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Abstract 
In this work, we conducted a QSAR study on 18 molecules using descriptors 
from the Density Functional Theory (DFT) in order to predict the inhibitory 
activity of hydroxamic acids on histone deacetylase 7. This study is per-
formed using the principal component analysis (PCA) method, the Ascen-
dant Hierarchical Classification (AHC), the linear multiple regression me-
thod (LMR) and the nonlinear multiple regression (NLMR). DFT calculations 
were performed to obtain information on the structure and information on 
the properties on a series of hydroxamic acids compounds studied. Multiva-
riate statistical analysis yielded two quantitative models (model MLR and 
model MNLR) with the quantum descriptors: electronic affinity (AE), vibra-
tion frequency of the OH bond (ν(OH)) and that of the NH bond (ν(NH)). 
The LMR model gives statistically significant results and shows a good pre-
dictability R2 = 0.9659, S = 0.488, F = 85 and p-value < 0.0001. Electronic 
affinity is the priority descriptor in predicting the activity of HDAC7 inhibi-
tors in this study. The results obtained suggest that the descriptors derived 
from the DFT could be useful to predict the activity of histone deacetylase 7 
inhibitors. These models were evaluated according to the criteria of Tropsha 
et al. 
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1. Introduction 

Histone deacetylases (HDAC) have become essential transcriptional corepres-
sors in a variety of physiological systems. To date, 18 human HDACs have been 
identified and grouped into four classes. HDAC Class I (HDAC1, 2, 3 and 8), 
HDAC Class II (HDAC4, 5, 6, 7, 9 and 10), HDAC Class III, also called sirtuins 
(SIRT1, 2, 3, 4, 5, 6 and 7) and HDAC Class IV (HDAC11). Class II HDACs are 
subdivided into classes IIa (HDAC4, 5, 7, 9) and class IIb (HDAC6 and 10) [1]. 
HDACs have also been identified as one of the major players in tumorigenesis 
and the inhibition of HDAC function has been shown to be an effective strategy 
in the treatment of cancer [2]. They are ubiquitously expressed and are widely 
implicated in many chronic diseases such as cancer and inflammation [3]. Class 
II is closely related to HDAC1 class I. HDAC class IIa has large N-terminal ex-
tensions with conserved binding sites for transcription factor 2 (MEF2) and 
chaperone 14-3-3 protein that make the signal sensitive to HDACs [4]. Regu-
lated phosphorylation of HDAC class IIa provides a mechanism for binding 
extracellular signals to transcription and plays a key role in many tissues during 
development and disease. In contrast to other HDACs, class IIa HDACs show 
relatively restricted expression patterns. HDAC5 and HDAC9 are highly 
enriched in muscles, heart and brain [5]. HDAC4 is highly expressed in the 
brain and growth plate of the skeleton [6], and HDAC7 is enriched in endotheli-
al cells and thymocytes [7]. The class IIa HDACs repress transcription has not 
been fully elucidated. Highly purified recombinant class IIa HDACs possess only 
minimal catalytic activity, and the activity of class IIa HDACs purified from 
mammalian cells has been shown to be due to contaminating class I HDACs [8]. 
Studies in the cell culture by silencing or over-expressing HDAC7 have shown 
that HDAC7 is involved in the regulation of cell proliferation, apoptosis, diffe-
rentiation and migration. Some reports have investigated the role of HDAC7 in 
cancers, and a high level of HDAC7 protein has been observed in nine different 
human pancreatic cancer cases [9]. HDAC7 is also overexpressed in breast can-
cer stem cells and is required to maintain cells [10]. HDAC7 belongs to Class IIa 
HDACs and has conflicting functions in different types of cancer [11]. Some re-
ports indicate an ambivalent role of HDAC7 in cancers: for example, HDAC7 
has oncogenic functions in children with acute lymphoblastic leukemia and 
pancreatic cancer [12] but acts as a tumor suppressor in acute lymphoblastic 
leukemia B and Burkitt’s lymphoma [13]. In addition, the high expression of 
HDAC7 was related to a prognosis in lung cancer [14]. As part of the prediction 
of biological activities of HDAC7, certain descriptors from quantum chemistry 
were used during our work. Quantitative Structure Activity Relationship (QSAR) 
is one of the best methods used to design new therapeutic agents [8] [9] [10]. It 
makes it possible to correlate quantitatively through a mathematical model the 
structure or the properties of the compounds with their biological activities. It is 
increasingly used to reduce the excessive number of experiments, sometimes 
long and expensive and the cost of drug production by pharmaceutical compa-
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nies [11] [12]. This QSAR approach has its origins in the studies carried out by 
Hansch [13] and by Free and Wilson [14]. In this work, the goal is to conduct a 
descriptive and predictive study of the anticancer activity of a series of eighteen 
(18) compounds of HDAC7 inhibitors. By implementing quantum chemistry 
methods, this work aims at modeling the anticancer activities observed, the mo-
lecular descriptors being calculated solely from the chemical structure of the 
compounds, and subsequently predicting the inhibitory concentration of ana-
logous molecules. In the specific case of the QSAR study, twelve (12) histone 
deacetylase inhibitors (HDACi) were used for the test set and six (6) others from 
the same series were used for the test. external validation (Table 1). Yao et al. 
[15] in their work on the synthesis of hydroxamic acids have determined the ex-
perimental inhibitory activities of these inhibitors used in our work. of 38 mole-
cules synthesized, only 19 provided satisfactory activity on HDAC7 classified in 
the following table. 

