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Abstract 
The purpose of this paper is the physical deduction of the loading curves for 
spherical and flat punch indentations, in particular as the parabola assump-
tion for not self-similar spherical impressions appears impossible. These de-
ductions avoid the still common first energy law violations of ISO 14577 by 
consideration of the work done by elastic and plastic pressure work. The hi-
therto generally accepted “parabolas” exponents on the depth h (“2 for cone, 
3/2 for spheres, and 1 for flat punches”) are still the unchanged basis of ISO 
14577 standards that also enforce the up to 3 + 8 free iteration parameters for 
ISO hardness and ISO elastic indentation modulus. Almost all of these com-
mon practices are now challenged by physical mathematical proof of expo-
nent 3/2 for cones by removing the misconceptions with indentation against a 
projected surface (contact) area with violation of the first energy law, because 
the elastic and inelastic pressure work cannot be obtained from nothing. 
Physically correct is the impression of a volume that is coupled with pressure 
formation that creates elastic deformation and numerous types of plastic de-
formations. It follows the exponent 3/2 only for the cones/pyramids/wedges 
loading parabola. It appears impossible that the geometrically not self-similar 
sphere loading curve is an h3/2 parabola. Hertz did only deduce the touching 
of the sphere and Sneddon did not get a parabola for the sphere. The radius 
over depth ratio is not constant with the sphere. The apparently good correla-
tion of such 

sphere

2 3h  parabola plots at large R/h ratios and low h-values does 
not withstand against the deduced physical equation for the spherical inden-
tation loading curve. Such plots are unphysical for the sphere and so tried re-
gression results indicate data-treatments. The closed physical deduction re-
sult consists of the exponential factor h3/2 and a dimensionless correction fac-
tor that is depth dependent. The non-parabola against force plot using pub-
lished data is concavely bent even for large radius/depth-ratios at the shallow 
indents. The capabilities of conical/pyramidal/wedged indentations are thus 
lost. These facts are outlined for experimental nano- and micro-indentations. 
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Spherical indentations reveal that linear data regression is suspicious and 
worthless if it does not correspond with physical reality. This stresses the ne-
cessity of the straightforward deductions of the correct relations on the basis 
of iteration-less and fitting-less undeniable calculation rules on an undeniable 
basic physical understanding. The straightforward physical deduction of the 
flat punch indentation is therefore also presented, together with formulas for 
the physical indentation hardness, indentation work, and applied work for 
these geometrically self-similar indentations. It is exemplified with a ma-
croindentation. 
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Data Treatment Detection 

 

1. Introduction 

The most severe misconception in the powerful (nano) indentation field is the 
two-dimensional treatment of the three-dimensional impression into solids. 
Such behavior became highly applauded world-wide since 1992. It seemed to be 
an iron rule for indentations that the force-depth curves for conical, spherical, 
flat punch indenters are parabolas with the exponent 2, 3/2, and 1 (finally 
straight), respectively, and it is still the basis of ISO 14577 [1] [2] [3]. This theory 
is worldwide accepted and applauded in academia [1], textbooks [2] and indus-
try [3]. They still use a “parabola with exponent 3/2 for spheres”, well knowing 
that the spherical indentation is not “geometrically self-similar” (ratio of im-
pression radius or diagonal over depth is not constant). Furthermore it is used 
for defining the size of their always used correction factor “ε” [4], for their itera-
tion of the projected contact area according to the work by [1], and by ISO 
14577 for “refining” their ISO-hardness (H [N/m2 or GPa]) and ISO-elastic 
modulus E calculations. These include false exponent and energy-law violation 
and undue “Young’s modulus” claim by ([1], etc.) and ISO 14577, as first pub-
lished in [5] [6]. Spherical indentions cannot physically be described by a FN - 
h3/2 parabola (FN = normal force, formerly often called “P”), even though expe-
rimental plots of h3/2 versus FN appear to be linear for high R/h values (sphere 
radius over depth) and low depth ranges. 

