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Abstract 
Commonly, seismic data processing procedures, such as stacking and pres-
tack migration, require the ability to detect bad traces/shots and restore or 
replace them by interpolation, particularly when the seismic observations are 
noisy or there are malfunctioned components in the recording system. How-
ever, currently available trace/shot interpolation methods in the spatial or 
Fourier domain must deal with requirements such as evenly sampled trac-
es/shots, infinite bandwidth of the signals, and linear seismic events. In this 
paper, we present a novel method, termed the E-S (eigenspace seismic) me-
thod, using principal component analysis (PCA) of the seismic signal to 
address the issue of reliable detection or interpolation of bad traces/shots. 
The E-S method assumes the existence of a correlation between the observed 
seismic entities, such as trace or shot gathers, making it possible to estimate 
one of these entities from all others for interpolation or seismic quality con-
trol. It first transforms a trace (or shot) gather into an eigenspace using PCA. 
Then in the eigenspace, it treats every trace as a point with its loading scores 
of PCA as its coordinates. Simple linear, bilinear, or cubic spline 1 dimen-
sional (1D) interpolation is used to determine PCA loading scores for any ar-
bitrary coordinate in the eigenspace, which are then used to construct an in-
terpolated trace for the desired position in physical space. This E-S method 
works with either regular or irregular sampling and, unlike various other 
published methods, it is well-suited for band-limited seismic records with 
curvilinear reflection events. We developed related algorithms and applied 
these to processed synthetic and offshore seismic survey data with or without 
simulated noises to demonstrate their performance. By comparing the inter-
polated and observed seismic traces, we find that the E-S method can effec-
tively assess the quality of the trace, and restore poor quality data by interpola-
tion. The successful processing of synthetic and real data using the E-S me-
thod presented in this approach will be widely applicable to seismic trace/shot 
interpolation and seismic quality control. 
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1. Introduction 

It is necessary to evaluate the quality of observed seismic records, and to detect 
and interpolate bad traces or shots [1] [2], when the acquisition environment is 
challenging or when components of the sampling or recording system malfunc-
tion. Seismic trace/shot interpolation is also critically required in multi-channel 
seismic data processing when the acquired data are coarser than the required 
spatial sampling as discussed in [3] [4]. However, many of the existing algo-
rithms for data interpolation face challenges when dealing with seismic data 
having bad trace/shot data. For example, the local-slant-stack methods [5] are 
some of the oldest interpolation methods specifically developed for seismic data 
interpolation. To make these methods work effectively, algorithms must detect 
coherent events along with a set of dips in traces, and stack the data along the 
dip angle having the best semblance to create new reflectance. These methods 
have the very desirable feature of not requiring evenly spaced traces, as re-
quired by many other methods. This means they can be used to interpolate 
aliased data and can handle irregularly recorded seismic data on complex land-
scapes, such as in mountainous areas. However, these methods encounter chal-
lenges in trying to identify complex reflection events and tend to have very large 
computing power requirements [3]. 

A significant advancement in seismic data interpolation came with the ap-
pearance of the f-x method [6] and similar methods [7] [8]. The idea behind these 
methods is to use the low-frequency components of the data to predict the high- 
frequency components by assuming that reflection events are linear in the tem-
poral-spatial domain and that these events are aliased and unwrapped in the 
frequency domain. Clearly, the limitations of the f-x and related methods come 
from their linear events assumptions such that they are not suitable for curved 
events and practical band-limited seismic recording (aliased and unwrapped as-
sumption). There are some extended versions of the f-x method, such as f-x-y 
method [6] [9] [10], which works on areal (x-y) data in contrast to profile (x) 
data. However, they have the similar working principal and linear events assump-
tions. Reference [11] proposes a minimum weighted norm method for curved 
seismic events but the method fails for aliased data.  

