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Abstract 
In this study, a modified particle filter considering non-Gaussian properties 
of noises is proposed in a form applicable to real situation in sound environ-
ment system where the observation data are contaminated by the external 
noise (i.e., background noise) of arbitrary probability distribution and meas-
ured in decibel scale. More specifically, a nonlinear observation model in de-
cibel scale with a quantized level is first paid considered by introducing the 
additive property of energy variables (i.e., sound intensity) in sound envi-
ronment system. Next, a wide-sense particle filter of an expansion expression 
type is derived in a form suitable for the nonlinear observation characteristics 
and the signal processing considering higher-order correlation information 
between the specific signal and observation. Furthermore, the effectiveness of 
the proposed theory is confirmed by applying it to the observed data meas-
ured in real sound environment. 
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1. Introduction 

In the real sound environment system, the observed data contains the effect of 
several fluctuation factors such as noises in addition to the specific signal. Fur-
thermore, we often encounter the situation necessary to estimate reasonably on-
ly the specific signal based on the observed data by introducing some signal 
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processing methods. For example, the background noise usually exists in real 
sound environment system and the effect of the background noise often has to 
be eliminated in order to evaluate the sound environment system. Therefore, it 
is very important to propose an estimation method of the specific signal based 
on the observed data contaminated by the background noise [1] [2]. Further-
more, the specific signal and the background noise usually show complex fluctu-
ation of non-Gaussian distribution. 

On the other hand, in order to estimate precisely the specific signal based on 
the noisy observation, some signal processing by use of digital computer is in-
dispensable. Therefore, the observed analogue data have to be translated to digi-
tal ones at discrete time. However, many standard estimation methods proposed 
previously for stochastic systems are restricted only to a continuous level of the 
observation [3] [4] [5] [6] [7]. 

Though a few researches dealing with state estimation based on the quantized 
observation with discrete level have been proposed up to now, these have as-
sumed Gaussian additive noise and have been restricted to linear estimator with 
state variables of Gaussian distribution [8] [9] [10]. Especially, the experimental 
confirmation has been confined to only the numerical simulation and the appli-
cation to real state estimation problems has seldom been carried out. From the 
above viewpoint, in our previous study, a state estimation algorithm has been 
derived by introducing a difference operation to the non-differentiable nonlinear 
function expressing the quantized observation [11]. 

Though the particle filter has been proposed as a state estimation method for 
nonlinear stochastic systems with non-Gaussian noise [12] [13] [14] [15], there 
remain a number of problems such as the complexity of calculation in resam-
pling process and the tremendous calculation time based on Monte Carlo simula-
tion. Furthermore, how to describe the likelihood function reflecting non-Gaussian 
properties for the observed data still remains in the process of realization of the 
algorithm. Though a state estimation method has been proposed by applying the 
particle filter after expressing the quantized observation characteristic as a non-
linear system, Gaussian distribution has been assumed for the observation noise 
in the realization of the algorithm [16]. Furthermore, the validity of the estima-
tion method has been confirmed by only numerical simulation applying the al-
gorithm to simple mathematical models with Gaussian noise. The application of 
the method to real observed data has not been carried out. 

In this paper, a modified particle filter for nonlinear systems considering 
non-Gaussian properties of specific signals, noises and observation data is pro-
posed for the purpose of application to sound environment system. More specif-
ically, a nonlinear observation model is introduced by considering the additive 
property of the energy variable (e.g., sound intensity) for the specific signal and 
external noise (i.e., background noise), and the quantized observation in decibel 
scale. A particle filter is realized by introducing likelihood function in expansion 
expression. Next, a wide-sense particle filter of an expansion expression type is 
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derived theoretically by considering not only the linear correlation between the 
specific signal and observation but also several nonlinear correlations. As the 
above result, the proposed method is suitable for the application to real sound 
environment and the estimation accuracy can be improved. The particle filters 
are used in many fields, because they can apply to many nonlinear stochastic 
systems with non-Gaussian noise. However, there are problems such as com-
plexity of calculation and tremendous computation time. The proposed method 
can solve these problems to some extent and will help to improve the computa-
tional ability and accuracy of estimation. The effectiveness of the proposed algo-
rithm is confirmed by applying it to the observed data measured in real sound 
environment under existence of background noise. 