However, a physical background was missing. H. Hertz deduced an equation 
with exponent 3/2 for the mathematical touching of a sphere and a flat surface or 
a second sphere, and for horizontally sliding of solid bodies without pressure [7]. 
Hertz himself literally stressed the validity of his deduction in [7] only for the 
mathematical touching (not indenting) at one single point in [8], and Sneddon’s 
solution for spheres is not a parabola [9]. Nevertheless, the unproved parabola 
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has also been used for the determination of the tip rounding of pyramidal in-
denters. Uncountable AFM (atomic force microscopy) publications reported on 
the “spherical Hertzian exponent 3/2” without citing Hertz work and without 
giving their equation for the impression contact under force. No force-depth re-
lation with exponent 3/2 can be found in [8] and Hertz’s hardness definition 
does not help either. This can not at all be taken as a description of indentations 
under load. In addition, the authors of [1] and ISO 14577 took over the 
force-less contact for spherical indentations under force for indentations. Also 
the textbook [2] explained the inconstant a/R ratio (R = indenter radius, a = ra-
dius of the impression, Figure 1) for not self-similarly penetrating spheres in its 
Figure 1.4 for angles between 0 and at least ±33˚ from the normal line. The au-
thor did not consider that such angle would not be proportional to the depth of 
spherical indentations. Users were nevertheless taught that they can go deeply 
onto the surface with such a parabola. Interestingly, while the exponent 2 for 
conical indents of Sneddon [9] (his pre-exponential constant differed from the 
one of Love [10]) and exponent 1 for flat indents were welcomed in [1] and by 
ISO 14577, but Sneddon’s non-parabola solution for spheres with after all three 
members and three different exponents on h (2, 1, and 0) after rewriting of his 
formula was disregarded (inappropriate [7] was preferred). One just took what is 
liked and disregarded what is disliked for the sphere in [9]. However, we do not 
agree with the solution of Sneddon for spheres as the false premises of [9] were 
the same as those that ended with the false exponent 2 for cones.  

Also its solution for flat punches is only valid with respect to the correct ex-
ponent.  

The universal correct exponent for cones is in fact 3/2 as undeniably proved in 
[11] on the basis of sacrosanct calculation rules. This is also not in accord with 
the still common “iron rule” of ISO etc. Unfortunately, the “iron rule” was not 
abandoned since 1965 and more so when “h2” for cones” was experimentally re-
placed by h3/2 in 2004 [12], even though the elegant and simple physical deduc-
tion (finally published in 2016 [11]) was ripe for deduction. But the false expo-
nent “2” for cones/pyramids/wedges is still defended by biased anonymous re-
viewers who fight against the FN = kh3/2 plot for conical/pyramidal/wedged in-
dentations and unduly call it “Kaupp-fitting” (it must therefore now be called 
Kaupp-plot). Furthermore, they use and cite easily traced juggler tricks from 
published papers revealing unbelievable lack of mathematical knowledge of very 
basic calculation rules. These include unequal dimension on both sides of equa-
tions, or not realizing that the proportionality factor of loading parabolas has a 
dimension that depends on the exponent of h as does its value, or by defining 
indentation hardness as force over surface area, and then claiming a “theoretical 
confirmation of h2” for the cone and pyramid, as deduced from such definition. 
Unfortunately, this includes ISO 14577 officials, authors, editors, and biased 
anonymous peer reviewers. Nevertheless, ISO 14577 and numerous recent pub-
lications still claim the so-called Hertzian exponent on a “parabola with expo-
nent 3/2” on hsphere. Others simply claim to use an unspecified “Hertzian theory”  

https://doi.org/10.4236/ampc.2019.98012


G. Kaupp 
 

 

DOI: 10.4236/ampc.2019.98012 144 Advances in Materials Physics and Chemistry 
 

 
Figure 1. Schematic representation of a sphere partly immersed 
beneath an initial plane surface with an angle α that is differently 
defined as the one mentioned in Section 1 of [2].  

 
but without citing the original (e.g. [7] and [8]) and not telling what they mean 
with that, when spheres are penetrating into flat surfaces.  

