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Abstract 
This study presents numerical methods for solving the minimum energies 
that satisfy typical optimal requirements in the transition between two dy-
namic systems where each system is governed by a different kind of weakly 
singular integro-differential equation. The class of weakly singular inte-
gro-differential equations originates from mathematical models in aeroelas-
ticity. The proposed numerical methods are based on earlier reported ap-
proximation schemes for the equations of the first kind and the second kind. 
The main result of this study is the development of numerical techniques for 
determining the stability between two dynamic systems in the minimum 
energy sense. 
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1. Introduction 

The minimum energy problem and the associated optimal control problem have 
been investigated for more than half a century. The system constraints can be 
ordinary differential equations, partial differential equations, or functional dif-
ferential equations. This study introduces a numerical method for finding the 
minimum energy to satisfy the general criterion that can be adjusted to minim-
ize various requirements through the selection of appropriate parameters. One 
system constraint is the class of equations of the first kind, which originates 
from an aeroelasticity problem where the mathematical model consists of eight 
integro-differential equations [1]. In the model, the most determinate equation 
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is a scalar weakly singular integro-differential equation of the first kind [2] [3]. 
Furthermore, because of the natural facts of transition between liquid water and 
solid ice [4] or the aviation transition between vertical take-off and horizontal 
flight of an unmanned aerial vehicle [5], we were interested in the energy issue 
in the transition between two basically different (but related) dynamic systems. 
For the setting, the second dynamic system was constructed from the first sys-
tem using finite derivative delay terms that included the boundary points of the 
considered interval. This study followed the structure of other relevant studies [6] 
in assuming that the forcing terms of the system are the control forces. This 
study is organized as follows: Section 2 presents the criteria for the optimal is-
sues. Section 3 presents the approach for determining the minimum energy for 
the transition procedure. Section 4 presents the numerical results attained by 
choosing different parameters for various cost requirements. Section 5 presents 
the summary of this study. 

2. The Model 

Consider the class of weakly singular integro-differential equations of the first 
kind 

( )d
d

=tDx u t
t

                         (1) 

with initial data 

( ) ( ) , 0.φ= − ≤ ≤x s s b s                     (2) 

The difference operator D is defined as 

( ) ( )0
d ,

−
= ∫t tb

Dx g s x s s                      (3) 

where 

( ) ( ).= +tx s x t s                         (4) 

The weighting kernel g is integrable, positive, nondecreasing, and weakly sin-
gular at 0=s . The control force ( )u t  is assumed to be locally integrable for 

0>t . Although a more general kernel g also works, this study focused on the 
Abel-type kernel (i.e., ( ) −= pg s s , where [ ],0∈ −s b  and 0.5=p  from the 
original aeroelastic model). 

The initial condition ( ) , 0φ − ≤ ≤s b s  is in 1,gL , which is a weighted 1L  
space with weight ( )⋅g . Note that the initial value problem in Equations (1)-(2) 
can be written as 

( )0 0
d ,τ τ= + ∫

t
tDx Dx u                      (5) 

provided that the function 

( ) ( )0
d

−
= +∫t b

Dx g s x t s s                     (6) 

is absolutely continuous for 0>t  and the function ( ) ( )φ⋅ ⋅g  belongs to 
[ ]1 ,0−L b . Without a loss of generality, we assume that 1=b . 
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The second system is a class of weakly singular integro-differential equations 
of the second kind 

( ) ( )
1

d d ,
d d

σ
=

− + =∑
l

i t
i

x t Dx u t
t t

                  (7) 

where l is a positive integer and 0 1, 1, ,σ≤ ≤ = i i l . The initial condition is 

( ) ( ) , 1 0.φ= − ≤ ≤x s s s                     (8) 

For the partition between systems (2) and (3), a parameter [ ]0,1λ ∈  is as-
sumed. Therefore, the combined system can be written as 

( ) ( )

( ) ( )
1

d d
d d

d 1
d

λ σ λ

λ ν

=

 − + =

 − =

∑
l

i t
i

t

x t D x u t
t t

D x t
t

                 (9) 

with initial data 

( ) ( ) , 1 0.φ= − ≤ ≤x s s s                     (8) 

Although the proposed methods can be applied to more general cost functions, 
this study primarily considered the typical cost function for comparison: 

( ) ( ) ( )1 2 ,λ λ λΦ = Φ +Φ                    (10) 

and 

( ) ( )( ) ( ) ( )( ) ( )1 12 2 2
1 1 2 30 0

1 d d ,λ α λ α λ η αΦ = − + − +∫ ∫x h x t t t u t t     (11) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 12 2 2
2 1 2 30 0

1 1 1 d d ,λ α λ α λ η α νΦ = − − + − − +∫ ∫x h x t t t t t  (12) 

where h is a constant of final target state, ( )η t  is a target function, and para-
meters 1 2,α α  and 3α  are nonnegative constants with a total sum of 1. 

