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Abstract

Ky Fan maximum principle is a well-known observation about traces
of certain hermitian matrices. In this note, we derive a powerful
extension of this claim. The extension is achieved in three ways.
First, traces are replaced with norms of diagonal matrices, and any
unitarily invariant norm can be used. Second, hermitian matrices
are replaced by normal matrices, so the rule applies to a larger class
of matrices. Third, diagonal entries can be replaced with eigenvalues
and singular values. It is shown that the new maximum principle
is closely related to the problem of approximating one matrix by
another matrix of a lower rank.

Keywords

Ky Fan Maximum Principle, Normal Matrices, Extended Maximum
Principle, Unitarily Invariant Norms

1. Introduction and Main Results

Ky Fan maximum principle is a useful observation that characterizes
an important property of hermitian matrices. It is interesting, there-
fore, to see whether it is possible to extend this rule to other types of
matrices. In this note, we answer this question for normal matrices.
The reader is referred to references [1-15] for detailed discussions of
normal matrices and their properties. Let N = (n;;) € C"*" be a

normal matrix with eigenvalues v;, 7 = 1,...,n, that satisfy
il = o] = o > vl (L.1)
Then N has a spectral decomposition of the form
N =VSV*, (1.2)
where S € C™"*™ is a diagonal matrix
S = diag{vy,va,...,vn}, (1.3)

and V € C™*" is a unitary matrix whose columns are eigenvectors of
N. The matrix V* denotes the conjugate transpose of V', and the term
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unitary matrix means that V*V = VV* = 1. Let v;,j = 1,...,n,
denote the jth column of V. Then (1.2) implies the equalities

Nv;=vjv; for j=1,...,n (1.4)

That is, v; is an eigenvector of N that corresponds to v;. Let o, j =
1,...,n, denote the singular values of IV arranged in decreasing order.
Then the fact that N is a normal matrix implies the equalities

oj=|v;| for j=1,...,n. (1.5)

Let 1 < k < n be a given positive integer. Then the matrices Sy €
CF*k and V3, € C**F are defined by the rules

Sy = diag{v1, ..., vk}, (1.6)

and
Vk: [vl,...,vk]. (17)

In other words, Sy, is a principal submatrix of S, and V}, is composed
from the first k£ columns of V. Observe that (1.2) implies the equalities
V*NV =S and

ViNV, = S. (1.8)
Note also that Vj, belongs to the set
Qr=1{Q|Q € C™* and Q*Q = I}, (1.9)

which contains all the n x k matrices that have orthonormal columns.

The maximum problems that we solve consider Rayleigh quotient
matrices of the form Q* NQ where @ belongs to Q. The first assertion
ia about §(Q*NQ), the k x k diagonal matrix that shares the same
diagonal entries as Q*NQ.

Theorem 1. Let N be a normal matriz as above, and let || - || be a
unitarily invariant norm on C***. Then
S|l = max [|0(Q*NQ)]|, 1.10
Ikl = g 15(Q° N Q| (1.10)

and the maximal value is obtained when Q = Vj,.

Recall that a matrix norm || - || on C"*™ is called unitarily invari-
ant if for any matrix A € C"*" and any unitary matrix U € C"*™ we
have the equalities | 4| = |[UA| = ||AU||. The family of unitarily in-
variant norms includes several useful norms, such as Frobenius norm,
the Schatten p-norms, Ky Fan k-norms, the trace norm, and the spec-
tral norm. The relation between Theorem 1 and Ky Fan maximum
principle can be seen by considering the trace norm || - ||z. Given a
matrix A = (a;;) € C™*™ its trace norm is defined as

[Aller =Y 0i(A), (1.11)
j=1

where 0;(A), j = 1,...,n, denote the singular values of A sorted in
decreasing order. The conversion of Theorem 1 to handle the trace
norm is simplified by applying the absolute-trace function

n

abstr(A) = Z la;l, (1.12)

j=1
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which turns (1.10) into the form

+ -+ = bst *NQ). 1.13
o ok &%}EQST(Q Q) (1.13)

