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Abstract 
Prediction of stock trend has been an intriguing topic and is extensively studied 
by researchers from diversified fields. Machine learning, a well-established 
algorithm, has been also studied for its potentials in prediction of financial 
markets. In this paper, seven different techniques of data mining are applied 
to predict stock price movement of Shanghai Composite Index. The ap-
proaches include Support vector machine, Logistic regression, Naive Baye-
sian, K-nearest neighbor classification, Decision tree, Random forest and 
Adaboost. Extracting the corresponding comments between April 2017 and 
May 2018, it shows that: 1) sentiment derived from Eastmoney, a social media 
platform for the financial community in China, further enhances model per-
formances, 2) for positive and negative sentiments classifications, all classifi-
ers reach at least 75% accuracy and the linear SVC models prove to perform 
best, 3) according to the strong correlation between the price fluctuation and 
the bullish index, the approximate overall trend of the closing price can be 
acquired. 
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1. Introduction 

With the rapid development of economy-oriented society, investor sentiment 
has received more and more attention. The efficient market hypothesis has been 
at the core pillar of modern financial theory since the 1960s. According to Fama, 
in an efficient market, the price fully reflects all the information it can get [1]. 
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However, financial markets are considered to be a complex non-linear system, 
and it is very challenging to predict stock prices in a technical way [2] [3] [4] [5]. 
Market anomalies were observed which contradict the EMH basic assumptions 
according to which the prediction of share prices should not be possible [6] [7] 
[8] [9]. In recent years, financial economists have been trying to study the finan-
cial behavior of investors from the perspective of human science, which has also 
spawned a new field of financial research—behavioral finance tracing back to the 
early 1990s [10]-[15]. The important branch with investor sentiment as the re-
search object is gradually emerging as the information technology has witnessed 
an unprecedented boom. Single events (e.g., sport results, daylight saving ano-
maly) or continuous effects (e.g., weather effect, air pollution) influence people’s 
emotions [16] [17] [18] [19]. The prediction of share returns based on mood 
states can be seen as market anomaly contradicting the efficient market hypo-
thesis [20]. These mood-related anomalies can be explained by the misattribu-
tion bias according to which people make risky decisions depending on mood 
states [21]. The Affect Infusion Model (AIM) can explain the relationship be-
tween positive and negative mood states and the risk-taking tendency which 
postulates that people in positive mood rely on positive cues to make decisions 
[22] [23] [24] [25]. 

Considering individual emotion is a vague concept, previous research made 
significant progress on various sentiment techniques after tracking indicators of 
public mood directly from social media content, such as Facebook and Twitter 
feeds [26] [27] [28] [29] [30]. In a seminal work, harnessing the cross-validate 
time series, Bollen et al. compared the ability of two mood tracking tools, namely 
OpinionFinder and Google-Profile of Mood States, to detect the public response 
on daily Twitter feeds to Dow Jones Industrial Average during Presidential elec-
tion and Thanksgiving day [31].  

Scholars’ research on sentiment analysis is not limited to processing text, but 
extends to machine learning and achieves high accuracy. Data mining tech-
niques have been introduced for prediction of movement sign of stock market 
index by Leung et al. and Chen et al., Schumaker et al. predicted the S&P 500 
index through SVM technology and used four text eigenvectors to represent the 
emotional dimension of the entire text, with an accuracy of 58.2% in the predic-
tion results [32] [33] [34]. Hassan, Nath, and Kirley proposed and implemented 
a fusion model by combining the Hidden Markov Model (HMM), Artificial 
Neural Networks (ANN) and Genetic Algorithms (GA) to make financial mar-
ket behavior forecast [35]. Kumar & Thenmozhi collected five different ap-
proaches including SVM, Random forecast, Neural network, Logit and LDA to 
predict Indian stock index movement based on economic variable indicators 
[36]. 

In this paper, we aim to analyze individual sentiment by addressing the accu-
racy of using seven machine learning algorithms in classifying financial stock 
comments into positive as well as negative classes. Platform Eastmoney is Chi-
na’s most popular exclusive community for financial professionals with daily 
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average flow exceeding 200 million, making it the preferred platform for domes-
tic investors to interact. We compare the accuracy of these classifiers using the 
feature model: unigram TF-IDF. We assess the effects of including public mood 
information on the accuracy of a “baseline” prediction model rather than pro-
posing an optimal prediction model.  

2. Methods and Materials 
2.1. Methods 

In terms of the methodology as shown in Figure 1, we totally proceed in three 
phases. 