The remaining part of this paper is organized as follows: Section 2 introduces 
the nonlinear observation model. Section 3 summarizes the particle filter and 
introduces newly a likelihood function in expansion expression for the particle 
filter. In Section 4, a wide-sense particle filter with quantized observation is the 
proposed as a state estimation based on Bayes’ theorem in expansion expression. 
Section 5 considers the prediction algorithm. In Section 6, experimental results 
applying the proposed method to sound environment verify the effectiveness of 
the theory. Finally, conclusions are summarized in Section 7.  

2. Nonlinear Observation Model for Sound Environment  
System 

Let us consider a stochastic environment system with the energy variables (e.g., 
sound intensity) of arbitrary distribution type, and express the system equation 
as: 

1k k kx Fx Gu+ = +                             (1) 

where kx  denotes the specific signal energy at a discrete time k, and ku  is the 
random input with known statistics. Here, kx  and ku  are statistically inde-
pendent of each other. Two parameters F and G are estimated by using an au-
to-correlation technique [1]. Furthermore, a nonlinear observation model is es-
tablished by considering the additive property of energy variables and the quan-
tized observation in decibel scale, as follows: 

( ){ }10 010 logk k ky x v y= + , ( )12
0

2W1 m0y −=                (2) 

( ) ( )k k k kz Q y g x v= ≡ +                        (3) 

where ky  is the noisy observation in decibel scale contaminated by the additive 
background noise energy kv . Though ky  is decibel variable with continuous 
level, the observation data are measured in a quantized level form suitable for 
the signal processing by use of a digital computer through A/D converter. The 
function ( )Q ⋅  denotes a nonlinear function expressing the quantization me-
chanism and kz  is the quantized observation in decibel scale. Therefore, ( )g ⋅  
denotes a nonlinear function combining the nonlinearity of decibel observation 
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with the quantized observation mechanism. In this study, a signal processing 
method to estimate the specific signal kx  is proposed on the basis of the quan-
tized observation kz  contaminated by the background noise kv . 

In order to derive an algorithm to estimate the specific signal kx  based on 
the quantized observation kz , Bayes’ theorem is paid attention as a fundamen-
tal principle of the estimation. 

( ) ( ) ( )1 1| , | |k k k k k k kP x Z P x z Z P z Z− −=              (4) 

where { }( )1 2, , ,k kZ z z z≡   is a set of observations until time k. 

3. Particle Filter for Sound Environment System with  
Quantized Observation 

3.1. Summary of Particle Filter 

In this section, the well-known particle filter for nonlinear systems is summarized 
[12]. 

First, Equation (4) can be expressed as follows: 

( ) ( ) ( )
( )

( ) ( )
( ) ( )

1 1

1

1

1

| , |
|

|

| |
| | d

k k k k k
k k

k k

k k k k

k k k k k

P z x Z P x Z
P x Z

P z Z

P z x P x Z
P z x P x Z x

− −

−

−

−

=

=
∫

             (5) 

By introducing M particles ( ) ( ) ( )1 2
| 1 | 1 | 1 | 1, , , M

k k k k k k k kX x x x− − − −
 =   , the prior proba-

bility density function ( )1|k kP x Z −  can be expressed approximately as: 

( ) ( )( )1 | 1
1

1|
M

i
k k k k k

i
P x Z x x

M
δ− −

=

≅ −∑                  (6) 

where ( )δ ⋅  is Dirac delta function and ( ) ( )| 1 1, 2, ,i
k kx i M− =   are particles con-

sidered as elements of ( )1|k kP x Z − . Furthermore, the posterior probability func-
tion ( )|k kP x Z  is also expressed approximately by use of the delta function in 
terms of M particles: ( ) ( ) ( )1 2

| | | |, , , M
k k k k k k k kX x x x =   , where ( ) ( )| 1, 2, ,i

k kx i M=   are 
particles considered as elements of ( )|k kP x Z . 