Before having the here disclosed solution the present author expressed how-
ever on his worldwide lectures the opinion that the spherical loading curves 
might at best only approximate the exponent 3/2 on h for experimental spherical 
indentations, for large R/h ratios and shallow indents [1] [2], ISO 14577. This 
speculation deserves the straightforward physical deduction, because h3/2 cannot 
at the same time be valid for geometrically self-similar cones/ pyramids/wedges 
and the not self-similar sphere [11]. But even the present author obtained good 
correlations with FN = kh3/2 plots in the analyzed spherical indentations from the 
literature. He added the word “apparently” to this exponent of a parabola [13] 
and that these slopes cannot be compared with the ones from pyramids [13]. But 
the reported k1-value from the nickel-superalloy (published R = 269 nm) [14] 
and the k-value from PDMS ((polydimethylsiloxane) (R = 192 µm) ([15], in [13] 
are no longer penetration resistances, because the now deduced Equation (7) ex-
cludes a parabola for spherical indentation. FN = kh3/2 plots for spherical inden-
tations are physically in error, irrespective of the linear correlations with their 
large radius/dept ratios and narrow depth ranges. This will be shown in this pa-
per. We deduce in this work the physical load-depth behavior for spheres on the 
same basis as the deduction in [11] by Kaupp with respect to the impressed vo-
lume but not with respect to a projected contact area, and check both of these 
correct and incorrect approaches. By doing so, we will also complete the story 
with the physical proof of the (correct) exponent 1 for flat punch indentations. A 
consistent theoretical understanding is achieved. Both spherical indentations 
were reanalyzed in Section 3.2.2. and 3.2.3. 

Fortunately, the unprecedented new results did not affect our elegant and 
correct calculation of the PDMS adhesion energy with 0.5 FNh in [5], which cor-
rected the complicated JKR (Johnson, Kendall, Roberts) [16] iterative process in 
[15] by a factor of 2.66 [5].  

2. Materials and Methods 

The indentation onto a hard metallic nickel superalloy with a blunt Berkovich 
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indenter with claimed end radius of 269 nm was selected, because its calculated 
cone depth ( ( )cone 1 sinh R β= −  [13]) of 15.75 nm was very close at 15.9 nm. 
The final depth of only 50.3 nm allowed for the safe collection of 13 data pairs 
after a minor surface effect. Conversely, the data of a soft PDMS sample (poly-
dimethylsiloxane) in combination with a huge spherical indenter radius and 
providing both 54 “experimental” and 54 fitted data pairs at considerable 
depths were calculated and printed with Excel®. The data collections were from 
the digitized published loading curves with the Plot Digitizer 2.5.1 program; 
http://www.softpedia.com/. The calculations of Equation (7) used a pocket cal-
culator with 10 figures to avoid rounding errors and the results reasonably 
rounded in the Tables and text. 

3. Results and Discussion 
3.1. The Force-Depth Parabola of Conical/Pyramidal/Wedged  

Indentations 

We repeat here the physical deduction of the exponent for the loading parabola 
of self-similar conical, pyramidal and wedged indenters to remind the elegant 
straightforward technique. Indentations create two connected processes: the vo-
lume formation and the total pressure [11]. This has hitherto been disregarded 
or ignored, even though the retained part of the pressure (not transformed for 
plasticizing) has been amply used from the beginning for the elastic modulus 
iteration from the unloading curve by [1], ISO 14577. It remained unconsidered 
that even elastic pressure creates work that is generated by the force. We have 
therefore to start with a normal force (FN) parabola FN = khx with two compo-
nents, one for volume (V) and the other for pressure (p): N N- N-

m n
V pF F F= ⋅  (1). 

When doing so we have to consider that the total pressure (ptotal) (remaining 
pressure plus loss of pressure in case of all of the different modes of plastic con-
versions) must be used. The exponents m and n must sum up to 1 for obtaining 
FN. As ptotal is undoubtedly proportional to the indented volume of the indenter 
under the originally flat surface we have for the cone with its mathematical vo-
lume at the depth h the equation ( )2 3

total tan 3p KV K hα= = π . The conversion 
of hr2 into (tanα)2h3 is self-evident. Similarly, we have h3 also for the volumes of 
pyramids and wedges. As ptotal is proportional to h3 also 3

N-pF h∝ , and h relates 
to 1 3

N-pF , which is lost for the indentation depth, but it tells us that 2 3
N- N-
m

V VF F= . 
So we have physically on the basis of arithmetic calculation rules 2 3

N- constVF h=  
or 3 2

N-VF kh=  (Equation (1)) [11] where k denotes the chemo-physical prop-
erties of the material in question. This describes in detail the deduction of the 
universal exponent 3/2 for conical/pyramidal/wedged indentations with hard 
indenters (diamond), independent of the materials, as could be finally published 
in 2016 (2). 