2. Materials and Methods 
2.1. Theoretical Calculations 

In order to establish a descriptive and predictive theory of the anticancer activity 
HDAC7 of hydroxamic acids, the methods of Theoretical Chemistry are used at 
the B3LYP/6-311G (d, p) level. The gradient-corrected functionalities and the 
hybrid functionals such as B3LYP give better energies and agree with high-level 
ab initio methods [16] [17]. In this work, to evaluate the quantitative struc-
ture-activity relationship between the anticancer activity of HDAC7 and the de-
scriptors, the Gaussian 09 [18] quantum chemistry software was used. The base 
6-311G (d, p) being sufficiently extended, considering the polarization functions 
are important for considering the free doublets of the hetero atoms in order to 
obtain satisfactory results. The modeling was done using the multilinear regres-
sion method implemented in Excel spreadsheets [19] and XLSTAT version 2014 
[20]. 

2.2. Chemical Descriptors 

Some physico-chemical descriptors have been used for the development of 
QSAR models. In particular, the electronic affinity (AE) and the vibration de-
scriptors that are the vibration frequency ν (O-H) and the vibration frequency ν 
(N-H). These two vibration descriptors are shown in Figure 1. 

It should be noted that the descriptors related to the molecular frontier orbit-
als have been calculated as part of the Koopmans approximation [21]. The 
LUMO energy characterizes the sensitivity of the molecule to a nucleophilic at-
tack. The electronic affinity AE is the descriptor that translates the ability of a 
molecule to capture an electron. This descriptor is obtained from the relation (1) 
below: 

LUMOAE E= −                           (1) 
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Figure 1. Vibration descriptors of the hydroxamic 
acids used ν(O-H) and ν(N-H). 

 
Table 1. Molecular structures of test sets and validation of hydroxamic acids used for QSAR models. 
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Several studies have shown that geometric descriptors provide better models 

as well as global responsivity descriptors [22] [23] [24]. 

2.3. Statistical Analyzes 
2.3.1. Data Analysis 
The structures of 18 hydroxamic acid compounds were studied by statistical 

https://doi.org/10.4236/cmb.2019.93006


D. Soro et al. 
 

 