Next, using the property of delta function, the denominator of the right hand 
of Equation (5), which is expressed as kC , can be derived as follows: 

( ) ( )( ) ( )
| 1

1 1

1 1| d
M M

i i
k k k k k k k k

i i
C P z x x x x

M M
δ α−

= =

≅ − =∑ ∑∫          (7) 

with 
( ) ( )( ) ( )| 1| , 1, 2, ,i i
k k k k kP z x x i Mα −≡ = =                (8) 

Equation (8) expresses the likelihood function of kx  when the observation kz  
is obtained. From Equation (6) and Equation (7), Equation (5) can be expressed 
as 

( ) ( ) ( )( )| 1
1

1| |
M

i
k k k k k k k

ik

P x Z P z x x x
C M

δ −
=

≅ −∑              (9) 
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From the above equation, the following relationship is derived. 

( )( ) ( )( )
( )

( )

( ) ( )

| 1 | 1

1

1Pr | |

, 1, 2, ,

i i
k k k k k k k k

k

i
ik

kM
i

k
i

x x Z P z x x
C M

i M
α

α
α

− −

=

= ≅ =

= ≡ =

∑




         (10) 

Therefore, the cumulative distribution for Equation (10) can be given as follows: 

( ) ( ) ( )( )| | 1
1

M
i i

k k k k k
i

F x I x xα −
=

≅ −∑                     (11) 

where the function ( )I ⋅  denotes unit step function defined as 

( )
( )
( )

1 0

0 0

x
I x a

x

≥− = 
<

                      (12) 

Through resampling procedure, Equation (11) can be rewritten as 

( ) ( )( )| |
1

1 M
i

k k k k
i

F x I x x
M =

≅ −∑                     (13) 

Using the particles: ( ) ( ) ( )1 2
| | | |, , , M

k k k k k k k kX x x x =    obtained from Equation (13), the 
estimate ˆkx  of kx  can be obtained as follows: 

( )
|

1

1ˆ
M

i
k k k

i
x x

M =

= ∑                         (14) 

3.2. Particle Filter for Sound Environment System by Introducing  
Likelihood Function in Expansion Expression 

The quantized observation in Equation (3) can be expressed by introducing a 
quantized noise kε  as follows: 

( ) ( ){ }10 010 logk k k k k k kz Q y y x v yε ε= = + = + +         (15) 

Considering Equation (2), the likelihood function of ( )
| 1
i

k k kx x −=  for ky  is giv-
en as 

( )( ) ( )( )010
| 1 | 1| 10 ki iy y

k k k k v k kP y x x P x−
− −= = −               (16) 

where ( )vP ⋅  denotes the probability density function of the background noise 

kv . The statistical orthogonal expansion series [17] defined by 

( ) ( )
0

1; ,
!

k k
v k k k k n n

n k

v v
P v N v v R B H

n R

∞

=

 −
=   

 
∑            (17) 

k kv v≡ , ( )2
k k kR v v≡ − , 

1
!

k k
n n

k

v v
B H

n R

 −
≡   

 
 

( ) ( )2
2

22

1; , exp
22

x
N x

µ
µ σ

σσ

 − ≡ − 
  π

              (18) 

is adopted as an expression considering non-Gaussian distribution. Here ⋅  
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denotes an averaging operation on variables and ( )nH ⋅  is a Hermite poly-
nomial with the nth order. Therefore, the likelihood function of kx  defined by 
Equation (8) is expressed as 

( ) ( ) ( )( )010
| 110 k k

k

z yi i
k v k kP xε

ε
α + −

−= −               (19) 

The averaging operation on kε  in the above equation can be evaluated by use 
of the probability distribution of the quantized noise kε  such as a uniform dis-
tribution. Then, the estimate ˆkx  of kx  can be obtained from Equation (14) by 
use of particles ( )

|
i

k kx  calculated from Equation (19). 