2.1.1. Data Preparation and Feature Engineering 
In the first phase, after data pre-processing, including word segmentation, pause 
word removal and tokenization, we leverage the unigram TF-IDF metric, a fea-
ture for word importance in a document that takes the product of term frequen-
cy (TF) and inverse document frequency (IDF). TF-IDF for a certain term t is 
defined as the multiplication of TF(t) by IDF(t). TF measures how frequently a 
term (feature) occurs in a comment. Since every comment may have different 
length, it is possible that a term would appear much more times in long blogs 
than shorter ones. Thus, the term frequency is often divided by the length as a 
way of normalization. Normalized TF for a given term t is defined as (formula 
1): 

( )TF nt
N

=                             (1) 

where n = Numbers of term t occurs in the comments, N = Total numbers of the 
terms in the comments. 

In contrast, IDF measures the importance of terms based on how frequently 
they appear across multiple comments. Intuitively, a term appears frequently in  
 

 
Figure 1. Diagram outlining the methodology overview. 
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a single comment is important and gets a high weight. However, if the term ap-
pears in many blog posts, then it becomes less discriminative; hence, IDF 
deemphasizes its weight. IDF for a term t is given by: 

( )IDF log Qt
q

=                          (2) 

where q = Numbers of comments with term t in it, Q = Total numbers of com-
ments. 

2.1.2. K-Fold Cross Validation with Multiple Machine Learning Algorithms 
In the second phase, we deploy bag-of-words technique by manually sorting out 
positive and negative messages respectively. We apply K-fold cross validation to 
train the models where we divide the data into 5 splits and harness the first 80% 
for observations and the remaining 20% for test. We leverage multiple machine 
learning algorithms for analyzing the emotional polarity (Table 1).  
 
Table 1. Machine learning classifiers overview. 

Algorithms Explanation 

LinearSVC 

Support vector machine (SVM) have two main categories: support vector 
classification (SVC) and support vector regression (SVR). SVM is a 
learning system using a high dimensional feature space. The main  
objective of support vector machine is to identify maximum margin 
hyper plane as the final decision boundary. 

Logistic 
Regression 

Logistic regression predicts the probability of an outcome that can only 
have two values (i.e. a dichotomy). A logistic regression produces a  
logistic curve, which is limited to values between 0 and 1. Logistic  
regression is similar to a linear regression, but the curve is constructed 
using the natural logarithm of the “odds” of the target variable, rather 
than the probability. Moreover, the predictors do not have to be normally  
distributed or have equal variance in each group. 

Naive 
Bayesian 

The Naive Bayesian classifier is based on Bayes theorem with the  
independence assumptions between predictors. Bayes theorem provides a 
way of calculating the posterior probability. A Naive Bayesian model is 
useful for very large datasets. Despite its simplicity, the Naive Bayesian 
classifier often does surprisingly well and is widely used because it often 
outperforms more sophisticated classification methods. 

K neighbors 
Classifier 

K nearest neighbors is a simple algorithm that stores all available cases 
and classifies new cases based on a similarity measure. KNN has been 
used in statistical estimation and pattern recognition already in 1970’s as 
a non-parametric technique. A case is classified by a majority vote of its 
neighbors, with the case being assigned to the class most common 
amongst its K nearest neighbors measured by a distance function. 

Decision 
Tree 

Decision tree builds classification or regression models in the form of a 
tree structure. It breaks down a dataset into smaller and smaller subsets 
while at the same time an associated decision tree is incrementally  
developed. The final result is a tree with decision nodes and leaf nodes. 

Random 
Forest 

The training algorithm for random forests applies the general  
technique of bootstrap aggregating, or bagging, to tree learners. 

AdaBoost 
Adaptive boosting machine learning meta-algorithm used for enhancing 
performance and classifier accuracy by means of adding more weight to 
previously misclassified instances. 
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Since the particular problem is classification-based in nature, we test out the 
efficacy of each classifier. Accuracy and f-score are used to evaluate the perfor-
mance of proposed models. Computation of these evaluation measures requires 
estimating Precision and Recall which are evaluated from True Positive (TP), 
False Positive (FP), True Negative (TN) and False Negative (FN). These para-
meters are defined in Equations (3)-(8). Since the prediction model has two di-
mensions, i.e., true of false and negative or positive, we have the verification ma-
trix (Table 2): 

TP
TP FPposP =

+
                            (3) 

TN
TP FPnegP =

+
                            (4) 

TP
TP FNposR =

+
                            (5) 

TN
TP FNposR =

+
                            (6) 

where P is the precision of the model, R is recall, TP is the number of true posi-
tive, TN is the number of true negative, FP is the number of false positive, and 
FN is the number of false negative. 

Taking the product of the two, we calculate the F1-score which is defined as: 

F1 2 P R
P R
∗

= ∗
+

                            (7) 

TP TNA
TP FP TN FN

+
=

+ + +
                        (8) 

where F1 is the F1-score of the model and A is the accuracy of the model. 