DOI: 10.4236/cmb.2019.93006 67 Computational Molecular Bioscience 
 

methods based on Principal Component Analysis (PCA) [25] [26] [27] using the 
software XLSTAT version 2014 [20] to determine the descriptors that are related. 
direct with anticancer activity. PCA is a useful statistical technique for summa-
rizing all the information encoded in the structures of the compounds. It is also 
very useful for understanding the distribution of compounds and for selecting 
descriptors that are directly related to biological activity [28]. It is an essentially 
descriptive statistical method that aims to present, in graphical form, the maxi-
mum information of physicochemical descriptors. The Ascendant Hierarchical 
Classification (AHC) aims to partition a set of molecules into homogeneous 
classes [29]. It organizes molecules, defined by several variables and modalities, 
by grouping them hierarchically on a dendrogram. It aggregates those that are 
most like each other by using dissimilarity or distance measurements between 
molecules to form classes. It is made from the data of molecules and descriptors. 
AHC has established a typology of molecules based on electronic affinity (AE) 
and vibration frequencies ν(O-H) and ν(N-H).  

2.3.2. Multiple Linear and Nonlinear Regressions (MLR and NMR) 
The Multiple Linear Regression (MLR) statistical technique is used to study the 
relationship between a dependent variable (Biological activity) and several inde-
pendent variables (descriptors). This statistical method minimizes the differenc-
es between the actual and predicted values.  

It also allowed to select the descriptors used as input parameters in nonlinear 
multiple regression (NMR). 

Nonlinear multiple regression (NMR) analysis is a technique that improves 
the structure-activity relationship to quantitatively evaluate biological activity. It 
considers several parameters. It is the most common tool for studying multidi-
mensional data. It is based on preprogrammed XLSTAT functions as follows: 

( ) ( )1 2 3 4 12 22 32 42y a bx cx dx ex fx gx hx ix= + + + + + + + +          (2) 

where , , , ,a b c d  : are the parameters and 1 2 3 4, , , ,x x x x  : are the variables. 
The (MLR) and the (NRM) were generated using the XLSTAT software ver-

sion 2014 [20] to predict the anticancer activity IC50 HDAC7. The equations of 
the different models were evaluated by the coefficient of determination (R2), the 
mean squared error (S), the Fischer test (F) and the cross-correlation coefficient 
( 2

CVQ ) [30] [31].  
The potential of the inhibitory concentration is calculated according to the 

following expression: 

( )6
50 50pIC log IC 10−= − ∗                     (3) 

2.4. Estimation of the Predictive Capacity of a Model 

Histone deacetylase 7 has various inhibitory concentrations ranging from 0.311 
to 38.9 μM. This range of concentrations makes it possible to define a quantita-
tive relationship between the cancer activity and the theoretical descriptors of 
these molecules. The quality of a model is determined based on various statistic-
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al analysis criteria including the coefficient of determination R2, the standard 
deviation S, the correlation coefficients of the cross validation 2

CVQ  and Fischer 
F. R2, S and F relate to the adjustment of calculated and experimental values. 
They describe the predictive ability within the limits of the model and make it 
possible to estimate the accuracy of the values calculated on the test set [32] [33]. 
As for the cross-validation coefficient 2

CVQ , it gives information on the predic-
tive power of the model. This predictive power is called “internal” because it is 
calculated from the structures used to build this model. The correlation coeffi-
cient R2 gives an evaluation of the dispersion of the theoretical values around the 
experimental values. The quality of the modeling is better when the points are 
close to the adjustment line [34]. The adjustment of points to this line can be 
evaluated by the coefficient of determination. 

( )
( )

2
, ,2

2
, ,

1 i exp i theo

i exp i exp

y y
R

y y

−
= −

−

∑
∑

                  (4) 

where: 

,i expy : Experimental value of anticancer activity, 

,i theoy : Theoretical value of anticancer activity and, 

,i expy : Mean value of the experimental values of the anticancer activity. 
The more the value of R2 will be close to 1, the more the theoretical and expe-

rimental values are correlated. 
Moreover, the variance 2σ  is determined by the relation 4: 

( )2
, ,2 2

1
i exp i theoy y

s
n k

σ
−

= =
− −

∑
                 (5) 

where k is the number of independent variables (descriptors), n is the number of 
molecules in the test or learning set, and 1n k− −  is the degree of freedom. 