The f-k method as discussed in [7] [12] estimates traces at half the trace in-
terval by matching the f-k transforms of the odd traces to the transforms of the 
even traces, in contrast to the f-x method that works in frequency-offset (f-x) 
domain. Just like the f-x method, the f-k method can only interpolate uniformly 
recorded linear events. 
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The 2 dimensional (2D) prediction error filter (PEF) as discussed in [13] works 
in temporal-spatial domain for predicting traces at half the trace interval of the 
seismic data. Reference [3] comments that the PEF method works in a manner 
that could be considered similar to f-x and f-k methods, although PEF works 
entirely in the time-spatial domain and has the limitations of being suitable 
only for linear events and infinite bandwidth records. Similar to the PEF 
method are the half-step [14] and multistep and autoregressively adapted pre-
diction filter methods [8] [15] [16] for seismic interpolation. The multistep 
method further uses autoregression, or recursive least square solution, and adds 
a predefined exponential attenuation coefficient in the high-frequency compo-
nents of prediction equations to relax the strict requirement of linear events as-
sumption.  

Reference [3] reviews, compares, and discusses some of these methods with 
their assumptions such as the requirement for linear events, infinite bandwidth 
records, and even special spatial sampling schemes. The linear assumption re-
mains unresolved in the method of Fourier transformation for unevenly sampled 
records [17] [18] [19]. 

The method given by [20] predicts high frequency components from observed 
low frequency signals by solving the band-limited signal problem in the wavelet 
domain. Similarly, References [21] [22] use curvelet and local radon transform to 
solve this prediction problem. However, the prediction of high frequency com-
ponents from low frequency components is challenging without a solid physical 
foundation.  

References [23] [24] [25] [26] [27] integrate migration and interpolation pro-
cedures in wave equation-based imaging methods, such as reverse-time depth 
and Kirchhoff migration, for seismic interpolation in the Fourier or spatial do-
mains. These methods have the advantage of noise attenuation while interpolat-
ing seismic data. However, the migration method itself requires adequately in-
terpolated seismic traces, and the issue of how to balance interpolation and mi-
gration processes remains a challenge. 

Reference [28] presents a nonlinear correlation technique to fill gaps in seis-
mic surveys by replacing noisy traces using the correlation of adjacent traces. 
Unfortunately, it also assumes linear events (dip and amplitude) during the con-
struction of synthetic (interpolated) traces.  

Recently, References [29] [30] show promising results using artificial intelli-
gence (AI), such as deep learning and convolution neural network, for seismic 
denoising and corrupted trace interpolation. However, it is difficult to under-
stand why they succeed or fail because the coefficients of the trained network are 
not suitable for analysis.  

Reference [31] released an inverse spatial PCA method for denoising and in-
terpolating irregularly observed airborne magnetic survey data, with excellent 
results for separation of local anomalies during interpolation.  

In this paper, we present the novel method, termed Eigenspace Seismic (E-S), 
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for seismic data interpolation and quality evaluation, using PCA, without as-
suming linear seismic events, infinite bandwidth, or regular spatial sampling. 
Currently, there is no published example showing this method and the appli-
cations demonstrated in our study. Though many examples exist for seismic 
data processing using PCA [31]-[36], they are not applied to trace or shot in-
terpolation and quality control. For example, Reference [34] focuses on de-
noising by partial reconstruction of the seismic data image (array) using selected 
principal components (PCs) for vertical seismic profile data processing. Refer-
ence [36] use a small fraction of PCs from PCA results of a stacking collection to 
replace this collection then feed this into the stacking procedure to get better 
stacking results. To enhance the computing efficiency, Reference [36] also pre-
sents a fast PCA (FPCA) algorithm for practical seismic application. The 3 di-
mensional (3D) seismic data reconstruction [32] [34] is more similar to the pio-
neering work made by [35] on using PCA for partial seismic data reconstruction, 
but they focused on fine-tuning of PCs and singular spectrum analysis (SSA) for 
energy structure, respectively. Reference [33] presents an abstract mentioning 
seismic trace interpolation using PCA but do not apply it to shot interpolation 
or seismic data quality control.  

In the E-S method, we treat a seismic trace as a trace vector and arrange the 
trace vectors of any type of trace gather (e.g. common shot, common receiver, 
common mid-point, common offset, etc.) a trace matrix with its traces as rows, 
without losing any generality. For a shot gather, traces of a shot are concatenated 
to be a shot vector, after interpolation, we decipher the shot vector in the same 
way with the concatenation procedure. We fulfill the PCA of trace or shot matrix 
among their rows using the singular value decomposition (SVD) method to pre-
serve energy and have high calculation performance. 