4. Wide-Sense Particle Filter for Sound Environment System  
with Quantized Observation 

4.1. State Estimation Based on Bayes’ Theorem in Expansion  
Expression 

In order to express Equation (4) in a form reflecting hierarchically linear and 
nonlinear correlations between the specific signal kx  and the quantized ob-
servation kz , by expanding the conditional probability density function 
( )1, |k k kP x z Z −  in a statistical orthogonal expansion series, the following ex-

pression is derived [1] [2]. 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 2
0 1

0 0

2
0

0

|
|

k k mn m k n k
m n

k k

n n k
n

P x Z A x z
P x Z

A z

ϕ ϕ

ϕ

∞ ∞

−
= =

∞

=

=
∑∑

∑
         (20) 

( ) ( ) ( ) ( )1 2
1|mn m k n k kA x z Zϕ ϕ −≡                    (21) 

The above two functions ( ) ( )1
m kxϕ  and ( ) ( )1

m kxϕ  are orthonormal polynomials 
of degrees m and n with weighting functions ( )0 1|k kP x Z −  and ( )0 1|k kP z Z −  
describing the dominant part of the actual fluctuation. Based on Equation (20), 
the estimate of the polynomial function ( )M kf x  of kx  with Mth order can be 
derived as follows. 

( ) ( )
( ) ( ) ( ) ( )2 2

0
0 0 0

ˆ |M k M k k

M

Mm mn n k n n k
m n n

f x f x Z

C A z A zϕ ϕ
∞ ∞

= = =

≡

= ∑∑ ∑
           (22) 

where MmC  is an appropriate constant satisfying the following equality: 

( ) ( ) ( )1

0

M

M k Mm m k
m

f x C xϕ
=

= ∑                      (23) 

4.2. Realization of Wide-Sense Particle Filter for Sound  
Environment System 

Though the particle filter is useful for the state estimation problem of non-linear 
systems, this filter needs very complicated algorithm and a large number of 
computational times based on Monte Carlo simulation and the resampling pro-
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cedure. In this section, a hybrid algorithm combining the analytical formula for 
state estimation with Monte Carlo simulation by use of particles is proposed. 

The well-known Gaussian distribution is adopted as ( )0 1|k kP x Z −  and 
( )0 1|k kP z Z − , because this probability density function is the most standard one. 

( ) ( )*
0 1| ; ,

kk k k k xP x Z N x x− = Γ                    (24) 

*
1|k k kx x Z −≡ , ( )2*

1|
kx k k kx x Z −Γ ≡ −               (25) 

( ) ( )*
0 1| ; ,

kk k k k zP z Z N z z− = Ω                   (26) 

*
1|k k kz z Z −≡ , ( )2*

1|
kz k k kz z Z −Ω ≡ −               (27) 

Then, the orthonormal functions with two weighting probability density func-
tions in Equation (24) and Equation (26) can be given in the Hermite polynomi-
al: 

( ) ( )
*

1 1
!

k

k k
m k m

x

x x
x H

m
ϕ

 − =
 Γ 

                  (28) 

( ) ( )
*

2 1
!

k

k k
n k n

z

z z
z H

n
ϕ

 − =
 Ω 

                   (29) 

Therefore, considering especially two cases of ( )1 k kf x x=  and  
( ) ( )2

2 ˆk k kf x x x= − , estimates for mean and variance are given as 

{ }
( )

*

0 10 1 11
0

*
10 11

*

0
0

ˆ |

1
!

,
1

!

k

k

k

k k k

k k
n n n

n z
k x

k k
n n

n z

x x Z

z zA C A C H
n

C x C
z zA H

n

∞

=

∞

=

≡

 − +
 Ω = = = Γ

 − 
 Ω 

∑

∑

  (30) 

( )

{ }

( ) ( )( )

*

0 20 1 21 2 22
0

*

0
0

2* *
20 21 22

ˆ |

1
!

1
!