The last result is the absolute trace theorem which was recently
proved in [4]. Assume for a moment that N is a positive semidefinite
hermitian matrix. In this case v; = o; for j = 1,...,n, and the
matrices Q*N(Q are positive semidefinite. Hence the diagonal entries
of these matrices are nonnegative and (1.13) is reduced to Ky Fan
maximum principle [6]

Vi + -+ v, = max trace(Q*NQ). 1.14
1 k Qe@i (Q Q) ( )

It is also easy to verify that the positive semidefinite requrement is
not essential for Ky Fan maximum principle, so (1.14) holds whenever
N is hermitian. However, if IV is not positive semidefinite then the
two problems may have different solutions.

Summarizing the above observations we see that both Theorem 1
and the absolute trace theorem can be viewed as extensions of Ky
Fan maximum principle. The absolute trace theorem allows the use
of normal matrices instead of hermitian matrices, while Theorem 1
achieves further extension by replacing the trace norm with any uni-
tarily invariant norm. Below we will show that further extensions are
gained by replacing the diagonal entries with eigenvalues and singular
values.

Let \;(Q*NQ), j = 1,...,k, denote the eigenvalues of Q*NQ.
Then A(Q*NQ) is defined to be the k x k diagonal matrix whose (j, j)
diagonal entry equals A\;(Q*NQ). That is,

NQ*NQ) = diag{M(Q*NQ), ..., \(Q*NQ)}. (1.15)

Theorem 2. Let N € C"*" be a normal matriz as above, and let |- ||
be a unitarily invariant norm on CF*F. Then

ISl = max IA@ N QI (1.16)

and the maximal value is attained for Vi.

As before, it is interesting to consider the trace norm. In this case
(1.16) takes the form

k
Z|y]| = max Z 1A (Q*NQ), (1.17)

and, when N is a positive semidefinite hermitian matrix, (1.17) is
reduced to

ZVJ = maXZ)\ (Q*NQ), (1.18)

Furthermore, since

k
Z/\] (Q*NQ) = trace(Q*NQ), (1.19)

Jj=1

we see that (1.18) is essentially Ky Fan maximum principle (1.14).
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The third maximum principle considers the singular values of
Q*NQ. Let 0;(Q*NQ), j = 1,...,k, denote the singular val-
ues of Q*N(Q arranged in decreasing order, and let o(Q*NQ) de-
note the k x k diagonal matrix whose (j,j) diagonal entry equals
0;(Q*NQ), j=1,...,k. That is

o(Q"NQ) = diag{o1(Q"NQ), ..., 01(Q"NQ)}. (1.20)

Then, here we consider the maximization of ||o(Q*NQ|. However,
since the equality

1Q"NQ = lo(Q*NQ| (1.21)
holds for any unitarily invariant norm, it is possible to replace

lo(@"NQ)|| with |Q"NQ||.

Theorem 3. Let N be a normal matriz as above, and let || - || be a
unitarily invariant norm on C***. Then
Sk|| = max |Q*NQ||, 1.22
Ikl = gax 1Q° NG (122

and the mazximum value is attained for V.

As in the former cases it is easy to verify that when using the trace
norm on a positive semidefinite hermitian matrix the last assertion is
reduced to Ky Fan maximum principle. It should be noted, however,
that in the general case, when using an arbitrary unitarily invariant
norm and N is an arbitrary normal matrix, the objective functions of
the three maximum problems can be quite different. Yet, as we have
seen, the three problems share the same solution matrix, Vi, and the
same optimal value, ||Sk||.

The rest of the paper continues as follows: The next section in-
troduces the necessary theoretical basis, while Section 3 provides the
proofs of Theorems 1-3. Finally, in Section 4 we expose interesting
relations between the new maximum principles and a minimum norm
problem that arises when searching a rank-k matrix that is closest to
N.