3. The Numerical Method 

This procedure is proposed to discretize system (9) and the cost function (10) 
simultaneously to construct two corresponding linear systems with unknowns as 
states and controls. The space mesh points (corresponding to the s variable) are 
discretized as 1 1 01 0τ τ τ τ−− = < < < < =n n , and a new variable ξ  is defined 
as 

( ) ( ), , 1 0, 0.ξ = + − ≤ ≤ >t s x t s s t                (13) 

System (9) can then be reformulated as a first-order hyperbolic equation 

( ) ( ), , , 1 0,ξ ξ∂ ∂
= − ≤ ≤

∂ ∂
t s t s s

t s
                (14) 

with the condition 

( ) ( ) ( )

( ) ( ) ( )

0

1
1

0

1

d , , d ,
d

1 , d .

λ ξ σ λ ξ

λ ξ ν

−

−
=

−

−

∂ − + = ∂


∂ − = ∂

∑ ∫

∫

l p
i

i

p

t s t s s u t
t s

s t s s t
s

           (15) 
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Next, assume that the solution to Equation (8) has the form 

( ) ( ) ( )
0

, ,ξ κ
=

= ∑
n

i i
i

t s t B s                     (16) 

where the basis, ( ) , 0, ,= iB s i n  is given by 

( )
( ) ( ) [ ]

( ) ( ) [ ]

1 1
1

1 1
1

1 , ,

1 , ,

0 otherwise.

τ τ τ
τ τ

τ τ τ
τ τ

+ +
+

− −
−

 − ∈ −=  − ∈ −



i i i
i i

i
i i i

i i

s s

B s s s            (17) 

Namely, ( ) , 0, ,= iB s i n  are piecewise linear functions. After substituting 
the special form of ξ  in Equation (16) into Equations (14)-(15), the governing 
equations for ( ) , 0, ,κ = i t i n  become the following: 

( ) ( ) ( )( )1
d 1 , 1, , ,
d
κ κ κ

δ −= − = i i i
i

t t t i n
t

            (18) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1
1 0

0

1
0

d d d ,
d d

d1 d ,
d

σλ κ λ κ

λ κ ν

−

−
= =

−

−
=

 + =

 − =


∑ ∑∫

∑∫

i

l np
i i

i i
np

i i
i

t s t B s s u t
t s

s t B s s t
s

        (19) 

where 1 0δ τ τ−= − >i i i , for 1, ,= i n . For time t, discretization contains 
0 1, , ,

mT T T , for 0 10 1= < < < =

mT T T . Define 1+∆ = −k k kT T , for 
0, , 1= −k m . By assuming ( )α κ=k k

i i T , for 0,1, ,i n=  , and 0, ,k m=  , 
and without losing generality, we assume 2l = , 1 0σ = , 2 nσ = , and Equa-
tions (18)-(19) can now be written as 

( ) ( )1
1

1 1 ,α α α α
δ

+
−− = −

∆
k k k k
i i i ik

i

                 (20) 

( ) ( )

( ) ( ) ( )

1 1 1 1 1 1 1
0 1 1 1

11 1 1 1

1 1 1
1

1

,

1 ,

λ λ λ λα α α α λ α α
δ δ δ δ δ

λ α α ν
δ

+ + + + + + +
− −

=− −

+ + +
−

=

 − + − + − =


 − − =


∑

∑

n
k k k k k k ki

n n i i
in n i

n
k k ki
i i

i i

g
u T

g
T

  (21) 

for 1, ,i n=  , 0, , 1k m= − , and 1 di

i

p
ig s s

τ

τ

− −= ∫ . 
Furthermore, we assume a uniform mesh for both space and time, and the mesh 

points are , 0, ,τ = i i n  and , 0, ,= 

kT k m . Specifically, we have τ = −i
i
n

, 

=k kT
m

, for some positive integers n and m. The associated differences are defined  

as 1+∆ = −k k kT T , 0, , 1= −k m , for the time variable and 1δ τ τ−= −i i i , 
1, ,= i n , for the space variable. Thus, we obtain 1∆ =k m  and 1δ =i n , for 
0, , 1= −k m , and 1, ,= i n . Setting =m n  produces the relation  