ˆ ˆ, 2 , 2

k

k

k

k k k

x k k k

k k
n n n n

n z

k k
n n

n z

x k k x k k x

P x x Z

z zA C A C A C H
n

z zA H
n

C x x C x x C

∞

=

∞

=

≡ −

 − + +
 Ω =

 − 
 Ω 

= Γ + − = Γ − = Γ

∑

∑
     (31) 

Furthermore, by considering a case of ( ) ( ) ( )( )1 11 ˆ1 !N k N k k kf x N H x x P= − , 
the estimate for the expansion coefficient reflecting the non-Gaussian property 
of the specific signal kx  can be obtained as follows: 

1 1
1

ˆ1ˆ |
!

k k
N N k

k

x x
a H Z

N P

 −
≡   

 
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{ }1 1 1 1 1

*

0 0 1 1
0

*

0
0

1
!

1
!

k

k

k k
n N n N N n N N n

n z

k k
n n

n z

z zA C A C A C H
n

z zA H
n

∞

=

∞

=

 − + + ⋅⋅⋅ +
 Ω =

 − 
 Ω 

∑

∑
      (32) 

where ( )
1 10,1, ,N lC l N=   are coefficients satisfying the following equality: 

1

1 1

*

01

ˆ1 1
! !

k

N
k k k k

N N l l
lk x

x x x x
H C H

N P l=

  − − =    Γ   
∑              (33) 

Considering Equation (3) and statistical independence between kx  and kv , 
two parameters *

kz  and 
kzΩ , and the expansion coefficients mnA  in the esti-

mation algorithm of Equations (30)-(32), are given as 

( )
( ) ( ) ( )

*
1

1

|

| d d
k k k k

k k k k v k k k

z g x v Z

g x v P x Z P v x v
−

−

= +

= +∫∫
              (34) 

( )( )
( )( ) ( ) ( )

2*
1

2*
1

|

| d d

kz k k k k

k k k k k v k k k

g x v z Z

g x v z P x Z P v x v

−

−

Ω = + −

= + −∫∫
         (35) 

( )

( ) ( ) ( )

**

1

**

1

1 1 |
! !

1 1 | d d
! !

k k

k k

k k kk k
mn m n k

x z

k k kk k
m n k k v k k k

x z

g x v zx x
A H H Z

m n

g x v zx x
H H P x Z P v x v

m n

−

−

   + −−   =
   Γ Ω   

   + −−   =
   Γ Ω   

∫∫

(36) 

The conditional probability density function ( )1|k kP x Z −  in Equations (34)-(36) 
can be expressed as: 

( ) ( )
*

*
1 0

0

1| ; ,
!k

k

k k
k k k k x m m

m x

x x
P x Z N x x A H

m

∞

−
=

 − = Γ
 Γ 

∑         (37) 

Furthermore, as the probability density function ( )v kP v  of the background 
noise kv , the expansion expression of Equation (17) is adopted. Two first terms 
of the probability density functions in Equation (17) and Equation (37) are ex-
pressed approximately as 

( ) ( )( )*
| 1

1

1; ,
k

M
i

k k x k Gk k
i

N x x x x
M

δ −
=

Γ ≅ −∑                  (38) 

( ) ( )( )
1

1; ,
M

i
k k k k Gk

i
N v v R v v

M
δ

=

≅ −∑                   (39) 

by introducing particles: ( ) ( ) ( )1 2
| 1 | 1 | 1 | 1, , , M

Gk k Gk k Gk k Gk kX x x x− − − −
 =    and  

( ) ( ) ( )1 2, , , M
Gk Gk Gk GkV v v v =    considered as elements of ( )*; ,

kk k xN x x Γ  and 
( ); ,k k kN v v R . Therefore, Equations (34)-(36) can be given as follows: 

( ) ( )( )
( ) *

| 1*
| 1 0

1 0

1 1
!

k

iM
Gk k ki i

k Gk k Gk m m
i m x

x x
z g x v A H

M m

∞
−

−
= =

 −
 = +
 Γ 

∑ ∑
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( )

0

1
!

i
Gk k

n n
n k

v v
B H

n R

∞

=

 −
⋅   

 
∑                       (40) 

( ) ( )( )( )
( )

( )

*2
| 1*

| 1 0
0 0

0

1 1
!