In the following sections, we will first introduce the method and its data 
processing procedures (Section 2), and then test its performance using both a 
synthetic example and a trace and shot gather of offshore seismic data (Section 
3). We discuss the working principal, possible improvement, and conclusions in 
Section 4.  

2. The E-S Method 

The E-S method handles a whole trace, or shot, as an inseparable entity. A trace 
gather spans a vector feature space that originates from its correlation structure 
and has spatial metrics among these entities. However, this raw feature space is 
sparse and we can transform it into an eigenspace with linear properties using 
PCA. In the eigenspace, we can reconstruct an entity, such as a trace at any ob-
servation point, or construct a virtual entity, such as a virtual trace at an un-
known location, using 1D interpolation of their coordinate trajectories in the ei-
genspace. Comparing the reconstructed entities with the observed ones enables 
us to evaluate seismic quality, and the construction of virtual entities is used to 
fill gaps for seismic trace/shot interpolation.  
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2.1. Constructing the Eigenspace 

To simplify the descriptions, we will start from the E-S method using a common 
mid-point gather. Without losing any generality, we assume the seismic profile 
direction is x and acknowledge its m recorded traces with the trace sampling 
length (n). If we assume a trace at the line coordinate i (x = i) as a vector is  (i 
= 0, m − 1), then we can express this trace gather as an m * n matrix S: 

( )T
0 1 2 1, , , , ms s s s −=S                        (1) 

where T means transpose of a matrix. All traces or rows of matrix S will span a 
vector-space [37] and all non-zero normalized principal components (PCs) of 
these traces (S) are created using PCA [38]. The PCs consist of an orthogonal 
base of the spanned eigenspace because of their unit length and mutually ortho-
gonal properties. However, a better and more efficient way to construct the ei-
genspace for eigenvector estimation and analysis of its energy structure is to de-
compose the matrix S using the SVD method [39] as expressed in Equation (2), 
because the size of the seismic matrix S is often large  

T=S U VΣ                            (2) 

where S, U, ∑, and V are the seismic trace matrix, left eigenvector matrix, middle 
diagonal singular value matrix, and right eigenvector matrix with dimensions 
m * n, m * r, r * r, and r * n (r is the rank of matrix S), respectively. The columns 
of TV  are the bases of the constructed eigenspace and S has been mapped into 
the eigenspace having the rows of U as its loading scores or coordinates in the 
eigenspace, and the diagonal entries of ∑ as its spectrum reflecting its energy 
contribution. Note that rows and columns of U and TV  are unit (length) and 
mutually orthogonal, we can write any trace si as a row of S as:  

( ) ( )T T 0, 1i i i i i i is u v u v i m= Σ = =Σ −×                (3) 

where is , kΣ , ku , ×, and T
kv  are ith row of S, ith entry of ∑, ith row of U, outer 

product, and ith column of TV , respectively.  

2.2. Entity Interpolation in Eigenspace 

Rows of matrix U are the coordinates of the entities, such as PCs of traces, in the 
eigenspace. According to Equation (3), seismic traces can be reconstructed in the 
eigenspace using TV  as its base and U as its “loading scores” (coordinates in 
the eigenspace) and its spectral density ∑ when the trace number i (i = 0, m − 1) 
or row of S is limited to be an integer. If we relax i to be a real number x (dis-
tance along the seismic profile), such as 0.5 which means it locates in the middle 
between the first and second trace, then we can deduce the following equation 
from Equation (3): 

( )TΣx x i is u v= ×                         (4) 

We define the constructed sx as a virtual trace at position x. During this pro-
cedure, TV , the base of eigenspace, and ∑, the energy distribution on every base 
of eigenspace, do not change. To calculate xs , we estimate xu  along the coor-
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dinate trajectories of iu  (Equation (3)) using a 1D interpolation method. Prac-
tically, we use the simple linear, bilinear or cubic spline 1D interpolation method 
to estimate xu  ( 0.0 x m≤ ≤ ) from U. Currently, we do not use the E-S method 
for extrapolation outside the range of traces. 