1δ∆ = =k
i n  for 0, , 1= −k n , and 1, ,= i n , and deriving Equations 

(20)-(21) lead to the following system: 
1

1,α α+
−=k k

i i                          (22) 
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and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 11 1 1 1 1 1 1
0 1 1 1 1 1

11 1 1 1

1 11 1 1
1 1 1

1

1 1
1

1 11
1

n p pk k k k k k k
n n i i i i k

in n i
n p pk k k

i i i i k
i i

u T u
p

T v
p

λ λ λ λα α α α λ α α τ τ
δ δ δ δ δ

λ α α τ τ ν
δ

− −+ + + + + + +
− − − +

=− −

− −+ + +
− − +

=

  − + − + − ⋅ − − + − = =  −


  − − ⋅ − − + − = ≡  −

∑

∑
 (23) 

for 1, ,= i n , and 0, , 1= −k n . 
After defining corresponding constants 0 1, , , nc c c , and 0 1, , , nd d d , Equa-

tion (23) can be written in the following simplified form: 

( )
( )( )

1 0 0
0 0 0 1 0 1 1 1

1 0 0
0 0 0 1 0 1 1 11

k k
k n k n k

k k
k n k n k

c c c c u

d d d d v

λ α α α α

λ α α α α

+
+ − − +

+
+ − − +

 + + + + + =


− + + + + + =

 

 

, 0, , 1= −k n  (24) 

The connection between the solution ( )x t  and α’s is as follows: Because 
( ) ( ),ξ = +t s x t s , for 1 0− ≤ ≤s , 0>t , and ( ) ( ) ( )

0
,ξ κ

=

= ∑
n

i i
i

t s t B s , it follows 
that ( )x t , for 0>t  can be obtained in the following case: 

( ) ( ) ( ) ( )0 0
0

0κ κ α
=

= = =∑
n

j j j j
l l

l
x T T B T , for 1, ,= j n .      (25) 

For the cost function  
( ) ( )( ) ( ) ( )( ) ( )1 12 2 2

1 1 2 30 0
1 d d ,λ α λ α λ η αΦ = − + − +∫ ∫x h x t t t u t t  

the discretized form is: 

( ) ( ) ( )( )22 2
1 1 0 2 0 3

1 1

1 1 .λ α λα α λα η α
= =

Φ = − + − +∑ ∑
n n

n i i
i

i i
h T u

n n
     (26) 

Taking the first derivatives of ( )1 λΦ  with respect to , 1, ,= iu i n , and set-
ting them to zero yields the following equations: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 1 2
1 0 2 0 0 0 3 1

1 2 1

1 2
1 ,

n n

n

n aa n aa aa aa n u
n h aa n t aa t aa n
λ α α λ α α α α α

λα λα η η

 ⋅ ⋅ + ⋅ + ⋅ + + ⋅ + ⋅ 
 = ⋅ + ⋅ + + ⋅ 





 

  

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

2 2 1
1 0 2 0 0

0 3

1 2

1 1 2

1

1 1 1 ,

n j j

n
j

j n

n aa n j aa aa

aa n j u

n h aa n j t aa t aa n j

λ α α λ α α α

α α

λα λα η η

+⋅ ⋅ − + + ⋅ + ⋅ +
+ − + ⋅ + ⋅

 = ⋅ − + + ⋅ + + ⋅ − + 





 

  

( ) ( )
( ) ( ) ( )

2 2
1 0 2 0 3

1 2

1 1
1 1 ,

n n
n

n

n aa aa u
n h aa t aa
λ α α λ α α α
λα λα η

⋅ ⋅ + ⋅ ⋅ + ⋅
= ⋅ + ⋅ ⋅

              (27) 

where 

( )
0

11 ,aa
cλ

=  

( ) ( )1

0

2 1 ,
caa aa
c

= − ⋅  

  

