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Abstract 
Thirty seven years after the discovery of quasicrystals, their diffraction is 
completely described by harmonization between the sine wave probe with 
hierarchic translational symmetry in a structure that is often called quasipe-
riodic. The diffraction occurs in geometric series that is a special case of the 
Fibonacci sequence. Its members are irrational. When substitution is made 
for the golden section τ by the semi-integral value 1.5, a coherent set of ra-
tional numbers maps the sequence. Then the square of corresponding ratios 
is a metric that harmonizes the sine wave probe with the hierarchic structure, 
and the quasi-Bragg angle adjusts accordingly. From this fact follows a con-
sistent description of structure, diffraction and measurement. 
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1. Introduction 
“Physical” theories degenerate easily to common myth when the basic norms of 
physical practice are ignored. These include not only verification by exclusion of 
falsifiable hypotheses, but also rigorous implementation of the formal and in-
formal logic that has been endorsed by scientists for over two millennia [1] [2]. 
Self-styled quasicrystallographers claim (e.g. [3] p. 82) that the diffraction ob-
served in quasicrystals is Bragg diffraction. The claim might have either a weak 
or a strong meaning, though they evidently mean it in the strong sense. The 
weak sense is that the diffraction is due to a 3-dimensional scatterer rather than 
a 2-dimensional grating. When a reflection grating is rotated by a small angle α, 
the diffracted beam rotates specularly by 2α; whereas the diffraction from a 3-D 
crystal switches sharply on and off as it rocks about the Bragg condition. In this 
strong sense, diffraction is described by Bragg’s law: at wavelength λ, light is re-
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flected from regular interplanar spacings of width d at the Bragg angle θ (the 
complement to the angle of incidence) which is constrained such that nλ = 
2dsin(θ), where n represents the diffraction order. This law describes diffraction 
in crystals. Quasicrystals provided a new and unique type of diffraction. 

2. Quasicrystal Diffraction 
2.1. Diffractive Order n 

In crystals, the order is positive integral: 0,1,2,3n =  ; whereas in the quasi-
crystal; the order is represented in powers of the golden section τm, where      
τ = (1 + 51/2)/2 and m is positive or negative, , 1,0,1, 2,3m = −∞ −   corres-
ponding to 2 30,1 ,1, , , .n τ τ τ τ=   The quasi-Bragg law is a new law in physics: 

( )2 sinm dτ λ θ′ ′= , where the apostrophes indicate compromise superpositions 
of many Bragg values. The geometric series is a special case of the Fibonacci se-
quence: in the former case, the ratio between successive terms is constant; in the 
latter case the ratio oscillates about τ. Such oscillations are not observed in the 
quasicrystal diffraction pattern.  

2.2. Quasiperiodicity 

The discovery of Shechtman et al. [4] was entitled “a metallic phase with long 
range order an no translational symmetry”. Imaging showed multiple interpla-
nar spacings irregularly jumbled. Bragg’s specific dhkl for an indexed beam (hkl) 
is therefore neither unique in the quasicrystal nor periodic, so the wonder that 
has to be explained is how the diffraction due to such a structure can be sharp. 
In the following discussion, we show precisely how that occurs and how the 
model is verified by measurement. Meanwhile neither n nor d obey Bragg’s law. 

2.3. The Quasi-Bragg Angle 

Since d is not unique, the Bragg angle is not defined and does not obey Bragg’s 
law either. However, we will show how the quasi-Bragg angle θ ′  is calculated, 
and it is certainly not the Bragg angle. There is no Bragg diffraction. 

2.4. What Do We Know? 

Given the composition Al6Mn, we know that Al has the atomic number 13 and 
Mn 25. The scattering power for electrons used in transmission electron micro-
scopy is four times greater for the transition metal. In phase-contrast optimum 
defocus [5] Mn is readily specified and located [3] [6] [7]. The image demon-
strates a hierarchic icosahedral structure that is four tiers deep and apparently 
expansive indefinitely. Every atom is specified, located and measured for size. 

The unit cell is edge sharing. This results in the 13 atom unit cell having the 
stoichiometry Al6Mn (Figure 1). It is extremely dense owing to the precise ratio 
of the central Mn atom to outer Al atoms. All diatomic quasicrystals share the 
same ratio. 