1
!

k

k

iM
Gk k ki i

z Gk k Gk k m m
i m x

i
Gk k

n n
n k

x x
g x v z A H

M m
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5. Prediction Algorithm 

Considering Equation (1), the prediction step necessary to perform the recursive 
estimation of the specific signal is given as follows: 
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By using a relationship of Hermite polynomial: 
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the function |j
k kx Z  in Equation (43) can be evaluated by use of the estimates 

ˆkx ,
kxP  and ( )

1 1ˆ 3, 4, ,Na N j=  . Therefore, by combining the estimation algo-
rithms in Equations (30)-(32) with the prediction algorithm in Equation (43), 
the recurrence estimation of kx  can be achieved. 

6. Application to Sound Environment 

In order to examine the practical usefulness of the proposed state estimation 
method with nonlinear observation characteristics, the proposed algorithms 
were applied to the actual sound environmental data. The road traffic noise was 
adopted as an example of a specific signal with a complex fluctuation form. Ap-
plying the proposed estimation method to actually observed data contaminated 
by background noise and quantized with 1 dB width and 2 dB width roughly, the 
fluctuation wave form of the specific signal was estimated. The statistics of the 
specific signal and the background noise used in the experiment are shown in 
Table 1 and Table 2 respectively. 

Figure 1 and Figure 2 show the estimation results of the fluctuation wave 
form of the specific signal by applying the algorithm proposed in Sect. 3 (with  
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Table 1. Mean and standard deviation of the specific signal (in W/m2). 

Data Data 1 Data 2 Data 3 Data 4 Data 5 

Mean Value 2.23 × 10−4 3.44 × 10−4 3.25 × 10−4 3.82 × 10−4 3.71 × 10−4 

Standard Deviation 1.47 × 10−4 2.13 × 10−4 2.65 × 10−4 3.19 × 10−4 3.56 × 10−4 

 
Table 2. Mean and standard deviation of the background noise (in W/m2). 

Data Data 1 Data 2 Data 3 Data 4 Data 5 

Mean Value 2.50 × 10−4 2.49 × 10−4 2.44 × 10−4 2.47 × 10−4 2.48 × 10−4 

Standard Deviation 1.08 × 10−5 9.61 × 10−6 9.49 × 10−6 1.05 × 10−5 9.26 × 10−6 

 

 
Figure 1. Estimation results by applying the proposed method in Sect. 3 based on the 
quantized observation data with 1 dB width. 
 

 
Figure 2. Estimation results by applying the proposed method in Sect. 3 based on the 
quantized observation data with 2 dB width. 
 

5n =  in Equation (17)) to Data 1. In these figures, the horizontal axis shows the 
discrete time k of the estimation process, and the vertical axis expresses the 
sound level taking a logarithmic transformation of energy-scaled variables, be-
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cause the actual sound environment usually is evaluated on decibel scale. The es-
timates of the proposed method show good agreement with the true values. 

Furthermore, the estimation algorithm proposed in Sect. 4 was applied to the 
observation data. In this estimation, the finite number of expansion coefficients 

( ), 2mnA m n ≤  was used for the simplification of the estimation algorithm. The 
estimated results of two cases by applying the proposed algorithm to the quan-
tized data with 1 dB and 2 dB widths are shown in Figure 3 and Figure 4.  

For comparison, the estimation results calculated by using our previous me-
thod [11] and standard method are also shown in Figure 5 and Figure 6. Since 
Kalman’s filtering theory has been widely used in the field of stochastic system, 
the extended Kalman filter [5] was also applied to the observation data as a trail 
by using observation model shown in Equation (15). The results by our previous 
method show relatively good estimation. On the other hand, there are great  
 

 
Figure 3. Estimation results by applying the proposed method in Sect. 4 based on the 
quantized observation data with 1 dB width. 
 

 
Figure 4. Estimation results by applying the proposed method in Sect. 4 based on the 
quantized observation data with 2 dB width. 
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Figure 5. Estimation results by applying our previous method and the extended Kalman 
filter based on the quantized observation data with 1 dB width. 
 