The standard deviation or standard deviation S is another statistical indicator 
used. It allows to evaluate the reliability and the precision of a model: 

( )2
, ,

1
i exp i theoy y

s
n k

−
=

− −
∑

                     (6) 

The Fisher F test is also used to measure the level of statistical significance of 
the model, that is, the quality of the choice of descriptors constituting the model. 

( )
( )

2
, ,

2
, ,

1i theo i exp

i exp i theo

y y n kF
ky y

− − −
= ∗

−

∑
∑

                (7) 

The coefficient of determination of the cross-validation 2
CVQ  makes it possi-

ble to evaluate the accuracy of the prediction on the test set. It is calculated using 
the following relation: 

( ) ( )
( )

2 2
, , , ,2

2
, ,

i theo i exp i theo i exp
cv

i theo i exp

y y y y
Q

y y

− − −
=

−

∑ ∑
∑

           (8) 
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2.5. Criterion for Acceptance of a QSAR Model 

According to Eriksson et al. [35] [36], The performance of a mathematical mod-
el is characterized by a value of 2   0.5cvQ >  for a satisfactory model when for the 
excellent model 2   0.9cvQ > . According to them, given a test game, a model will be 
efficient if the acceptance criterion 2 2 0.3cvR Q− <  is respected. 

According to Tropsha et al. [37] [38] [39], for the external validation set, the 
predictive power of a model can be obtained from five criteria. These criteria are: 

1) 2 0.7TestR > , 2) 2 0.6Cv TestQ > , 3) 2 2
0 0.3TestR R− ≤ , 

4) 
2 2

0

2 0.1Test

Test

R R

R

−
<  and 0.85 1.15k≤ ≤ , 5) 

2 2
0

2 0.1Test

Test

R R

R

′−
<  and  

0.85 1.15k ′≤ ≤   

2.6. Applicability Domain 

The applicability domain principle helps modelers to specify the scope of pro-
posed models, thereby defining the model’s limitations with respect to its struc-
tural domain and chemical space. If an external compound exceeds the defined 
scope of a model, it is outside the applicability domain of that model and cannot 
be associated with reliable prediction. There are several methods for determining 
the applicability domain of a QSAR model, among which we find the lever me-
thod that is used the most. If a compound has a residual and a lever that exceeds 
the threshold h* = 3p/n (where p is the number of descriptors plus 1 and n the 
number of observations), this compound is considered outside the field of ap-
plicability of the elaborate model. The field of applicability will be discussed us-
ing the Williams diagram which represents the standardized prediction residuals 
as a function of the values of the hi levers [40]. For each compound i in the 
original space of the independent variables (Xi), the value of hi is calculated by 
the following relation [41]:  

( ) 1T T
 i i ih X X X X

−
=                       (9) 

where ( )1, ,i n=   
With: Xi is the line vector of the descriptors of the compound i, X (n * k − 1) is 

the matrix of the model deduced from the values of the descriptors of the train-
ing set; the index T designates the transposed matrix of the matrix. The critical 
value of the lever (h*) is set [42] to: 

( )* 3 1k
h

n
+

=  

With n, the number of test compounds used; k is the number of the descrip-
tors of the model. 

If hi < h*, the probability of agreement between the measured and predicted 
values of the compound “i” is as high as that of the compounds in the database. 
Compounds with hi > h* reinforce the model when they belong to the training 
set but will otherwise have dubious predicted values without being necessarily 
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aberrant, the residues being low [43]. 

3. Results and Discussion 

The set of descriptor values of the thirteen (13) hydroxamic acid molecules of 
the test set and the six (6) other molecules of the validation set are presented in 
Table 2. 

3.1. Principal Component Analysis (PCA) and Ascendant  
Hierarchical Classification (AHC) 

All three descriptors for the 19 hydroxamic acid compounds are subjected to the 
PCA analysis. The two main axes are enough to describe the information pro-
vided by the data matrix. The correlations between the three descriptors are 
presented in Table 3 according to a correlation matrix and in Figure 2 where 
these descriptors are represented in a correlation circle. 
 
Table 2. Experimental quantum and potential descriptors of test and validation sets. 

