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Abstract 
In this paper, we study the class of one-dimensional singular integrals that 
converge in the sense of Cauchy principal value. In addition, we present a 
simple method for approximating such integrals. 
 

Keywords 
Singular Integral, Weakly Singular, Strongly Singular, Numerical Integration 

 

1. Introduction 

Many problems in engineering and science require evaluating singular integrals. 
For example, in electromagnetic and acoustic wave scattering, the boundary 
integral equations have singular kernels, see [1]-[6]. In fluid and solid mechanics, 
physicists and engineers face the same problem, see [7] [8]. Thus, the study of 
such integrals plays an important role in engineering and science. In this paper, 
we consider only one-dimensional singular integrals that converge in the sense 
of Cauchy principal value. 

One-dimensional singular integrals are defined in the literature as follows 
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in which ( )u t  is a continuous function. These integrals are classified by the 
order of singularity. If 1p < , the integral is called weakly singular. If 1p = , the 
integral is strongly singular. If 1p > , the integral is called hyper-singular, see 
[9]. In other words, an integral is called weakly singular if its value exists and 
continuous at the singularity. An integral is called strongly singular if both the 
integrand and integral are singular. An integral is called hyper-singular if the 
kernel has a higher-order singularity than the dimension of the integral. For 
strongly singular integrals, they are often defined in terms of Cauchy principal 
value, see [10]. For hyper singular integrals, they are often interpreted as Hada-
mard finite part integrals, see [11]. 

There are many special methods developed to treat singular integral problems 
since numerical integration routines often lead to inaccurate solutions. For ex-
ample, to deal with the singularities in surface integral equations, the method of 
moments regularizes the singular integrals by sourcing them analytically for spe-
cific observation point [12] [13]. Other methods include Gaussian quadrature 
method which has high-order of accuracy with a non-uniform mesh [14] [15], 
Newton-Cotes method which has low-order of accuracy with a uniform mesh 
[16] [17] [18], Guiggiani s method which extracts the singular parts of the inte-
grand and treat them analytically [19], sigmoidal transformation which trans-
forms the integrand to a periodic function [20] [21], and Duffy’s transformation  

which cancels the singularity of type 
1
t

 [22]. Most of these methods can be  

characterized in three categories: singularity subtraction, analytical transforma-
tion, and special purpose quadrature. 

In this paper, we present an alternative approach for approximating one di-
mensional singular integrals which converge in the sense of Cauchy principal 
value. In addition, a proof of this method is outlined in section 2 to serve as a 
theoretical basis for the method. In section 3, the detailed implementation of our 
method is described for integrals over the standard interval [−1, 1]. 

2. Approximation of Singular Integrals 

Theorem 1. Let ( )d
D

f x x∫ , [ ]1,1D ⊆ − , be a singular integral that has finite 
value in the sense of Cauchy principal value. Suppose 0x  is its only singularity 
in D. Then, for any 0> , there exist 0N >  and ,0ja j n≤ ≤ , n N≥ , such 
that: for all n N≥  

( ) ( )
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j jD D
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where ,0jU j n≤ ≤ , are Chebyshev polynomials of second kind. 
Proof 
Let ( )0: \D D B xδ δ= , where ( ) ( )0 0 0: ,B x x xδ δ δ= − +  and 0δ > . Since f is  
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continuous in Dδ , f can be expressed as: 
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where jU  are Chebyshev polynomials of second kind 
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Therefore 
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Since ( )d
D

f x x∫  has finite value in the sense of Cauchy principal value, one 
has 

( ) ( )d d 0 as 0.
D D

f x x f x x
δ

δ− → →∫ ∫               (6) 

This means for any 0> , there exists 0δ >  such that: for all 0 δ δ< <   

( ) ( )d d .
D D

f x x f x x
δ

− <∫ ∫                     (7) 

From (5), for any 0> , there exists 0N >  such that: for n N≥  
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Thus, from (7) and (8) 
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for all 0 δ δ< <  , n N≥ .  

3. Methods for Computing Singular Integrals 

In this section, we present a method for evaluating the following singular 
integral which converges in the sense of Cauchy principal value 

( )1

1
d .S f x x

−
= ∫                         (10) 

Without loss of generality, the singularity can be assumed to be at zero. For 
general cases, one can always divide the interval of integration into many small 
intervals and treat them separately. 

From Section 2, we need to find the coefficient ia  such that 

( )1

1
0

d .
n

i i
i

S a U x x
−

=
∑ ∫                      (11) 

Since iU  are Chebyshev polynomials of second kind, they admit some nice 
properties 
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Now consider the following integral 
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Thus, the coefficient ia  can be computed by 
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4. Conclusion 

In this paper, we present a method for approximating singular integrals which 
converge in the sense of Cauchy principal value. The proof of this method is 
outlined and the detailed implementation is also provided. One of the advantag-
es of this method is that it is simple to implement. This method can serve as an 
alternative approach to other special methods in the literature. 
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