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Abstract 
Optimizing water consumption is a major challenge for more sustainable 
agriculture with respect for the environment. By combining micro and nano-
technologies with the offered solutions of IoT connection (Sigfox and LoRa), 
new sensors allow the farmer to be connected to his agricultural production 
by mastering in real time the right contribution needed in water and fertilizer. 
The sensor designed in this research allows a double measurement of soil 
moisture and salinity. In order to minimize the destructuring of the ground 
to insert the sensor, we have designed a cylindrical sensor, easy to insert, with 
its electronics inside its body to propose a low power electronic architecture 
capable of measuring and communicating wireless with a LoRa or Sigfox 
network or even the farmer’s cell phone. This new smart sensor is then com-
pared to the current leaders in agriculture to validate its performance. Finally, 
the sensor has better performance than commercials, a better response time, a 
better precision and it will be cheaper. For the salinity measure, it can detect 
the level of fertilizer in the soil according to the need of farmers. 
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1. Introduction 

In the context of agriculture modernization, the farmers need tools to develop 
the smart farming [1] [2]. For that, it is necessary to develop new sensors which 
can be deployed closest to the plants. To control the irrigation, the sensors 
measure the soil moisture near the crops [3] [4]. This new intelligent sensor 
combines non-contact moisture and salinity measurement [5], exploiting a ca-
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pacitive reading between two spiral form factor electrodes on a cylindrical pre-
form to optimize contact surfaces for minimal electrode volume. Thus, by re-
ducing the cost of the measuring point, it is possible to deploy more sensors in 
the ground and thus obtain an observation in the field more in agreement with 
the variations of the behavior of the grounds. The two optimized parameters are, 
on the one hand, soil moisture, which measured at different depths allows to 
know the mechanism of absorption of the crop plant; and on the other hand, the 
salinity of the soil which gives information on the amount of soil nutrients ne-
cessary for the development of the plant [6] [7]. 

In order to reduce the cost of manufacture and the constraints of placement in 
the ground, we did not retain the resistive measurement by contact [8] [9] [10] 
but privileged a capacitive measurement. The main advantage of this type of 
sensor is that it possesses a response time of less than a minute, which gives it 
the ability to monitor the hydric condition of the soil in close to real time [11]. 
Existing solutions [12] [13] [14] include sensors based on a small-sized (<1 mm) 
detection cell), which limits the volume of soil that can be tested. On the other 
hand, their complex structures [15] [16] [17] do not make them easy to use and 
require some time, several months, to restructure the soil, which can be damag-
ing to farmers. Moreover, some commercials (Enviroscan, Meteor) is available 
but their costs limit their deployment and do not permit a reliable cover of the 
fields or others (Divine) can’t be implemented for a season of culture and pro-
vide just a portable measurement. 

The article presented will be oriented in three parts. The form factor of the 
electrodes will not be detailed in order to privilege on the one hand the electron-
ic architecture of reading bi-frequency retained, then we will demonstrate by 
experimentation the usable frequency bands to observe respectively salinity and 
humidity [18]. Finally, we will present the results of the assembled sensor and 
will position its measurement sensitivity with respect to Decagon™ and Sentek™ 
sensors used by the farmers. 

2. Sensor’s Model 

We chose the capacitive method to measure so the sensor is a capacity. But be-
cause of the integration, parasite capacities are created as shown in Figure 1. 

 

 
Figure 1. Electric model of the sensor. 
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In this model, we can see the variable capacity C1 dependent to soil properties 
(humidity or salinity) and also fixed capacities created by the electrodes’ interfe-
rences C4 and the plastic protection C2 and C3. This model can be simplified by 
a single variable capacity in parallel with a single fixed capacity. 

3. Measurement Architecture 

The capacitive variation induced by the lining of soil properties in response to a 
variation of humidity and/or salinity is exploited by a Colpitts oscillator which 
generates a sinusoidal signal of adjustable frequency to sweep the spectrum of 
measurements to search for the spectral band containing the information. In 
Figure 2, we can see the schematic of this Colpitts oscillator and its output fre-
quency that is inversely proportional to the soil moisture. 

The oscillation frequency can be read by an analog acquisition chain (Figure 
3) associating an integrated frequency/voltage converter and a voltage reading 
using a CAN built into a microcontroller. Therefore, thinking microcontroller 
forces us to compare this architecture with an all-digital solution (Figure 4) with 
a dedicated embedded algorithm. 

Three levels of salinity have been defined; the frequency sweep performed by 
the Colpitts oscillator shows the variation of capacity on the interval 100 kHz to  

 

 
Figure 2. Frequency response of the Colpitts oscillator by the soil moisture. 

 

 
Figure 3. Analog sensor’s architecture. 

 

 
Figure 4. Digital sensor’s architecture. 
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10 MHz (Figure 5). 
Two areas of interest appear on this curve: 

• An area where the capacitance variation of the electrodes is insensitive to the 
salinity: above 4 MHz, the curves merge regardless of the salinity. 

• An area where the capacity varies proportionally with salinity. Thus, the 
measurement of the salinity is defined at the frequency of 500 kHz. 

By observing (Figure 6) the variation of capacity as a function of humidity, 
the reading frequency ranges are not superimposed with the exploitable area of 
the 500 kHz dedicated to the salinity measurement. We can, therefore, define 8 
MHz frequency for humidity measurement and thus obtain two operating 
ranges of our electrodes that will de-worm two totally uncorrelated salinity and 
soil moisture observations. 