Compounds AE ν(O-H) ν(N-H) pIC50 

Training set 

1 1.305 3562.210 3631.280 5.535 

2 0.511 3560.910 3630.910 6.069 

3 0.768 3561.380 3630.410 6.202 

4 0.630 3560.950 3629.760 6.018 

5 0.502 3561.920 3631.460 6.507 

6 1.123 3562.720 3631.190 6.114 

7 0.470 3561.710 3631.710 6.444 

8 1.022 3562.170 3632.030 5.836 

9 0.585 3562.160 3632.450 6.276 

10 0.848 3559.450 3619.450 6.312 

11 1.138 3560.340 3630.790 5.348 

12 1.122 3560.730 3632.510 5.098 

13 1.157 3560.480 3632.420 5.115 

Validation set 

14 0.586 3561.610 3630.480 6.450 

15 1.082 3557.640 3631.620 4.410 

16 1.074 3560.81 3632.76 5.100 

17 1.409 3561.980 3631.790 5.252 

18 1.397 3560.790 3631.690 4.897 

19 1.424 3561.520 3631.710 5.357 

AE in electron Volt (eV), ν(O-H) in Cm−1 and ν(N-H) in Cm−1, IC50 (μM). 

https://doi.org/10.4236/cmb.2019.93006


D. Soro et al. 
 

 

DOI: 10.4236/cmb.2019.93006 71 Computational Molecular Bioscience 
 

Table 3. Correlation matrix (Pearson (n)) between the different descriptors. 

Variables AE ν(O-H) ν(N-H) pIC50 

AE 1 
   

ν(O-H) 0.0917 1 
  

ν(N-H) −0.1845 −0.6225 1 
 

pIC50 −0.9264 −0.1242 −0.0209 1 

Bold values are different from 0 to a significant level for p < 0.05. Very significant for p < 0.01. Very signifi-
cant for p < 0.001. 

 

 

Figure 2. Correlation Circle descriptors and the explained variable. 
 

The two main axes are enough to characterize the different descriptors. In fact, 
the variance percentages are 50.51% and 33.49% for the F1 and F2 axes, respec-
tively. The total information is estimated at 85%. Principal Component Analysis 
(PCA) [29] was conducted to identify the link between the different descriptors. 
Bold values are different from 0 at a significance level of p = 0.05. 

The matrix obtained provides information on the negative or positive correla-
tion between the variables. The Pearson correlation coefficients are summarized 
in Table 3. The resulting matrix provides information on the negative or posi-
tive correlation between the variables. 

The correlation circle was made to detect the connection between the different 
descriptors. The analysis of the principal components from the correlation circle 
(Figure 2) revealed that the F1 axis (50.51% of the variance) seems to represent 
the vibration frequencies ν (OH) and ν (NH), and the axis F2 (33.49% of the va-
riance) seems to represent the electronic affinity AE. 

The AHC of Figure 3 distributes the iHDAC7 in two classes according to the 
affinity of one compound to another. The two major classes consist of com-
pounds as follows: C1 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 17) and C2 (11, 12, 13, 15, 16, 
18, 19). 
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Figure 3. Dendrogram of the partition hierarchy of the 19 hydroxamic acids 
for 3 homogeneous classes. 

3.2. Prediction of HDAC7 Anti-Cancer Activity from MLR and NMR  
Models 

The equations of the QSAR models obtained for cancer activity from MLR and 
NMR as well as the statistical indicators are given in Table 4. It should be em-
phasized that these models were established using the same test and validation 
Table 3. 

The equations of the different models are obtained by using three descriptors 
(AE, ν(O-H) and ν(N-H)) determined from the optimized molecules. It is im-
portant to note that the negative or positive sign of a model descriptor coeffi-
cient reflects the proportionality effect between the evolution of the biological 
activity and this parameter of the MLR model equation. Thus, the negative sign 
indicates that when the value of the descriptor is high, the biological activity de-
creases while the positive sign reflects the opposite effect. For the MLR model, 
the negative signs of the coefficients of the three descriptors (AE, ν(O-H) and 
ν(N-H)) indicate that the HDAC7 activity will be improved for low values of 
these descriptors. The study of the significance of these different models is led by 
the evaluation of the statistical indicators and by the acceptance criteria of 
Erickson et al. and Tropsha et al. The values of the statistical indicators deter-
mined for each model are reported in Table 5. The values of the statistical indi-
cators listed in this table reflect a good correlation of the inhibitory activity on 
HDAC7 with the different descriptors. 

