoder, (6) rope drum.  

 

 
Figure 7. An interface example of the developed intelligent 
motor. 
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0.414Gear 1 : 0.419
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0.881Gear 4 : 0.867
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4. Conclusion 

A new ANF monitoring system is developed in this work for health condition 
monitoring of tower cranes, especially for hoist gearboxes. Vibration signals are 
measured using wireless smart sensors. Fault detection is performed gear-by-gear. 
A new ANF diagnostic classifier is developed to integrate strengths of several 
signal processing techniques for more accurate fault diagnosis. A novel hybrid 
training method based on a recursive L-M technique is proposed to improve 
processing efficiency by reducing the matrix size, and enhance the training con-
vergence. The effectiveness of the proposed diagnostic techniques has been veri-
fied by experimental tests corresponding to different gear and operating condi-
tions. Test results have demonstrated that the developed ANF monitoring sys-
tem can provide more reliable fault diagnostics of the gear systems. It has also 
been implemented for real tower crane hoist drive system monitoring applica-
tions. 
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