Knowing the structure, we can simulate the diffraction pattern; but it is ne-
cessary first to correct indexation. 
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Figure 1. Dense, icosahedral, unit cell (right) and dimensions of the logarithmi-
cally periodic structure (left) with stretching factor τ2. This is the ratio of the edge 
of the icosahedral cluster to the edge of the unit cell. 

2.5. Indexation 

The stereogram of principal axes of the icosahedral structure is 3-dimensional, 
in geometric series, simple, and complete [8] [9]. So also are the principal dif-
fraction planes that are normal to the axes. Following William of Ockham, di-
mensions should not be multiplied without necessity. Inventing dimensions does 
not solve physical problems1. All of the beams in the original data [4] have been 
indexed on this basis ([6] and refs.) and their quasi-structure factors (QSFs) cal-
culated [3] [6] [7] and summarized as follows. 

2.6. Quasi-Structure Factors (QSFs) 

The sites of atoms and cell centers in icosahedral clusters are known [7] [9] [10], 
including sites in higher order p of supercluster, where indices multiply by τ2p: 

( ) ( )
( ) ( ) ( )

Unit cell :  Mn   0,0,0

                        Al     1 2 ,0, 1 ,1 2 0, 1, ,1 2 1, ,0
ur

τ τ τ± ± ± ± ± ±
     (1) 

and 

( ) ( ) ( ) ( )2 2 2Cell or cluster centers    1 2 ,0, ,1 2 0, , ,1 2 , ,0 ,ccr τ τ τ τ τ τ± ± ± ± ± ± (2) 

The QSF formula is adapted from classical crystallography with two differ-
ences: 

( )( )
all atoms

1
cos 2 .hkl i s hkl i

i
F f c h rπ

=

= ⋅∑                 (3) 

Firstly, because the diffraction is sharp in spite of multiple interplanar spac-
ings d, a coherence factor cs is inserted. Its value will be derived analytically be-
low. Initially the factor is used as a scanned variable (Figure 2) to illustrate the 

 

 

1Crystallographers know that the hexagonal close packed structure is sometimes indexed with four 
digits; sometimes with three. Equally they know that the structure is 3-dimensional R3—in this it is 
like the quasicrystal. 
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variance of quasi-Bragg diffraction from Bragg diffraction in crystals. 
Secondly, because the unit cells are not periodic as in crystals, the summation 

is made over all atoms in the quasicrystal; not just the unit cell. The summation 
is taken in two steps: over the unit cell and cluster, and iteratively over the su-
perclusters in hierarchic order p. Write the vector from the origin to each atom 
in a cluster clr  as the sum of a unit cell vector ur , with a vector to the cell 
centers in the cluster :cc cl cc ur r r r= + . Then since 

( ) ( ) ( )
Ncluster 12 13

exp exp exphkl cl hkl cc hkl u
i i i

h r h r h r⋅ = ⋅ × ⋅∑ ∑ ∑          (4) 

with corresponding summations over unit cell sites and cell centers, and know-
ing that cluster cc uN N N= ⋅ , the QSF for the cluster may be calculated: 

( )( )
12

1
cos 2cluster cell

hkl s hkl cc hkl
i

F c h r Fπ
=

= ⋅ ⋅ ⋅∑                 (5) 

and repeating iteratively over superclusters by using the known stretching factor 
τ2p: 

( )( )
all atoms

2 1

1
cos 2p p p

hkl s hkl c
i

c hklF c h r Fπ τ
=

−= ⋅ ⋅ ⋅∑                (6) 

The example in the figure is for the simple geometric series, but all beams in 
the original data [4] have been calculated to match. All structure factors, i.e. at 
the Bragg condition cs = 1, are zero. In the quasicrystal there is no Bragg diffrac-
tion: all beams peak at the quasi-Bragg condition cs = 0.894. As we shall see, this 
value is the result of harmonization of the incident, sine wave probe with the 
aperiodic, hierarchic structure. 