2.3. Bad Entity Detection 

We can revise the E-S method for detection and restoration of bad traces if we 
compare any observed trace with its reconstructed trace from any other observa-
tions using the E-S method. We use the residual mean square (rms) to evaluate 
the difference between the observed and reconstructed trace: 

( ) ( )T

1
ii

i
iiS S S S

rms
n
′ ′− ⋅ −

=
−

                   (5) 

where iS ′  is the reconstructed trace at current trace location i (x = i) from the 
trace gather not including the ith trace.  

Therefore, we start to detect bad traces from looping through all, except the 
first and last, traces in a trace gather by interpolating a new trace at the current 
looping trace location from the whole trace gather excluding the current one. 
Then we calculate and plot the rms of the observed and interpolated virtual ones. 
By examining the rms chart, we mark traces with rms bigger than our expected 
rms value, estimated from visual inspection of the rms chart, as bad traces and 
we replace them with the interpolated ones. To process noisy records with many 
bad traces, we repeat this procedure iteratively and pick only one trace as a bad 
trace in each iteration.  

3. Numerical Tests 

We test the E-S method with a simulated trace gather by convolving a synthetic 
reflectance coefficient profile, representing an unconformity and rift basin hori-
zons, with a predefined Ricker wavelet that has frequency characteristics com-
monly used in offshore seismic surveys. We also test the E-S method on a 
stacked trace gather from an offshore seismic survey that has horizons with steep 
dip, curved, onlap, offlap, and chaotic reflection of basin floor fans. 

3.1. Synthetic Reflection Interpolation 

To simulate a synthetic seismic profile, we draw a simulated stratigraphic profile 
with horizontal and curved interfaces and assign a constant reflectance to these 
horizons. Then we convolve this reflection trace gather with a predefined Ricker 
wavelet having 0.064 s duration, 100 Hz center frequency, and 2 ms sampling 
interval. We display the final simulated profile of 0.4 s and 100 traces in Figure 
1(a) and its sparse traces (by extracting one from every two but keep the first 
and last traces) in Figure 1(b). 

From Figure 1(b), we interpolate the traces at every unknown trace position 
and display the results in Figure 1(c). Figure 1(d) is the residual between the 
original (Figure 1(a)) and interpolated one (Figure 1(c)). By visual inspection,  
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Figure 1. Interpolation of synthetic reflection section. (a) models seismic profile; (b) half traces of seismic models; (c) E-S results; 
(d) E-S residual. 

 
we find the residual is close to zero and the E-S method has performed very well 
in the interpolation  

3.2. Trace Interpolation 

Next, we test the E-S interpolation method using a section of offshore seismic 
survey from the east coast of Canada, with 4 ms sampling interval, and show the 
results in Figures 2-8.  

Figures 2-4 display the input traces (a), interpolation results (b), residuals (c), 
and rms (d) for interpolation using every second, third and fourth trace, respec-
tively. Table 1 lists the mean errors and relative rms of trace interpolation using 
half of the original traces as shown Figure 2(d). The relative rms for others 
(Figure 3(d), Figure 4(d)) are all less than 30.0% of the standard deviation of 
the signal.  

Figure 5 is the spectral density of input traces for singular spectrum analysis 
(SSA). It can outline the energy distribution structure of input traces in the ei-
genspace. From Figure 5, 80.9% of total energy accumulates on the first 22  
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Figure 2. Trace interpolation using 1/2 of the original traces. (a) 1/2 Traces input; (b) E-S 
interpolated; (c) residual traces; (d) rms. 
 

 
Figure 3. Trace interpolation using 1/3 of the original traces. (a) 1/3 Traces input; (b) E-S 
interpolated; (c) residual traces; (d) rms. 
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Figure 4. Trace interpolation using 1/4 of the original traces. (a) 1/4 Traces input; (b) E-S 
interpolated; (c) residual traces; (d) rms. 
 