( ) ( ) ( ) ( )11 2

0 0 0

1 2 1 ,jcc caa j aa j aa j aa
c c c

−= − − − ⋅ − − − ⋅  
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  

( ) ( ) ( ) ( )11 2

0 0 0

1 2 1 .ncc caa n aa n aa n aa
c c c

−= − − − ⋅ − − − ⋅  

Systems (24) with λ  and (27) can be set up as [ ][ ] [ ]A x b= , where the vector 
[ ]x  consists of the unknowns 0 , 1, ,j j nα = 

, and , 1, ,ku k n=  . The structure 
of matrix [ ]A  is 

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )

0

1 0

1 2 0
2 2 2

2 2 2 1 3
2

2 3
2

2 1
2 2

2 2 1 3
2

2 1 3 2 2

0 0 1 0 0
0 0 1 0

0 0 1
1 2 0 0 ,

0 1 0 0
3

1 2 0
0 0 1 0 0

n n

n n

c
c c

c c c
aa aa n aa n

aa
n aa

aa n aa
n aa

λ
λ λ

λ λ
λ α λ α λ α α α

λ α α
λ α α

λ α λ α α α
λ α α α

− −

×

− 
 − 
 
 

− 
 +
 
 
 + 

+ 
 + 

 

 

       

 

 

  

      

 

 

 

and vector [ ]b  is given by 

( )
( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0
0 1 1 2 1 1
0 0 0
0 2 1 3 2 2
0 0 0
0 3 1 4 3 3

0
0

2 1 1 2 1

2 2 1 2 1

2 1

1 1

1 2 1

1

n n

n n

n n

n n

n n

n n

n

c c c b t
c c c b t
c c c b t

c b t
t aa t aa n t n h aa n

t aa t aa n t n h aa n

t n h aa

α α α
α α α
α α α

αλ
α η η α η α

α η η α η α

α η α

−

−

−

−

−

 − − − − −


− − − − −
− − − − −

− −

   + + − + +   
   + + − + + −   

 + 















2 1

.

n×





 
 
 
 
 
 
 
 
 
 
 

 

For the cost function  
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 12 2 2

2 1 2 30 0
1 1 1 d d ,x h x t t t t tλ α λ α λ η α νΦ = − − + − − +∫ ∫  

the discretized form is: 

( ) ( )( ) ( ) ( )( )22 2
2 1 0 2 0 3

1 1

1 11 1 .
n n

n i i
i

i i
h T

n n
λ α λ α α λ α η α ν

= =

Φ = − − + − − +∑ ∑  (28) 

Taking first derivatives of ( )2 λΦ  with respect to , 1, ,i i nν =  , and setting 
them to zero produces the following equations: 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 1 2
1 0 2 0 0

0 3 1

1 2 1

1 1 1 2

1 1 1 ,

n

n

n

n aa n aa aa

aa n

n h aa n t aa t aa n

λ α α λ α α α

α α ν

λ α λ α η η

− ⋅ ⋅ + − ⋅ + ⋅ +
+ ⋅ + ⋅

 = − ⋅ + − ⋅ + + ⋅ 



  

  

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 1
1 0 2 0 0

0 3

1 2

1 1 1 1 2

1

1 1 1 1 ,

n j j

n
j

j n

n aa n j aa aa

aa n j

n h aa n j t aa t aa n j

λ α α λ α α α

α α ν

λ α λα η η

+− ⋅ ⋅ − + + − ⋅ + ⋅ +
+ − + ⋅ + ⋅

 = − ⋅ − + + ⋅ + + ⋅ − + 




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  

( ) ( )( ) ( )
( ) ( ) ( )

2
0 1 2 3

1 2

1 1 1

1 1 .

n
n

n

n aa aa

aa n h t

λ α α α α ν

λ α α η

− ⋅ ⋅ + ⋅ + ⋅

 = − + ⋅ 
              (29) 

where 

( ) ( ) 0

11 ,
1

aa
cλ

=
−

 

( ) ( )1

0

2 1 ,
caa aa
c

= − ⋅  

  

( ) ( ) ( ) ( )11 2

0 0 0

1 2 1 ,jcc caa j aa j aa j aa
c c c

−= − − − ⋅ − − − ⋅  

  

( ) ( ) ( ) ( )11 2

0 0 0

1 2 1 .ncc caa n aa n aa n aa
c c c

−= − − − ⋅ − − − ⋅  

Systems (24) with 1 λ−  and (29) can be set up as [ ][ ] [ ]A x b= , where the vector 
[ ]x  consists of the unknowns 0 , 1, ,j j nα = 