To make the good choice between an analogue or all-digital architecture, it is 
necessary to compare the stabilization of the measurement with the variations of 
environment of which one of the principal parameters is the variation of tem-
perature in the soil which varies between 5˚C to 50˚C (Figure 7). While the time  

 

 
Figure 5. Sensor’s capacity by the soil salinity. 

 

 
Figure 6. Sensor’s capacity by soil moisture. 

 

 
Figure 7. Thermal response of both architectures. 
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frequency converter has at a sensitivity of 0.3%∙˚C−1 for the analog architecture; 
the TCXO choice allows the digital architecture to guarantee robustness to tem-
perature variations. With this quartz cost constraint, all digital solution is chosen 
and can offer versatile corrections linked to soil characteristics variations (type 
of soil size of aggregates…). 

4. Sensor Integration 

To allow the insertion in the ground and to ensure the solidity, we decide to 
place the electronic card in the sensor tube even if the presence of components 
close to the electrodes will modify the electromagnetic behavior. The contact 
between the electrodes of the tube and the sensor is made using contact zones 
positioned on the top of the card. Connections with the outside (data + energy) 
are made on the top of the card and are solidified by cable holes. Complete inte-
gration is shown in Figure 8 with its characteristics in Table 1. 

To be available by the farmers, the sensor’s data have to be online. For that, the 
sensor has to be connected. Several links exist but two of them stand out, Sigfox 
and LoRa. These protocols are low rate but long range and low energy. With these 
links, the sensor can transmit at more than 10 km while remaining autonomous. 

The sensor is buried on the soil so it cannot emit itself, he needs a part above-
ground. This part concentrates the data of four sensors to measure at four depths. 
It will transmit the data to a server and a web application posts them to the farmers. 

 

 
Figure 8. Sensor integration 

 
Table 1. Our sensor’s performance compared to market leader. 

Sensor 
Precision  

(% moisture) 
Measuring  
time (ms) 

Supply Size 

Our sensor ±2% 15 3 V - 5 V @ 15 mA Ø24 × 150 

DecagonTM ±2% 20 2.5 V - 3.6 V @ 10 mA 20 × 50 

SentekTM ±2% 50 12 V @ 100 mA Ø40 × 500 
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5. Laboratory Tests 

To reproduce field conditions in laboratory, we sample soil in culture. This soil 
is heated to eliminate all water contained. To evacuate all the water, the soil is 
weighed before and after the heated phase. If the weight does not change, the soil 
is dry. If not, a new phase is begun. Then the soil is separated in calibrated sam-
ples. 

To obtain a precise moisture range, a calibrated quantity of water relative to the 
weight of the sample is added to the samples to create different levels of moisture. 

For the salinity, a calibrated quantity of fertilizer is added to the water but the 
sample receives the same quantity of water. 

The samples are stocked on airtight jar to avoid evaporation and then modifi-
cations of the samples. 

To realize the measurement, we buried the sensor in the jar. As the pot is 
made of glass, the electromagnetic field does not distribute and the measure is 
correct (Figure 9). We use an impedance-meter which can sweep the frequency 
of measurement to obtain the results presented in this paper. 

Then, Figure 10 shows the sensor measuring salinity variations. To obtain 
 

 
Figure 9. Measurement in a jar. 

 

 
Figure 10. Sensor’s output by soil salinity. 
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these variations, soil samples are moistened to the same humidity but in addi-
tion, nitrogen, a common fertilizer, is dissolved to modify soil salinity. 

We can observe that output can be approached by the following linear relation: 

( ) ( )0.0657* Nitrogenadded % 0.0023sV V = −  

In fact, the sensor has not to be very precise. The farmers set a threshold be-
low which it is needed to add fertilizer. The threshold changes with the type of 
culture. The salinity measurement is validated. 

6. Sensor Measurements 

Observe and compare the behavior of our sensor over long periods with indu-
strialized sensors on an orchard and cornfield culture (Figure 11 & Figure 12). 
Look at the moisture response following the water supplies confirmed by the 
rain gauge. We can notice that we are more precise on the observation of the soil 
drying dynamics. 

We can observe on this graph the similarity of response between the Deca-
gon™ and our sensor: response time to a water intake is immediate; drying dy-
namics are identical. In addition, note in the purple box area: our sensor detects 

 

 
Figure 11. Cornfield culture sensing. 

 

 
Figure 12. Apple orchard sensing. 
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a water intake not seen by the Decagon™ sensor, which, in this example, reflects 
a better sensitivity. 

7. Conclusions 

Using capacitive technology for our sensor, we develop a new smart sensor able 
to measure soil moisture and also soil salinity. For this purpose, double helix 
electrodes are formed to optimize the relationship between the sensor and the 
ground. Bases on Colpitts oscillator we develop dual-frequency electronics and a 
full digital signal processing to reduce cost. Regarding the humidity measure-
ment, we obtain a sensor that has the same performance as the market leaders 
but for lower cost and a new functionality. 

Now for a large deployment, new tests have to be made to test the resistance 
of the sensor. For the tests, even if they were realized in actual exploitations, they 
were not manipulated by farmers. With these tests, a new mechanical shape may 
be designed. Moreover, these tests will permit to monitor the plastic protection’s 
usury. Our longer test lasts 6 months so we don’t know if the sensor can be 
reused several seasons of culture. 
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