 
Figure 5. Singular spectrum of a trace gather. Solid line is the singular values and the dotted 
line is the accumulated energy (%) of the test trace data. 
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Figure 6. Examples of coordinates of known traces and their 1D interpolation in the ei-
genspace. The dots (U) are known coordinates of the input traces in the eigenspace and 
solid lines are interpolated coordinates from these dots. The right column zooms to first 
twenty dots of corresponding coordinates of their left counterparts. 
 

 
Figure 7. Eigen-traces of the test trace data set. 

https://doi.org/10.4236/ijg.2019.1010054


Q. M. Li, S. A. Dehler 
 

 

DOI: 10.4236/ijg.2019.1010054 960 International Journal of Geosciences 
 

 
Figure 8. Five times expansion of the input traces by interpolation. (151 * 5 − 5 + 1) 751 
traces are interpolated from the test 151 traces where every trace is 5 times interpolated 
between and including itself and next trace except the last trace where no extrapolation is 
made to avoid edge effects. (a) Input traces; (b) E-S interpolated traces. 
 
Table 1. Calculated residual mean and rms values between original and interpolated 
traces using the E-S method. 

Trace# 3369 3389 3409 3429 3449 3469 3479 All traces 

Mean of errors −4.8 −2.3 3.0 7.4 −8 5.2 −1.4 2.4 

rms 12.1% 12.9% 14.4% 16.3% 14.2% 18.9% 13.1% 100% 

 
eigenbases, 90.3% on the first 31, and 99.1% for the first 60. The stronger the 
correlation that exists among traces, the faster the energy for every eigenbase 
(thin solid line in Figure 5) will attenuate, and simultaneously the faster the ac-
cumulated energy will increase (dashed line in Figure 5). For white noise, the 
energy for every eigenbase is flat and there is no interpolation method that 
works under this circumstance.  

We plot the spatial loading scores (and 1D interpolation trajectories) and ei-
genbase in Figure 6 and Figure 7 to help to constrain the E-S method. In Figure 
6, we display the coordinates (rows of U) with solid dots and its 1D interpolation 
with solid lines. We find these coordinates are quite smooth and suitable to be 
interpolated using simple 1D spline interpolation methods. We also show their 
local details in the right column of Figure 6 where the local smooth features are 
clear. 

Figure 7 displays the eigenbase of the eigenspace. Note that they are unit 
length and they are orthogonal (mutually not correlate) with some patterns that 
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may be useful in eigenspace base understanding.  
In Figure 8, we use E-S interpolation to produce 5 times the initial number of 

traces to illustrate the resolution power in identifying basin floor fans, onlap, of-
flap, and other structures of a rifted basin. In the input traces (Figure 8(a)), 
these sedimentary features of the rift basin are fuzzy and discontinuous. Howev-
er, the rift basin structure is very clear in the interpolated section (Figure 8(b)), 
showing how the E-S method can be helpful in interpreting complex strati-
graphic structures. 

3.3. Bad Trace Detection 

To test the performance of the E-S method for bad trace detection, we add nor-
mal distribution noise ( ),n µ σ , as shown in Figure 9(a), to some randomly se-
lected traces, such as [3369, 3389, 3409, 3429, 3449, 3469, 3479] in a trace gather 
(collection), using Equation (6), and we display the trace gather with simulated 
bad traces in Figure 9(c). 

( )2.333 ,noises s n µ σ= + ∗                      (6) 

 

 
Figure 9. Bad trace detection. From top to bottom, we order the inlet charts as: (a), (b), 
(c), and (d). The number of trace is the CMD trace number. (a) a trace collection of 
stacked and migrated 2-D marine seismic data from the east coast area of Canada used 
for testing the E-S method for bad trace detection and interpolation; (b) rms between 
current trace and the interpolated trace interpolated at current location from traces other 
than itself. The rms from the raw input trace collection and from the input trace collec-
tion with simulated noise are displayed with dots and solid line, respectively; (c) 70% 
normal distribution noise is added into [3369, 3389, 3409, 3429, 3449, 3469, 3479] traces 
of the test trace dataset; (d) interpolated trace collection by removing the noise polluted 
traces (with the simulated noise).  
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where s and noises  are the original seismic trace, and the seismic trace with 
added noise. The normal noise n has mean µ  and standard deviation σ . We 
estimate µ  and σ  from the same trace where we add noise and 2.333 is a 
constant to control the signal to noise ratio.  