, and , 1, ,k k nν =  . The structure 
of matrix [ ]A  is 

( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0

1 0

1 2 0

2 2 2
2 2 2 1 3

2
2 3

2
2 1

2 2
2 2 1 3

2
2 1 3

1 0 0 1 0 0
1 1 0 0 1 0

1 1 0 0 1

1 1 1 2 1 0 0

0 1 1 0 0

1 3

1 1 1 2 0

0 0 1 1 0 0

n n

d
d d

d d d

aa aa n aa n

aa

n aa

aa n aa

n aa

λ
λ λ

λ λ

λ α λ α λ α α α

λ α α

λ α α

λ α λ α α α

λ α α α

− −

− − 


− − −


 − − −

 − − − +

 −

 − +


− − +


− +

 

 

       

 

 

  

      

 

 

2 2

,

n n×

















 

and vector [ ]b  is given by 

( )

( )
( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0
0 1 1 2 1 1
0 0 0
0 2 1 3 2 2
0 0 0
0 3 1 4 3 3

0
0
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4. Numerical Examples 

Consider examples involving 0.5p = , [ ]0,1λ ∈ , initial conditions  
( ) 0, 1 0s sφ = − ≤ ≤ , different target final state h, and different target functions 
( ) ,0 1t tη ≤ ≤ . For different criteria, the combinations of constants α’s in the 

cost functions are changed accordingly. 
For the case ( ) ( )1 2 3, , 0,1,0α α α = , the problem is the “tracking problem”. 
Typical cost distribution is as the following two graphs (Figure 1 and Figure 2). 

 
Example 1: 100n = , ( ) ( )1 2 3, , 0.3,0.5,0.2α α α =  

1h =  ( ) 1tη =  mincost 0.5951Φ =  when 0λ =  

1h =  ( )t tη =  mincost 0.3313Φ =  when 0λ =  

0h =  ( ) 1t tη = −  mincost 0.1517Φ =  when 0λ =  

 
Example 2: 100n = , ( ) ( )1 2 3, , 0,0,1α α α =  

1h =  ( ) 1tη =  mincost 0Φ =  when 0λ =  

1h =  ( )t tη =  mincost 0Φ =  when 0λ =  

0h =  ( ) 1t tη = −  mincost 0Φ =  when 0λ =  

 

Example 3: 100n = , ( ) ( )1 2 3, , 1,0,0α α α =  

1h =  ( ) 1tη =  mincost 2.2132 28eΦ = −  when 0λ =  

1h =  ( )t tη =  mincost 2.2132 28eΦ = −  when 0λ =  

0h =  ( ) 1t tη = −  mincost 0Φ =  when 0λ =  

 
Example 4: 100n = , ( ) ( )1 2 3, , 0,1,0α α α =  

1h =  ( ) 1tη =  mincost 5.8587 29eΦ = −  when 0λ =  

1h =  ( )t tη =  mincost 2.5009 29eΦ = −  when 0λ =  

0h =  ( ) 1t tη = −  mincost 2.9966 29eΦ = −  when 0λ =  

 
Example 5: 100n = , ( ) ( )1 2 3, , 0.9,0,0.1α α α =  

1h =  ( ) 1tη =  mincost 0.3424Φ =  when 0λ =  

1h =  ( )t tη =  mincost 0.3424Φ =  when 0λ =  

0h =  ( ) 1t tη = −  mincost 0Φ =  when 0λ =  

 
Example 6: 100n = , ( ) ( )1 2 3, , 0,0.9,0.1α α α =  

1h =  ( ) 1tη =  mincost 0.5712Φ =  when 0λ =  

1h =  ( )t tη =  mincost 0.1785Φ =  when 0.5λ =  

0h =  ( ) 1t tη = −  mincost 0.2321Φ =  when 0λ =  
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Figure 1. Total cost for λ  from 0 to 1. 

 

 
Figure 2. Total cost for λ  from 0 to 1. 

5. Conclusion 

This study presented a numerical method for finding the minimum of the total 
cost when it contains two partial costs from two dynamic systems, and each cost 
contains three weights to adjust for different considerations of energy and dif-
ferent combinations of the measurable parameter λ  between two systems. The 
effectiveness of the proposed method was tested by examples. The numerical re-
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sults indicated that the most stable situations are 0λ = . In other words, dy-
namic system with the first kind integro-differential equation is the most stable 
system in the minimum cost sense. 
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