 
Figure 6. Estimation results by applying our previous method and the extended Kalman 
filter based on the quantized observation data with 2 dB width. 
 
discrepancies between the estimates based on the standard type dynamical esti-
mation method (i.e., extended Kalman filter), particularly in the estimation of 
the lower level values of the fluctuation. For Data 2 - Data 5, the same results as 
Data 1 were obtained. 

The squared sums of the estimation error are shown in Table 3 and Table 4. 
From Table 3 in the case of quantized observation data with 1 dB, it can be 
found numerically that the more accurate estimation results are obtained by 
considering the higher-order expansion terms in Equation (17) of the estimation 
algorithm in Sect. 3. Furthermore, it is obvious that the proposed method in Sect. 
4 is more useful than our previous method [11] and the extended Kalman filter. 
Furthermore, in the case of the quantized observation data with 2 dB, the estimate 
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results by the proposed method in Sect. 4 shows more accurate estimation than 
the results of other methods.  

Though two methods in Sects. 3 and 4 show almost the same accurate estima-
tion, the computation time of two methods is quite different. The comparison of 
the computation times between two methods is shown in Table 5. The estimation 
 
Table 3. Comparison for root mean squared error of the estimation results based on the 
quantized observation data with 1 dB width (in dB). 

Data  Data 1 Data 2 Data 3 Data 4 Data 5 

 n      

 0 1.108 0.9520 1.122 1.130 1.099 

Method in Sect. 3 3 1.051 0.8640 1.099 1.159 1.179 

 4 1.017 0.8770 0.8600 1.123 1.192 

 5 0.9740 0.8490 0.8450 1.087 1.080 

Method in Sect. 4  1.128 1.120 1.656 1.629 2.343 

Previous Method  1.212 0.9890 1.189 1.217 1.462 

Extended Kalman Filter  1.866 1.092 1.303 1.257 2.261 

 
Table 4. Comparison for root mean squared error of the estimation results based on the 
quantized observation data with 2 dB width (in dB). 

Data  Data 1 Data 2 Data 3 Data 4 Data 5 

 n      

 0 1.829 1.518 1.878 2.404 2.311 

Method in Sect. 3 3 1.559 1.472 1.871 2.189 2.211 

 4 1.693 1.438 1.862 2.219 2.447 

 5 1.722 1.441 1.858 2.093 2.193 

Method in Sect. 4  1.394 1.148 1.811 1.872 2.244 

Previous Method  2.056 1.727 2.144 2.083 2.671 

Extended Kalman Filter  2.964 1.751 1.875 2.225 3.356 

 
Table 5. Average computation times for 100M =  (in s). 

Quantized Width (dB) n Method in Sect. 3 Method in Sect.4 

 0 0.5791  

1 3 0.7668 0.01040 

 4 0.9958  

 5 1.3720  

 0 0.6160  

2 3 0.7820 0.01070 

 4 1.0030  

 5 1.3980  
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algorithm in Sect. 3 needs computation cost from 55.68 times (in the case of 
0n =  in Equation (17)) to 131.9 times (in the case of 5n = ) as compared with 

the algorithm in Sect. 4. Therefore, the method in Sect. 4 is more advantageous 
than the method in Sect. 3 by considering the computation cost. 

From the above results, it can be concluded that the proposed method in Sect. 
4 is most effective among all four methods. 

7. Conclusions 

In this study, state estimation method for a sound environment system with 
nonlinear observation characteristics has been theoretically proposed on the ba-
sis of Bayes’ theorem by introducing a wide-sense particle filter. More specifically, 
two types of the recursive algorithm to estimate the specific signal have been de-
rived based on the quantized level observation matched for the signal processing 
by use of a digital computer. Furthermore, the validity and effectiveness of the 
proposed theory have been experimentally confirmed by applying it to the real 
environmental noise data in sound environment. 

The proposed approach is still at the early of study, and there are left a num-
ber of practical problems to be continued in the future. For example, the pro-
posed method has to be applied to many other actual data of sound environ-
ment. Furthermore, the proposed theory has to be extended to more compli-
cated situations involving multi-signal sources, and an optimal number of ex-
pansion terms in the proposed estimation algorithm of expansion type have to 
be found. 
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