2. Theoretical Background and Tools

We shall start by introducing some useful notations. Let A = (a;;) €
C"*" be a given arbitrary matrix with eigenvalues A\;(A4), j=1,...,n,
and singular values ¢;(A4), 7 = 1,...,n. Then there is no loss of
generality in assuming that

A (A)] = [A2(A)] = -+ = [An(A)], (2.1)
0‘1(A> ZO’Q(A) ZZO‘n(A>, (2.2)

and
|a11‘ 2 |a22| >z ‘ann| (23)

These inequalities enable us to define the related diagonal matrices

A(A) = diag{ 1 (4),..., A\ (A)}, (2.4)
o(A) = diag{o1(A),...,0n(A)}, (2.5)
and
d(A) = diag{ai1,...,ann}- (2.6)
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Thus, for example, A(A) is an n x n diagonal matrix whose (7, j) entry
equals \;(A). Similarly, the matrix

S(A) = diag{o1(A), ..., on(A)} (2.7)

is a k x k principal submatrix of o(A).

Next, we will say a few words about majorization and dominance.
Let B € C"™ and C € C™*" be a pair of matrices with singular
values

o1(B)> -+ >0,(B)>0, and 01(C)>--->0,(C) >0,

respectively, that satisfy

k k
0j(B) <> 0i(C) for k=1,...,n. (2.8)
1 j=1

j=

In this case we say that the singular values of B are majorized by those
of C. The importance of this relation comes from Ky Fan dominance
theorem [6], which says that (2.8) ensures the inequality

1Bl < lIC]l (2.9)

for any unitarily invariant norm.

Another useful property stems from the interlacing theorems of
Cauchy and Poincaré. The original statements of these theorems are
about eigenvalues of hermitian matrices, e.g., [8] [11] [15]. Yet when
these theorems are adapted to singular values we have the following
results. Let P;(A) denote the k x k principal submatrix of A which is
obtained by deleting from A the last n — k columns and the last n — k
rows. Let

1 (Pe(A)) > - > oy(Pu(A)) > 0 (2.10)

denote the singular values of Pj(A). Then
0j(P(A) <o;(A) for j=1,...,k. (2.11)
Moreover, let Q) be defined as in (1.9). Then the inequalities

0i(Q"AQ) < o;(4), j=1,...,k, (2.12)

hold for all @ € Qx.

Combining the interlacing relations with Ky Fan dominance theo-
rem yields two powerful tools. First note that (2.12) means that the
singular values of Q* AQ are majorized by those of S (A), which yields
the inequality

1Q°AQI < 1S4(4). (2.13)

The second tool is based on the inequality

> lajl < 0j(A), (2.14)
j=1 j=1

whose proof can be found, for example, in [3, p. 1237], [9, p. 154],
and [15, pp. 261-263]. Applying this inequality on P(A) shows that

k k
Z laj;| < Zaj<Pk(A>>, (2.15)
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while (2.11) gives

k k
Z\ajﬂ SZJj(A) for k=1,...,n. (2.16)
j=1

Jj=1

The last inequalities mean that the singular values of §(A) are ma-
jorized by those of A, which shows that

I6CA)F < [IA]l 2.17)

(
Further results on majorization relations between 0(A),c(A) and
A(A), can be found in [1], [4], [9, p. 176], [10, pp. 313-318] and [15,
p. 262].

3. Proofs

In this section we provide the proofs of Theorems 1-3.

The proof of Theorem 1. Let () be some matrix from Q. Then
(2.17) implies

16(Q"NQ)| < "N, (3.1)
while from (2.13) we conclude that
[Q"NQI < [Skll; (3-2)
and
16(Q* N < [15k]I- (3-3)
Finally, from (1.8) we obtain that
18V NV = 16(Sk)Il = [ISwll- (3.4)
]

The proof of Theorem 2. Let Q be some matrix from Q. Then
Schur’s triangularization theorem ensures the existence of a k x k
unitary matrix, @, such that

Q(Q'NQ)Q =T, (3.5)

where T € CF** is an upper-triangular matrix. Therefore, since the
diagonal entries of T are eigenvalues of Q*NQ,

ANQ*NQ) = §(T). (3.6)

Note also that the matrix

Q=QQ (3.7)
belong to Qf, and
MQ™NQ) = Q" NQ). (3.8)
Hence from (3.3) we conclude that
INQ*NQ)I = (5@ NQ)II < ISk, (3.9)

while a further use of (1.8) shows that the above upper bound is
achieved for V.

