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Abstract 
General anesthetics constitute some of the most important and widely-used 
therapeutic drugs in the pharmacotherapeutic armamentarium. They are rou-
tinely used effectively and with adequate precaution-safety throughout the 
world for a multitude of clinical applications, predominantly as adjunctive 
agents for surgical procedures. Nevertheless, they have potential adverse ef-
fects (such as a drop in blood pressure and the inhibition of steroid produc-
tion), particularly in vulnerable populations such as the very young and the 
frail elderly. It would be desirable therefore to have alternative agents that 
are just as efficacious, but have a better safety profile in a broader spectrum 
of patients. Toward this end, an anesthetic based on a unique chemical core 
(viz., an N-arylpyrrole derivative) has been reported in preclinical models to 
produce anesthetic effects without hemodynamic suppression. This lead 
could pave the way for new general anesthetics that are safer and easier to 
use. 
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1. Introduction 

General anesthetics possess characteristics that make them valuable for use dur-
ing a wide variety of surgical procedures [1] [2] [3]. However, no drug is perfect, 
and the commonly-used general anesthetics produce adverse effects (AEs) in 
some patients. The most common of the AEs related to this drug class are he-
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modynamic (a significant drop in blood pressure) or endocrinologic related (in-
hibition of synthesis of steroids) [4]. These AEs are usually adequately avoided 
or handled by the anesthesiologist, but vulnerable populations, such as the very 
young or the frail elderly, are more at-risk [5] [6] [7] [8]. 

General anesthetics share common biological effects, but consist of a perplex-
ing array of differing chemical structures (Figure 1). The group includes mole-
cules as small as the single atom xenon, and as large as the 56-atom alfaxalone 
[9] [10] [11]. Such chemical diversity impeded the discovery of a common me-
chanism of action. Many theories have been proposed [12]. It is now accepted 
that most of the commonly-used general anesthetics act by an action on a spe-
cific sub-region of the large γ-aminobutyric acid type A receptor (GABAAR) com-
plex (Figure 2) [13] [14] [15] [16]. They act at these sites as positive allosteric 
modulators [17] [18] [19]. That is, at therapeutic doses they do not bind to the 
same site as does GABA, but their binding to a separate site on the complex en-
hances the action of GABA, namely, increase in Cl– ion influx [19] [20] [21]. 
This results in an inhibitory effect on neuronal excitability (Figure 3) [22] [23]. 

The currently-used general anesthetics generally do not have exclusive activity 
at only GABAA receptors. They also have activity at other receptor sites as well 
[13]. For example, propofol has some activities at subtypes of glutamate, nicotinic 
acetylcholine, and histamine receptor sites [24] [25] (Table 1). It seems plausible 
that the non-GABAA sites contribute to the AEs of the general anesthetics. There-
fore, it might be possible to design molecules that interact more selectively with 
only GABAA sites. If so, the safety profile might be improved over currently-used 
drugs. Cayla et al. (2019) recently reported on the discovery and the properties 
of a newly developed anesthetic based on a unique chemical core [26]. 

2. The Discovery Approach 
2.1. The GABAAR and General Anesthetic Action 

The GABAA receptor is a member of the ligand-gated ion channel (LGIC) Cys-loop 
class of receptors. Five subunits (γ-α-β-α-β linkage) form a central ion (Cl–)- 
conducting pore. General anesthetics potentiate the action of GABA (transmem- 
brane Cl– influx), resulting in hyperpolarization and inhibitory actions on neu-
rons [27] [28]. 

General anesthetics are believed to bind to the transmembrane region of the 
GABAAR, and interaction with specific amino acid residues is believed to be 
 

 
Figure 1. Diverse chemical structures of representative general anesthetics. 
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Figure 2. Schematic representation of the heteropentameric GABAA receptor complex. From 
https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/GABAA_receptor_schem
atic.png/1280px-GABAA_receptor_schematic.png. 

 

 
Figure 3. (a) Release of GABA red dots and cloud) from presynaptic 
vesicles results in inhibitory postsynaptic currents (IPSCs). (b) Extra-
synaptic receptors (orange) result in a persistent inhibition. (c) In-
creased and prolonged IPSC relative to synaptic inhibition. From 
[22] [23] with permission. 

 

essential for anesthetic action [29] [30]. The binding potentiates the action of the 
native GABAAR ligand GABA, which converts the LGIC from a more closed to a 
more open conformation, allowing Cl− ion flux through the central pore formed 
by the heteropentameric subunits. The Cl– influx results, at the neurophysiolog-
ical level, in hyperpolarization of the postsynaptic neuron, with subsequent less  
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Table 1. Non-selective activity profile of some general anesthetics [24] [25] [32] [33]. Up 
arrows indicate enhancement, down arrows indicate inhibition. Number of arrows indi-
cates qualiatative magnitude. 

Anesthetic GABAA Glycine AMPA/Kainate 
NMDA 
(+Gly) 

Nicotinic-ACh 5-HT3 

Alphaxalone ↑↑↑    ↓↓  

Etomidate ↑↑↑      

Pentobarbital ↑↑↑  ↓↓ ↓ ↓↓↓ ↓ 

Propofol ↑↑↑ ↑   ↓↓ ↓ 

 
likelihood to fire (action potential) in response to excess presynaptic activity. 
This is mirrored at the organism level in an anesthetic action [20] [31]. 