2.7. Quasi-Bloch Waves 

In crystals, Bloch waves [11] [12] can be observed as lattice images observed, for 
example, in the two beam Bragg condition. The waves occur as interference be-
tween incident and reflected waves. Two are simulated as the red trace for the 
quasicrystal (Figure 3 with cs = 0.894), for comparison with the blue, anhar-
monic, (100), pseudo-Bragg condition, cs = 1. 

The quasi-Bloch wave harmonizes with the hierarchic structure; the pseu-
do-Bragg wave does not diffract. 

2.8. Principal Planes 

The golden triad contains three orthogonal golden rectangles. There are three 
principal planes, one for each dimension of the golden triad (Figure 4). The tri-
ad scales within the hierarchy for each order of unit cell, cluster and superclus-
ter. The listing of interplanar spacings illustrates the origin of the geometric se-
ries in the quasicrystal diffraction pattern. 

For each order of cluster, golden triads mark principal planes that locate sub-
cluster centers at corners. These centers operate as principal scatterers for the 
hierarchic structure. The diffraction occurs by reflection between hierarchic 
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Figure 2. A selection of QSF displays obtained by scanning cs. Indexed 
lines are shown for an i-Al6Mn supercluster order 2 (~104 atoms). The 
lines peak consistently when cs = 0.894 [6] with similar intensities 
(FWHM). By contrast QSFs for the Bragg condition (cs = 1 and 

0,1,2,3n =  ) are unregulated, with more or less random QSF struc-
tures, spread out and very weak. All structure factors at the Bragg con-
dition are ~zero. There is no Bragg diffraction. 

 

 
Figure 3. Plotted across principal planes (red upper grid) in geometric series in 
the hierarchic structure, are a red quasi-Bloch wave (cs = 0.894) and a blue pseu-
do-Bragg wave (cs = 1). The former is harmonic consistent with coherent diffrac-
tion; the latter is anharmonic and does not diffract. The metric harmonizes the 
quasi-Bloch wave with the hierarchic structure. The long vertical blue would mark 
the Bragg (200) line if it were allowed. Notice that a contraction in d, dilates a 
Bloch wave; so does cs in sd d c′ = ⋅  in the quasicrystal. 
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centers of unit cells, clusters and superclusters. Each reflection is weighted by 
parallel reflections from the bodies of respective sub-clusters or sub-superclusters. 
That is why, in Figure 2, the line widths narrow with increasing power on the 
index, consistent with increasing numbers of scattering atoms. The diffraction 
consists in coherent scattering from hierarchic bodies of the same order. 
 

 
Figure 4. Principal atomic planes are located by red lines. The golden 
triad scales to represent hierarchic orders of: unit cell, cluster and super-
clusters. Notice the interplanar spacings in geometric series 

2 30,1, , ,τ τ τ   that correspond to diffraction pattern series. Coherent 
diffraction occurs by scattering of corresponding sub-cluster bodies 
centered on the corners of the golden rectangles. 

2.9. Analytic Derivation for the Metric 

The principal planes determine the coherence factor and metric (Table 1). The 
planes lie in geometric series. This series is irrational but a rational approxima-
tion may be constructed by the substitution of the rational fraction 3/2 for τ as 
shown in the table. It is obvious that atoms located on the half-integral set of “co-
herent values” (column 7) could diffract coherently according to Bragg’s law if such 
a structure could be constructed. It follows that, owing to the systemically de-
rived value for the ratio r, atoms located on the “real” geometric-series lattice 
will likewise diffract coherently, but with the metric displacement cs ~ 0.894, as 
in Figure 2. This fact is confirmed by the numerical QSF calculations. Coherent 
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Table 1. The metric is derived approximately from principal planes (bold column 10 with underlines) as follows: Bold column 6 
shows irrational real values for the geometric series and Fibonacci equivalents on the same row; coherent values are rationalized 
by substitution for τ in the Fibonacci equivalent (columns 1-2) by the fraction 3/2 (as in the formula on the 3rd row). The harmony 
in the hierarchic scattering by the incident sine wave results in coherent diffraction. The square of the ratio of Rational value/Real 
value, on principal planes, is close to the numerical value for cs given by QSF simulations from various supercluster orders (under-
lined in column 10). Column 10 is otherwise semi-empirical. 