We interpolate traces at any trace position, except the first and last, using the 
trace gather with added noises excluding current trace. Then we calculate the 
rms for each interpolated trace and display it as shown in Figure 9(b). From 
Figure 9(b), we can easily pick out bad traces and use the interpolated ones to 
fill corresponding traces to get Figure 9(d) for further processing or interpreta-
tion without bad traces.  

3.4. Bad Shots Detection and Interpolation 

We use 120 shots from a seismic survey offshore east coast of Canada to test the 
performance of the E-S method for bad shot detection and shot interpolation. 
Every shot has 16 traces (receivers) and each trace has 1751 samples with 2 ms 
recording rate. The procedure is similar to the above example, in that noise was 
added to some shots, interpolation was used to produce a virtual shot using oth-
er shots at every shot location, and rms was calculated and plotted to detect bad 
shots. We display the rms chart example of these operations in Figure 10. The 
peaks of the rms chart as shown in Figure 10 correspond very well to the shot 
numbers where we added noise. We omit the display of shot gather for it is too 
large. 
 

 
Figure 10. Bad shots detection. Normal distribution noises are added into randomly selected shots, [6224, 6244, 
6263, 6284, 6304], of the test shot gather using equation 5. The rms between original and interpolated shot using 
E-S method is used to pick out bad shot at their peaks, similar to the bad trace detection. 

https://doi.org/10.4236/ijg.2019.1010054


Q. M. Li, S. A. Dehler 
 

 

DOI: 10.4236/ijg.2019.1010054 963 International Journal of Geosciences 
 

4. Discussion and Conclusions 

In this paper, we propose a novel method termed Eigenspace Seismic (E-S) me-
thod to improve seismic data quality and restore bad recordings, using PCA to 
interpolate in eigenspace. 

We demonstrate the effectiveness of the E-S method for trace interpolation by 
processing synthetic and offshore seismic survey data to restore original data 
from decimated data sets with 1/2, 1/3, and 1/4 of the original traces. We also 
show its possible usage to clarify stratigraphic structures such as onlapping units 
and basin floor fans, in the interpolated trace gather by augmenting the number 
of original traces by a factor of 5 using the E-S method. The method works best 
for sparsely recorded or densely recorded seismic data with many bad compo-
nents. 

By analyzing the features of the E-S method using SSA, we can evaluate its 
energy distribution, features of eigenbases and the smoothness of loading scores 
(or coordinates in the eigenspace) trajectories that are helpful in the success of 
E-S method. The major advantage of the E-S method comes from the fact that it 
handles a whole trace or shot as an inseparable entity and transforms the 2D in-
terpolation into a 1D problem in the eigenspace. 

The computational cost of the E-S method is not an issue for trace interpola-
tion and trace quality control, but it does become an issue for shot-gather inter-
polation and quality control. The state-of-art fast PCA method [36] could be used 
to seamlessly speed up the E-S method.  

The E-S method does not assume the signal is stationary so that it may be ef-
fective for nonstationary noises commonly associated with marine data acquisi-
tion, such as shark strikes, swell noise, or nonlaminar flow around cable instru-
mentation. Theoretically, the E-S method is based on coherency of a processed 
trace so that it will be efficient to process seismic data having coherent signals. 
The effectiveness of the E-S method depends on the distribution of these noises 
on the PCs. There are some methods specifically designed to solve the energy 
concentration problems, such as factor analysis [38], that have possibility to ad-
dress these requirements. These methods show great potential to improve the 
E-S method but their development is out of the range of this study.  

Currently, we use simple 1D spline interpolation methods in the spatial load-
ing score (U) interpolation in the E-S method. In the future, it should be possi-
ble to use other advanced 1D interpolation methods for the U estimation to get 
better E-S results. There are many potential applications of the E-S method to 
seismic data or other datasets, such as the construction of a 3D velocity volume 
from irregularly distributed 3D velocity observations [40]. 
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