N N- N-
m n

V pF F F= ⋅                        (1) 

3 2
N-VF kh=                         (2) 
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3.2. The Force-Depth Curve of Spherical Indentations 
3.2.1. Theoretical Considerations, Deduction of Equation (7) 
The spherical indentation is generally assumed (ISO14577, [1] [2] [3] [4]) to 
occur as parabola with exponent 3/2. The non-indentation but only touching 
deduction of Hertz [7] [8] was taken as theoretical background, but there is 
concern, whether cones/pyramids/wedges could have the same exponent for 
loading parabolas. Experimentally it appeared that such behavior would be also 
valid for spherical indentations, but only for large R/h values and the low pene-
trations that are achieved. Also the present author Kaupp obtained good correla-
tions with FN = kh3/2 plots from the published “spherical” indentations that he 
analyzed, but the word “apparently” was added to this spherical exponent [13] and 
an initial approximation was claimed. As already mentioned, Sneddon [9] did not 
get a parabola at all, but this deduction was disregarded in [1] [2] [3] [4]. The solu-
tion of Sneddon is as follows when his equation “6.13” is substituted in “6.15” on 
page 54 of [9]. By now using the common letters for the corresponding subjects 
one obtains ( ) ( )2 2

N 1 2F E a R h a aRν  = − + −      with strongly varying h/a- 
ratio = cotgβ (for β cf. Figure 1) as a three-membered “solution”. From there with 

cota h β=  one obtains ( ) 2 2
N 1 2 cot cot 2 cotF E h hR Rν β β β− = − + . This 

is not a parabola but cotβ is variable (E = “Young’s” modulus, ν  = Poisson’s 
ratio). Experimental results are not in agreement with the solution of Sneddon, 
as it depends on his undue premises (area instead of volume) that also led to the 
disproved exponent 2 for cone/ pyramid/wedge. The physical solution is now 
deduced.  

When starting with using volume instead of area as shown in Section 3.1, we 
reformulate the mathematical volume of the immersed calotte (3A) by multiplica-
tion with 1 = h/h and obtain the form of (3B), which separates h3 and a dimen-
sionless though h-dependent correction factor. Further forms are (3C) with two 
different exponents on h and finally for the angle α dependence (3D). According 
to Figure 1 ( ) sinR h R α− = , so that ( )1 sinh R α= −  or ( )1 1 sinR h α= − . 
This can be substituted in (3B) to obtain (3D), so that one can also check the an-
gle ranges of the depressions. All 4 forms A-D of (3) are equal. 

( )2 3V h R h= π −                      (3A) 

( )3 1 3V h R h= π −                     (3B) 

2 3 3V h R h= π − π                      (3C) 

( )3 1 1 sin 1 3V h α= π − −                    (3D) 

We first show how much the dimensionless volume factor of (3D) changes for 
various angles α between 30˚ (very deep impression) and 89.5˚ (very flat impres-
sion) in Table 1. They indicate the strong non-linear variation of the volume 
factor with the indention depth.  

Table 1 clearly shows the enormous variation of the dimensionless factor for 
Equations (3B), which excludes a physical parabola exponent for spherical 

https://doi.org/10.4236/ampc.2019.98012


G. Kaupp 
 

 

DOI: 10.4236/ampc.2019.98012 147 Advances in Materials Physics and Chemistry 
 

Table 1. Formal analysis of the volume factor ( ) ( )1 1 sin 1 3 1 3R hαπ − −  = π −   at 

varying angle α. 

α   sinα  1 sinα−  ( )1 1 sin 1 3απ − −    

30 0.5000 0.5000 0.5236 

40 0.642787609 0.35721239 7.7475 

50 0.766044443 0.23395556 13.4282 

60 0.866025403 0.13397460 23.4492 

70 0.93969262 0.06030738 52.0930 

80 0.984807753 0.01519225 207.7429 

89.5 0.999961923 0.00003808 82,499.8071 

 
indentation load-depth curves. It is only valid for every single point of such 
curve with its own R/h ratio in accord with the physical deduction in Section 3.1, 
because the point by point changing pre-exponential dimensionless factor mul-
tiplies with the penetration resistance ksphere [N/m3/2] (cf. (2)). The claimed para-
bolas seem to be excluded under these conditions. There is the proviso that so 
named “experimental data” could have been somehow iterated and fitted. We do 
not invoke the sphere quality here. It is clearly seen at (3), that the calotte vo-
lume is not only described by h3 as we had it with the cone (pyramid, wedge) 
where we deduced the exponent 3/2 on h in Section 3.1. There is now a dimen-
sionless factor that changes with the R/h ratio (3B).  