Geometric series Irrational Rational Ratio r2 cs QSF 

a 
 

b 
    

value approx. r 
 

estimates supercluster 

        
a+b*1.5 rat/irr 

 
1 − 2*(1 − r) (order) 

0 
   

= 0 = 0 0 0 0 0 
 

1 
   

= 1 = 1 1 1 1 1 
 

   t = t = 1.61803 1.5 0.927 0.859 0.854 
 

1 + 
 

t = t2 = 2.61803 2.5 0.955 0.912 0.91 
 

1 + 2 t = t3 = 4.23607 4 0.944 0.891 0.888 
 

2 + 3 t = t4 = 6.8541 6.5 0.948 0.899 0.896 
 

3 + 5 t = t5 = 11.0902 10.5 0.947 0.897 0.894 
 

5 + 8 t = t6 = 17.9443 17 0.947 0.897 0.894 
 

8 + 13 t = t7 = 29.0344 27.5 0.947 0.897 0.894 
 

13 + 21 t = t8 = 46.9787 44.5 0.947 0.897 0.894 sc(2) 

21 + 34 t = t9 = 76.0132 72 0.947 0.897 0.894 
 

34 + 55 t = t10 = 122.992 116.5 0.947 0.897 0.894 sc(3) 

55 + 89 t = t11 = 199.005 188.5 0.947 0.897 0.894 
 

89 + 144 t = t12 = 321.997 305 0.947 0.897 0.894 
 

144 + 233 t = t13 = 521.002 493.5 0.947 0.897 0.894 
 

233 + 377 t = t14 = 842.999 798.5 0.947 0.897 0.894 
 

377 + 610 t = t15 = 1364 1292 0.947 0.897 0.894 
 

610 + 987 t = t16 = 2207 2090.5 0.947 0.897 0.894 sc(6) 

r*r+: (  Intensities α QSF2) here calculated for principal planes only; #: values simulared QSFs including ALL planess, and these match estimates; and 
elementary estimates: cs = 1/(1 + (t − 1.5)) and cs = 1/(1−(t2 − 2.5)). 

 
diffraction occurs by the QSF selection of sd d c′ = ⋅  and consequently of

sq cθ ′ =  under the quasi-Bragg law. Consistent with the measured value for 
the lattice parameter to be discussed below, the metric cs is the ratio of corres-
ponding terms: (coherent value)2/(real value)2. The square on the ratio is due to 
wave mechanics, where the intensities of the beams are—for centrosymmetric 
structures—squares of corresponding amplitudes. 
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Figure 5. Models for biplanar Bragg diffraction (red rays) compared with 
multiplanar quasi-Bragg diffraction (green rays for first order; blue for 
second order), where all atoms scatter. Notice the multiplanar quasi-Bragg 
angle θ' is larger than the corresponding biplanar pseudo-Bragg angle θ. 

2.10. The Model for Quasicrystal Diffraction 

All atoms scatter. Whereas the uniqueness of d and its periodicity forces Bragg 
diffraction in crystals to reflect as biplanes; quasiperiodicity forces multiplanar 
reflections in hierarchic quasicrystals (Figure 5). Their superposition is de-
scribed by the QSFs. 

On the well-known model, the path difference between two reflections from 
adjacent Bragg planes is equal to the wavelength of the light, with cs = 1. QSFs 
imitate the corresponding interference of the quasi-Bragg rays from multiple 
planes at the quasi-Bragg condition (i.e. when cs = 0.894). Notice that the filled 
green quasi-Bragg angle is larger than the corresponding filled red Bragg angle. 

In Bragg diffraction, when d contracts θ dilates; in quasi-Bragg diffraction, 
when cs (and d’) contract, θ ′  dilates. The dilatation is enforced by a construc-
tive interference requirement for harmonic reflections. Actually, the better mod-
el for quasicrystal diffraction is shown in Figure 4: the diffraction consists in 
coherent scattering from sub-cluster centers rather than Bragg biplanes. 

3. Summary 

The correlating roles of quasi-structure factors and quasi-Bragg law are summa-
rized in Table 2, where they are compared with Bragg diffraction in crystals. The 
QSF simulates the metric, the compromise interplanar spacing and indexation. 
With these parameters, the quasi-Bragg law measures the compromise qua-
si-Bragg angle. The summary shows how the measured lattice parameter is cor-
rected for metric and indexation. The result is consistent in both structure and 
diffraction: they are measured, and verified. 