In these respective models (MLR and NMR), 96.56% and 97.62% of the de-
scriptors (AE, ν(O-H) and ν(N-H)) are considered with the standard deviation S 
of prediction from 0.488 to 0.663. The significance of these models is given by 
the Fischer F test, 85.00 to 172.79 respectively for the MLR and NMR. The cor-
relation coefficient of the cross-validation 2

CVQ  is 0.918 to 0.938 respectively for 
the RMNL and RML models. These values reflect excellent models according to 
Erikson et al. [35] [36]. These models are also acceptable because they agree with 
the acceptance criteria of these authors: 2 2 0.3CVR Q <−  
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Table 4. Most Significant QSAR Models for Modeling HDAC7 Activity from MLR and 
NMR. 

 
Regression equations 

MRL ( ) ( )pred
50 902.89167 1.16813 AE 0.35349 O-H 0.09615 N-p HIC ν ν= − − ∗ + ∗ − ∗  

NMR 
( ) ( )

( ) ( )

pred
50

2 22

186539 1.27488 AE 121.60150 O-H 16.283pIC

0.03043 AE 0.01712

51 N-H

O-H N0.00226 -H

ν ν

ν ν

= − ∗ − ∗

−∗ ∗ ∗+

+ ∗

+
 

 
Table 5. Statistical indicators of multilinear regression. 

Statistical indicators of multilinear regression MLR NMR 

Number of compounds (n) 19 19 

Coefficient of determination R2 0.9659 0.9762 

Standard deviation S 0.488 0.663 

Fisher’s test F 85.00 172.79 

Coefficient of correlation of cross validation 2
CVQ  0.95 0.9759 

2 2
CVR Q−  0.0159 0.000 

Activity field exp
50IC  (µM) 0.311 à 38.9 

Trust level α 95 % 

 
The regression line between the experimental and theoretical nematocidal po-

tentials of the test set and the validation set is illustrated in Figure 4. This figure 
illustrates the correlation between the experimental and theoretical IC50 inhibi-
tion concentrations of the test set (blue dots) and the validation game (red dots). 
These models obtained relate the HDAC7 activity and the theoretical descriptors 
of hydroxamic acids. 

The low values of the standard error of 0.448 to 0.663 respectively of the NMR 
and RML models attest to the good similarity between the predicted and expe-
rimental values of the HDAC7 activity despite some differences recorded 
(Figure 5). 

Verification of Tropsha Criteria 
The statistical indicators of the five (5) Tropsha criteria of these two models 

(MLR and NMR) of the validation set are given in Table 6. 
2 0.7TestR > , 2 0.6Cv TestQ > , 2 2

0 0.3TestR R− ≤  
2 2
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2 0.1Test
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R R
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−
<  and 0.85 1.15k≤ ≤ ; 

2 2
0

2 0.1Test
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R R
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′−
<  and  

0.85 1.15k ′≤ ≤  
All values meet the Tropsha criteria, so these models are acceptable for pre-

dicting HDAC7 anticancer activity. 
However, these two models being a function of three theoretical descriptors, it 

is essential to determine the contribution of each in the prediction of the anti-
cancer activity HDAC7 of the hydroxamic acids studied. Indeed, the knowledge 
of this contribution makes it possible to establish the order of priority of the 

https://doi.org/10.4236/cmb.2019.93006


D. Soro et al. 
 

 

DOI: 10.4236/cmb.2019.93006 74 Computational Molecular Bioscience 
 

various descriptors and to define the choice of the parameters to be optimized 
for the realization of a better activity HDAC7. 

 
Table 6. Tropsha criteria for different models. 