The physical deduction of the spherical loading curve using (3B) starts with 
the evidently coupled processes of volume formation and pressure formation. As 
in Section 3.1 it means N N- N-

m n
V pF F F= ⋅  (1). Both factors relate to the immersed 

volume and n + m must give 1 (1). The total pressure (ptotal is the sum of p that 
remains + p for all plastic deformations) has to be considered, as it leads to re-
versible and to plastic deformations. It is without any doubt that ptotal is propor-
tional to the impressed volume V. Thus ( )3

total 1 3p h R h∝ π −  and thus also 
FN-p are proportional to ( )3 1 3h R hπ −  (4). So we obtain the exponent n = 1/3 
when h is expressed in (5) and m = 2/3 because both exponents must add to 1. 
As the pressure part of the force is lost for the impression, it follows that 2 3

N-VF  
is proportional to ( )2 32 3 1 3h R hπ −  (6), and thus for the impression 

( )3 2
N- 1 3VF kh R h= π −  (7) where k takes care of the relevant chemo-physical 

properties of the material in question. FN-V controls the depth and can now be 
abbreviated as FN in relation to the depth) (7) of the not self-similar spherical in-
denter. The calculation of α indicates the angle range of the experimental loading 
curves. Equation (7) shows that the penetration resistance ( )1 3k R hπ −  [N/m3/2] 
of spherical indentations is not constant and it cannot be easily compared with 
the k-values of pyramidal indentations. The latter are normalized for their cone 
angles [13]. The physical deduction uses the undeniable fact that the indenter 
volume is immersed into the material and that the force is in part used for pres-
sure stress that produces elastic and plastic work. This pressure stress is not part 
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of the depth formation that determines the immersed indenter volume. Earlier 
deductions [9] did not care for the pressure part and they thus violated the first 
energy law [1] [2] [3] and ISO 14577. Such unphysical “deductions” were ma-
thematically very complicated [9] [15] [16] and yielded false results. The physi-
cal deduction in this work does not need more than basic calculation rules in (1) 
and (3) through (7) for the spherical indentation with its inconstant penetration 
resistance ( ( )1 3k R hπ −  [N/m3/2]) with its materials factor k and the geome-
trical factor ( )1 3R hπ −  that also depends on the depth. Equation (1) is also 
the start point for the spherical indentation. 

N N- N-
m n

V pF F F= ⋅                        (1) 

ptotal and thus also ( )3
N- 1 3pF h R h∝ π −                     (4) 

( )1 31 3 1 3
N- 1 3pF h R h∝ π −                    (5) 

With n = 1/3 and m = 2/3 it follows that FN
2/3 is proportional to the depth h, 

and with the h-dependent dimensionless geometrical factor π(R/h − 1/3) one 
obtains: 

( )2 32 3 2 3
N- 1 3VF h R h∝ π −                   (6) 

After rewriting and inclusion of the materials factor k one obtains: 

( )3 2
N 1 3F kh R h= π −                    (7) 

The closed Equation (7) is the physical description of the loading curve for 
spherical indentations. However, there are further experimental reports telling 
that the exponent 3/2 describes spherical indentation parabolas sometimes 
without reliable knowledge of the conospherical radius. And there are rather 
useless “spherical indentations” when so called “effective radii” are continuously 
changed along the loading curve with power-law fitting [17]. We therefore ana-
lyze only “experimental” measurements without such and other fittings or itera-
tions. These appear to be the loading curves of a Ni-based superalloy with no-
minal largely rounded Berkovich up to the cone-point of 15.9 nm and a PDMS 
nominal experimental spherical indentation. Both exhibit large R/h ratios that 
decrease rapidly with the depth h. By doing so we compared the now disproved 
parabola approach using the Kaupp plot of Equation (2) [5] [11] [13] and the 
physical loading curve Equation (7) for comparison purposes. The results are 
collected in Table 2 and Table 3, respectively, in Sections 3.2.2 and 3.2.3.  

We have to stress here, that the adhesion energy by jump below the surface of 
PDMS or similarly in force experiments with AFM, as 0.5 FNh for the negative 
FN-region stays valid independent of the loading curves’ shape [5] and that it 
continues to correct the erroneous JKR iterations, as e.g. in [15] (Section 3.2.3). 