From these measurements the reciprocal lattice can be derived [3] [6] [13]. 
The original data show two superposed lattices owing to subgroups in the  
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Table 2. Comparison of parameters used to describe Bragg diffraction with parameters 
for quasi-Bragg diffraction in hierarchic structures. The quasi-structure factor is used to 
calculate the metric cs, the lattice parameter a and the compromise inter planar spacing 
d’. The quasi-Bragg Law is used to calculate the compromise quasi-Bragg angle 

hkl hkl sq q c′ ′= . The lattice parameter, that previously has been measured under Bragg as-
sumptions, is corrected for cs and indexation. The measurement is verified by consistency 
between atomic size, diffraction, and structure. 

Comparison of Bragg parameters in crystals, with quasi-Bragg parameters in quasicrystals 

Bragg Quasi-Bragg Comment 

( )2 sinn d q λ=  ( )  2 sinm dτ θ λ′ ′=  
Harmonic laws 

Give us     scθ θ′ =  

( )  cos 2hkl i hkl iF f h rπ= ⋅∑  ( )( )  cos 2hkl i s hk l iF f c h rπ′ = ⋅∑  

including iteration 

Structure factors 
Give cs, a and   sd d c′ = ⋅  

d a h=    sd ac h′ =  scθ θ′ =  

     0.205  nmsa cτ=  [1] 

  2a p a∗ =  
Measured lattice parameter 

a ≈ Diameter of Al 

  Measured and verified 

n: Bragg order; m: Quasi-Bragg order; d: Bragg interplanar spacing; θ: Bragg angle; λ: wavelength; τ: golden 
section; prime: quasi-Bragg compromise; F: Structure factors; fi: atomic scattering factor for atom i; cs: me-
tric; ri: atom position; hhkl: plane normal for indices h, k, l; a: lattice parameter (cubic) ~ Al diameter; reci-
procal: lattice vector a*= 2π/a. 

 
icosahedral point group symmetry. The dual lattice is also consistent with the 
analysis. Moreover, the hierarchic translational symmetry is the obvious reason 
for the “long range order” [4] in what are typically called “quasiperiodic solids”. 

Moreover, the QSF simulations, when combined with harmonic analysis, 
demonstrate that the diffraction occurs on a scale that is a contraction of the ir-
rational hierarchic scale of the structure. In consequence, all structural mea-
surements that are derived from the diffraction pattern, are subject to the meas-
ured metric. 

In particular, the fact that the lattice parameter was previously tentatively 
measured by wrongly assuming Bragg’s law [14] [15], now has a corrected value 
(Table 2) equal to both the diameter of the Al atom and the width of the unit 
cell. This is necessary verification for the consistent theory. 

4. Conclusion 

The analytic metric completes the union of structure with diffraction. The hie-
rarchic structure transforms the plane incident wave into geometric space. It is 
time to append the context. In comparatively recent times Senechal wrote for the 
American Mathematical Society a paper titled, “What is a quasicrystal?” The 
paper began, “The short answer is no one is sure” [16]. This was not true; the 
analytic metric shows why. The long path has been delayed by stray paths and 
some of them can be listed. Dimensions should not be multiplied without neces-
sity—they do not solve physical problems. Mathematical axioms are chosen; 
physical hypotheses require verification (or more strictly falsification). While 
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theorems must be consistent with chosen axioms; consistency is not required in 
physical hypotheses because they are equal as “logically true” until one is “falsi-
fied” (referee preference is no ground for refusing publication). Categories have 
been erroneously applied. For example, the sub-editor of Acta Crystallographica 
wrote that you don’t measure the lattice parameter, “You just have to choose 
‘dh’” ([3] p. 82). This is like saying, “You don’t measure the speed of light; you 
choose it,” or, “You don’t calculate the speed of light; you choose it.” He contin-
ued by writing, “Bragg’s equation cannot be applied if we do not know how to 
handle the term dh.” He chose an untested law that never applies. It is not nor-
mal to comment on necessities of physical practice, nor on formal and informal 
logic; but 37 years are a long delay. 
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