2.1.3. Bivariate Correlation Analysis for the Two Time Series 
In the third phase, we select the model with the best accuracy and conduct the 
relationship between bullish sentiment and stock market trend. The bull/bear 
ratio is a market-sentiment indicator which reflects how these professionals are 
feeling about the market, and how they are likely advising their clients to invest 
based on those feelings. In this paper, we define the bullish indicator as: 

Bull
*

Bear

1ln
1

MBI
M

 +
=  + 

                        (9) 

 
Table 2. Positive and negative-accuracy verification matrix. 

  Prediction  

  1 0 Total 

Actuality 
1 True Positive False Negative Actual Positive (TP + FN) 

0 False Positive True Negative Actual Negative (FP + TN) 

 Total Predicted Positive Predicted Negative TP + FP + FN + TN 
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Additionally, for bivariate correlation analysis, we usually have three methods 
of analysis which are the Pearson coefficient, Spearman coefficient and Kendall 
coefficient. Among them, we choose the Pearson correlation coefficient method 
measuring the linear relationship between two variables. 

The Pearson correlation coefficient formula is as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2 2 2 2

,
E xy E x E y

P x y
E x E x E y E y

−
=

− −
             (10) 

2.2. Data  

We perform analysis on the Shanghai Composite Index. All price data and 
comments data are drawn from the period between April 2017 and May 2018, 
totaling 266 trading days. Two main datasets were used. 

2.2.1. Comments Data 
Comments data is collected from the financial forum of Eastmoney  
(http://guba.eastmoney.com/) in CSV format, containing over 480,000 messages. 
Besides, we manually sort out about 5000 positive messages and 5000 negative 
messages.  

2.2.2. Price Data 
Daily split-adjusted stock price data of Shanghai Composite Index is collected 
via Tushare, a Python module which provides stock price data in dataframe 
format. We focus only on the closing price data. 

3. Results and Discussions 

As shown in Table 3 and Figure 2, the results indicate that the chosen algo-
rithms are clearly indicators of both the positive and negative sentiments classi-
fications with worst case accuracy of 75% and SVC yielded the best accuracy of 
88%. 

We choose SVM as the basic classification algorithm for our prediction mod-
el. We calculate the time series data of sentiment indicators through the bullish  
 
Table 3. The test accuracy for each of the learning models. 

Algorithms Accuracy 
Positive Negative 

Precision Recall F1-score Precision Recall F1-score 

LinearSVC 0.8816 0.8805 0.8825 0.8815 0.8824 0.8801 0.8813 

LogisticRegression 0.8809 0.8791 0.8832 0.881 0.8828 0.8782 0.8804 

Multinomial NB 0.8796 0.8821 0.876 0.879 0.8767 0.8832 0.8799 

KNN 0.8201 0.8071 0.8404 0.8234 0.8336 0.7991 0.8159 

DecisionTree 0.7994 0.8169 0.7711 0.7933 0.7833 0.8272 0.8046 

RandomForest 0.8137 0.8662 0.742 0.7992 0.7739 0.885 0.8256 

AdaBoost 0.7719 0.7973 0.7989 0.7654 0.8253 0.7594 0.7666 
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index. We combine it with the time series of stock prices in a single picture, 
(Figure 3). As shown in Figure 3, BI index and Shanghai composite index were 
selected as variables and Pearson coefficient was used for correlation test. The 
two series yielded statistically significant Pearson correlation coefficient of 0.689 
(as shown in Table 4). 
 

 
Figure 2. Diagram showing the test accuracy according to the four measurements. 
 

 
Figure 3. The two merged time series graph consisting of bullish sentiment and stock 
market trend. 
 
Table 4. Correlation test result (**: Correlation is significant at the 0.01 level). 
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4. Conclusions 

This research focused on predicting the direction of stocks and stock price in-
dices. Prediction performances of seven models namely SVM, Logistic regres-
sion, Naive Bayesian, KNN, Decision tree, Random forest and Adaboost are 
compared based on one year of historical data of Shanghai Composite Index 
from the Platform Eastmoney.  

Experiments with continuous-valued data show that Adaboost model exhibits 
least performance with 77.2% accuracy and SVM with highest performance of 
88.16% accuracy. SVM classifier has a better fitting degree for dichotomies. We 
divide emotions into positive emotions and negative emotions, so SVM is the 
most suitable classifier. Although these seven classification algorithms have 
achieved good fitting results, none of them is more than 90 percent accurate. On 
the one hand, Chinese words are more complex than English. On the other 
hand, most of natural language processing is mainly aimed at English, but not 
suitable for Chinese. 

Further research will focus on extending the technical indicator’s opinion 
about stock price movement as “highly possible to go up”, “highly possible to go 
down”, “less possible to go up”, “less possible to go down” and “neutral signal” 
are worth exploring. This may give more accurate input to inference engine of 
the sentiment analysis algorithms. Besides calculating the correlation coefficient 
of the two time series, the research will be conducted to predict long term analy-
sis of stock’s quarterly performance involved the ARIMA model based on ex-
ogenous variables for empirical test. 
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