HDAC7 2
TestR  2

CV TestQ  2 2
0TestR R−  

2 2
0

2

Test

Test

R R
R
−

 
2 2

0

2

Test

Test

R R
R

′−
 

k 
 

k’ 
 

MLR 0.9809 0.9504 0.0301 0.000 0.000 1.001 0.998 

NMR 0.9807 0.9511 0.000 0.000 0.001 0.9974 1.002 

 

 
 

 

Figure 4. Regression lines of the different models (MLR and NMR). 
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Figure 5. Similarity curve of the experimental and 
predicted values of the RML and NMR models. 

3.3. Analysis of the Contribution of Descriptors 

The contribution of the four descriptors of this model in the prediction of the 
anticancer activity HDAC7 of the hydroxamic acids was determined from the 
software XLSTAT version 2014 [20]. The different contributions are illustrated 
in Figure 6. 

In this study, the electronic affinity (AE) has a nearly identical weight as the 
vibration frequencies ν(O-H) and ν(N-H). The absence of one of these descrip-
tors in the model could destabilize this one. It should be noted that these quan-
tum descriptors in a global way make a rather important contribution in the 
prediction of the anticancer activity of HDAC7. 

3.4. Applicability Domain Analysis 

The values of leverage and standardized residuals of the observables of the model 
used to develop the applicability domain of this model are shown in Table 7. 

Analysis of the data in Table 7 shows that all other observations have their 
standardized residuals between −1.5 and 1.5. The lifts obtained are all below the 
critical value * 0.923h = . This fact is elucidated by the Williams diagram 
(Figure 7). The results of the external validation and the domain of applicability 
show that the established model can be used reliably for the prediction of the in-
hibitory concentration of future hydroxamic acids. 

4. Conclusion 

In this work, the anticancer activity HDAC7 of nineteen (19) hydroxamic acid 
compounds was correlated with the theoretical descriptors calculated by the 
DFT methods. The descriptors electronic affinity (AE), vibration frequencies 
ν(N-H) and ν(O-H) can explain and predict the anticancer activity HDAC7. Sta-
tistical methods such as Principal Component Analysis (PCA), Ascending Hie-
rarchical Classification (AHC), Multilinear and Nonlinear Regression were used.  
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Figure 6. Contribution of descriptors in models. 
 

 

Figure 7. Williams diagram of the MLR model. 
 
Table 7. Values of the levers and residuals of observations of the model. 

Compounds pIC50-exp Pred (pic50) Residu Residu std. hii 

1 5.535 5.633 −0.098 −0.942 0.38 

2 6.069 6.136 −0.068 −0.653 0.24 

3 6.202 6.050 0.152 1.460 0.09 

4 6.018 6.123 −0.105 −1.008 0.14 

5 6.507 6.451 0.056 0.540 0.23 

6 6.114 6.034 0.079 0.760 0.42 

7 6.444 6.390 0.053 0.514 0.24 

8 5.836 5.877 −0.042 −0.399 0.18 

9 6.276 6.343 −0.068 −0.651 0.21 

10 6.312 6.329 −0.017 −0.159 0.92 

11 5.348 5.214 0.134 1.285 0.29 

12 5.098 5.205 −0.107 −1.032 0.28 
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Two QSAR models (MLR, NMR) showed that the descriptors used would pre-
dict, at an acceptable level of confidence, the inhibitory activity of hydroxamic 
acids. The use of two different methods in this work was to show on the one 
hand that from these descriptors, we can predict in a different way the inhibitory 
activity of hydroxamic acids on HDAC7 and on the other hand, the relevance 
has these descriptors. However, the MLR model (R2 = 0.9659, S = 0.488, F = 85 
and p-value < 0.0001) is an effective tool for predicting HDAC7 anticancer ac-
tivity. Moreover, the study of the contribution of the descriptors showed that 
these descriptors are almost equivalent in the prediction of the inhibitory activity 
of the HDACi7 studied. For this model, the future compounds must have their 
standardized residue between −1.5 and +1.5 with a threshold lever h* = 0.923. A 
study of the applicability domain of these models is envisaged. From the field of 
applicability and quantum descriptors elaborated in this work, we plan to pro-
pose new molecules with improved activities. 
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