3.2.2. The Presumed “Spherical” Nickel-Superalloy Indentation 
Spherical indentations can be obtained with blunted conical/pyramidal indenta-
tions below the cone point depth, when the depth in the following “cone region” 
is only short. A typical example is the nickel-superalloy loading curve from [14]. 
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Table 2. Analysis of a Ni-based superalloy indentation of a blunt Berkovich up to the 
cone point depth as it would be with R = 269 nm) according to (7). 

h (nm) h3/2 R/h ( )1 3R hπ −  ( )3 2 1 3h R hπ −  FN (µN) α (˚) 

0.17728 0.07464 1517.37 4765.91126 355.7276 5.5039 87.9198 

0.94430 0.91763 284.867 893.888878 820.2593 15.1171 85.1978 

2.74338 4.43902 98.0542 306.999157 1362.7753 32.2638 81.8102 

3.83473 7.50935 70.1484 219.330501 1647.0295 43.9297 80.3140 

4.95573 11.0322 54.2806 169.480337 1869.7410 57.6617 78.9850 

5.87044 14.2235 45.8228 142.909374 2032.6715 71.4031 78.0081 

6.81462 17.7894 39.4740 122.296389 2175.5794 85.1433 77.0758 

7.84709 21.9818 34.2802 106.647301 2344.2996 100.51 76.1268 

8.88041 26.4636 30.2914 94.1160423 2489.0205 116.75 75.2368 

9.82479 30.7953 27.3797 84.9686669 2616.6356 135.004 74.4671 

10.9166 36.0687 24.6414 76.3661338 2754.4427 153.183 73.6211 

11.7138 40.0910 22.9644 71.0975929 2850.3736 165.001 73.0293 

12.5993 44.7218 21.3504 66.0270623 2952.8491 178.254 72.3947 

 
Table 3. Analysis of a spherical indentation onto PDMS with a Borosilicate glass ball (R = 
192 µm) of [15], according to Equation (7).  

h (µm) h3/2 R/h ( )1 3R hπ −  ( )3 2 1 3h R hπ −  FN (mN) α (˚) 

0.0     −0.02759 90 

0.4 0.2529822 480 1506.91729 381.2232 −0.00919 86.3009 

0.8 0.7155418 240 752.93505 538.7565 0.019923 84.7678 

1.2 1.3145341 160 501.60764 659.3803 0.055012 83.5908 

1.6 2.0238577 120 375.9448 760.8588 0.094993 82.5980 

2.0 2.8284271 96 300.54640 850.0736 0.141720 81.7229 

2.4 3.7180640 80 250.28022 930.5579 0.248921 80.9313 

2.8 4.6852962 68.57 214.37182 1004.3955 0.239081 80.2030 

3.2 5.7243340 60 187.44837 1073.0171 0.298851 79.5247 

3.6 6.8305198 53.33 166.49395 1137.2402 0.350958 78.8873 

 
The determined FN and h3/2 data below the cone point are listed in Table 2. The 
published end radius of the Berkovich indenter was 269 nm. After removal of 
the initial effects the R/h ratios are from 284.867 to 21.350. The value of 

( )cone 1 sinh R β= −  [13] is 15.75 nm, where β is the effective cone angle of the 
Berkovich. The observed hcone is at 15.9 nm, which corresponds closely to the cal-
culated value in apparent accord with a spherical indentation part. The Kaupp-plot 
for the postulated parabola (not shown) gives a straight line with a slope of 3.873 
µN/nm3/2 (r2 = 0.9997). This can however not be a confirmation of the h3/2 parabola 
for spheres, because the physical correction factor of ( )1 3R hπ −  in (7) has not 
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been applied. The physically correct FN versus ( )3 2 1 3h R hπ −  plot (7) (Table 
2) with the same data points gives the concavely bent loading curve of Figure 2. 
The comparison of these different outcomes is difficult, but we try with a provi-
sional trendline for the Figure 2 curve, the slope of which calculates to 0.0688 
µN/nm3/2. This gives at least a rough hint for the enormous error (despite the 
high correlation) when the unphysical parabola assumption ([1] and ISO14577) 
for spherical indentations is applied. However, the change of R/h (Table 2) or 
sinα (Table 1) is undeniable and the hard to explain apparent “parabolas” bear 
the risk that their slopes be interpreted as being real for further applications. The 
first goals of indentations are hardness and elastic modulus and when these are 
unphysical, their errors are perpetuated in the there from defined further cha-
racterizations of the materials. For example 12 different applications of the in-
dentation modulus from viscoelasticity to fracture toughness are listed in [18].  