2.2. Computational Chemistry to Model the GABAAR 

Isolation and purification of LGIC receptors such as the GABAAR is technically 
difficult, and there were no high-resolution crystal structures of the open-state of 
the GABAAR, the conformation to which general anesthetics are thought to in-
teract and stabilize [28], so Bertaccini and colleagues used computational che-
mistry to construct a homology model of the GABAAR [30] [34]. 

The amino acid sequences for the human GABAAR (hGABAAR) were obtained 
from the National Center for Biotechnology Information (NCBI). Then, in short, 
homologous template receptors were identified from imported GABAAR subunit 
sequences based on their sequence similarity. The sequence for each hGABAAR 
subunit was then aligned to the corresponding subunit of the template, arranged 
for modeling, and connected in order to create a 3-dimensional model of a com-
plete heteropentameric hGABAAR. The resultant homology model is shown in 
Figure 4 [34]. 

2.3. Modeling the General Anesthetic Binding Pocket 

The energetically minimized, optimized homology model of the hGABAAR (as 
described above) was used to model the transmembrane intersubunit space that 
is thought to be the binding site for general anesthetics [30]. Three amino acid 
residues that were previously shown to be essential for anesthetic activity (β3-N265, 
β3-M286, α1-L232) were mapped to form a putative anesthetic binding pocket. A 
molecule of propofol was manually docked in this binding pocket in an orienta-
tion to mimic pharmacologic relevance (e.g. minimizing steric hindrance) and 
an energetically-optimized binding cavity was obtained. A series of propofol de-
rivatives were fit to the model and used to test model reliability by comparing 
calculated binding affinities with known values. 

3. Identification of Novel Anesthetic Compounds 

Using the above model of the binding pocket for general anesthetics on the hu-
man GABAA receptor, Cayla et al. (2019) used high-throughput in silico screening  

https://doi.org/10.4236/pp.2019.1010033


R. B. Raffa et al. 
 

 

DOI: 10.4236/pp.2019.1010033 411 Pharmacology & Pharmacy 
 

 
Figure 4. (a) In silico homology model of the human GABAA receptor; (b) cross sectional 
view; and (c) intersubunit binding site of propofol. From [34] with permission. 

 
to identify candidate compounds that exhibited goodness of fit to the modelled 
binding pocket, and thus were potential mimetics of current general anesthetics 
with potential anesthetic action of their own [26]. 

In addition to the hGABAAR docking procedure used to model efficacy, it was 
desired to also address the AE issues associated with general anesthetics. Toward 
this end, previous findings related to the known unwanted interaction of eto-
midine with the enzyme thought to be related to the AE of adrenal suppres-
sion, 11-β-hydroxylase [35] [36], were incorporated, resulting in a unique mo-
lecular core in silico [37] [38] [39] [40]. High-throughput structural screening 
identified 11 compounds that have ‘fits’ compatible with the critical binding core. 
The most potent of the 11 compounds, an N-arylpyrrole derivative (Figure 5), 
termed “BB”, was tested in vitro and in vivo for anesthetic activity and AE po-
tential. 

The in vitro testing revealed: 
 BB, similar to etomidate, acts specifically through GABAAR-slow receptors 

(propofol has additional effects on GABAAR-fast and tonic receptors) [41] 
[42]. 

 The effect was fully reversed by the GABAAR-selective Cl– ion channel blocker 
picrotoxin. 

 BB slowed decay of electrically-evoked IPSCs (inhibitory postsynaptic cur-
rents) in whole-cell voltage-clamp recordings from CA1 pyramidal cells in 
mice. 

 BB dose-dependently potentiated GABA-induced currents on GABAA recep-
tors expressed in Xenopus oocytes. 

3.1. In Vivo Evaluation of Potential Anesthetic Activity 

The potential anesthetic activity of BB was tested in vivo using the standard methods 
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Figure 5. Chemical structure of lead compound 
“BB” [26]. 

 
of measuring the loss-of-righting reflex (LORR) in tadploes and rats [43] [44]. BB 
produced dose-related LORR in tadpoles, which was reversed when the animals 
were subsequently placed into a drug-free water bath. 

Likewise, intravenous injection of BB to rats produced a reversible loss of 
righting-reflex, without signs of abnormal behavior or toxicity. 

3.2. In Vivo Evaluation of Potential AE Activity 

The hemodynamic profile of compound BB was tested in rats and compared to 
propofol.The intravenous injection of propofol at a typical anesthetic-induction 
dose produced a significant decrease in both systolic and diastolic arterial blood 
pressure. In contrast, at a dose more than 4-fold that required producing LORR, 
BB did not alter either systolic or diastolic arterial blood pressure [26]. 

Etomidate interacts with the heme iron in 11-β-hydroxylase and, as a result, 
causes an almost complete suppression of the synthesis of corticosterone [45]. In 
contrast, in the same procedure, compound BB did not alter baseline of ACTH- 
stimulated corticosterone levels in rats [26]. 

4. Conclusion 

Compound BB recently reported by Cayla et al. (2019) might provide the anes-
thetic efficacy of currently-used general anesthetic drugs, but with a better safety 
profile. However, even in the absence of future clinical utility, the approach (in 
silico modeling and compound screening coupled with in vivo efficacy and ad-
verse-effect testing) provides an elegant demonstration of the power of comput-
er-modeling techniques toward drug discovery. 
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