([l
The proof of Theorem 3. From (2.13) we obtain that
[Q*NQI < [ISkll; (3.10)
and (1.8) implies that the upper bound is gained when Q = V.
U
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4. Relations with Low-Rank
Approximations

In this section we reveal interesting relations between the new maxi-
mum principles and the low-rank approximation problem

minimize F(B)=|N - B (4.1)
subject to B e C"™" and rank(B) < k. .

It is well-known that the solution of (4.1) is obtained from the singular
value decomposition (SVD) of N, e.g. [3, p. 1243] or [9, p. 215]. In
our case the SVD is easily concluded from the spectral decomposition
(1.1)-(1.8), and the matrix

T = Vi Sp Vi (4.2)

is a rank-k truncated SVD of N that solves (4.1).
A second consequence of the spectral decomposition (1.1)-(1.8) is
that the problem

min [N - QQNQQ| (43)

is essentially equivalent to (4.1). This observation stems from the
following facts. First note that for any @ € Q the rank of the ma-
trix Q(Q*NQ)Q* can’t exceed k. Hence the optimal value of (4.3)
exceeds that of (4.1). Yet for Q = Vj, problem (4.3) attains this val-
ue. This shows that both problems share the same optimal value,
IN — ViSi V||, that Vi solves (4.3), and that a solution for (4.3)
provides a solution for (4.1).

The relation between (4.3) and the maximum principle (1.22) is
exposed by using the Frobenius matrix norm || - ||. Recall that for
any matrix A = (a;;) € C"*"

" 1/2 n 1/2
Jalle = (3D lail?) = (Dlesan?) . (a

i=1 j=1 j=1

When using this norm problem (4.1) is reduced to Eckart-Young low-
rank approximation problem, e.g., [3, p. 1243] or [9, p. 217]. Observe
that for any @ € Qi we have the equality

IN = QQ'NQ)Q|E = |NIE — Q" NQIE (4.5)
which shows that the minimum norm problem
in ||V — *NQ)Q*|3 4.6
Quin [N —Q(Q"NQ)Q" ||z (4.6)
is equivalent to the maximum problem

*NQIZ. 4.7
glEEIIQ Qll% (4.7)

n k
The optimal values of (4.6) and (4.7) are >, |v;* and Y |v;/?,
k41 i=1

n
respectively, and the sum of these values equals [|[N||% = > |v;]?.
j=1
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Another interesting equality characterizes the trace norm. In this

k n
case, the optimal values of (1.22) and (4.1) are ) |v;] and > |v;],

J=1 J=k+1
n
respectively, and the sum of these values equals | N|. = Y |v;].
j=1
A similar situation occurs when using the Schatten p-norm, || - ||,.

Recall that 1 < p < oo and

1N, = (i )" (48)

In practice it is convenient to use || - ||} instead of || - [|,. Hence the

k n
resulting optimal values are ) |v;|? and )" |v;|P, and the sum of
j=1 j=k+1
these values equals || N|[5.

5. Concluding Remarks

The paper derives three maximum principles that apply to any normal
matrix and any unitarily invariant norm. When using the trace norm
on positive semidefinite hermitian matrices these principles coincide
with Ky Fan maximum principle. Another interesting relation charac-
terizes the Frobenius norm. In this case, the new maximum principle
is closely related to Eckart-Young low-rank approximation problem.
The results for normal matrices pave the way for further extensions
of the maximum principle. The difficulty here is that non-normal
matrices don’t have the spectral decomposition. Hence the maximum
problems need some amendments and the solution is concluded from
the SVD. See [3] for extended version of Theorem 3. This suggests
that theorems 1 and 2 can be treated in a similar way. Another related
question is whether a similar extension is possible for Ky Fan minimum
principle [7]. However, these issues are left to future research.
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