The apparent slopes of unreal spherical indentation parabola plots cannot be 
interpreted as physical indentation hardness and used for face transition ener-
gies and activation energies as in the case of conical/pyramidal/wedged indenta-
tions (Section 3.1). Also the k-value of this nickel-superalloy sample that was 
published in [13] is invaluable. It is no longer the penetration resistance for 
spherical indentations. It would suggest far too high constant hardness instead 
of the changing hardness when the depth increases. The reason is the particular 
formula (3) for the penetration calotte volume, even in the very narrow ranges. 
One has to use Equation (7) for a correct result. The authors of [14] unduly 
called their cone point at 15.9 µm a “pop-in” “marking the transition from elas-
tic to plastic deformation”. When R would be 269 nm it would however be the 
change from spherical to pyramidal indentation. There is however the proviso: 
this kink would most likely indicate a harder surface layer with about 15 nm 
height on the bulk, provided that the pyramidal end-radius was actually sharp. 
This tip-radius might have been determined as the second free parameter (C1 
with the dimension of a length) of the second iterated term C1hc from the eight 
parameter iteration of the contact area from [1] and ISO 14577. This technique 
is often performed and leads to undue very large “radii”, so that this is the most 
likely explanation as a parabola from a sharp pyramid. There is almost no oppo-
sition against this tip rounding iteration technique in the literature in addition to 
[13] [19] [20]. Tip radii must not be iterated but measured with tapping mode 
AFM [13]. This indentation should be repeated with a certified sharp Berkovich 
indenter to finally clarify these points. Table 2 and Figure 2 contain the results 
showing the shape of the plot that would describe the spherical indentation 
when R is indeed 269 nm (7). It clearly confirms the non-parabola for such 
spherical indentation.  

3.2.3. The Spherical PDMS Indentation 
The result with the Ni-superalloy requires also the analysis of a much deeper in-
dentation with a huge sphere radius and much deeper penetration with very 
compliant materials. A published nominal “experimental” PDMS spherical 
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Figure 2. FN versus ( )3 2 1 3h R hπ −  plot (7) of a Ni-based superalloy with 

a rounded Berkovich (claimed R = 269 nm) after the removed initial effect 
(first point at 30 µN load) up to the cone point at 180 µN; the green line is 
the provisional trendline (only for comparison) with a slope of 0.2169 
µN/nm3/2. 

 
indentation (the sphere radius was R = 192 µm) and the JKR iterated and fitted 
unloading curve [15] were analyzed for comparison. Both provide FN-h3/2 para-
bolas against (7). The jump below the surface requires starting from the so 
formed negative force minimum, but the adsorption energy does not disturb the 
analyses [5] [13]. The R/h ratio varies from 480 to 53.33 (Table 3). Also the 
present author had analyzed these loading curves with respect to the claims of 
ISO 14577 and [1] [2] [3] [4] by applying the Kaupp-plot. Kaupp published ap-
parently well correlating k-values [5] [13] that can however no longer be consi-
dered as being valid, because they violate the physical deduction of the closed 
formula (7) (Section 3.2.1). The slope of the (unphysical) FN-h3/2 data (not shown 
here) was 0.04912 mN/µm3/2 (r = 0.9999 with 54 data points). Also for the 
JKR-fitted unloading curve the corresponding correlation with a slope of 0.0560 
mN/µm3/2 calculated with r = 0.9999. This appears to be a good fit, but it does 
not prove anything, because it does not correspond with the physical Equation 
(7). We try to explain these features against physical evidence and analyze the 
experimental loading curve with Equation (7) in Table 3 and Figure 3. There 
remains the proviso that the loading curve named “experimental” was perhaps 
also JKR iterated and fitted to correspond with the prescribed parabola of [1] 
and ISO 14577. Again there are increasing values of h3/2 multiplied with de-
creasing correction factor values. The plot according to (7) is again concavely 
bent. Comparison can again only be tried with the provisionally calculated tren-
dline in Figure 3. Its slope is 0.0005 mN/µm3/2. The so judged error of the un-
physical parabola is almost twice as much as in the nickel-superalloy in Section 
3.2.2. Such JKR-iterations and fittings are detrimental treatments of experimen-
tal data, as already challenged in [5]. Here the JFK iterations and fittings calcu-
lated what the authors wanted to see: an “iron-rule” parabola with exponent 3/2 
as prescribed by ISO 14577 and ([1], etc.), which is clearly disproved by (7). Our 
provisional green trendline does not mean that the original experimental data 
would lie close to it or on it. Iterated and fitted data cannot be reconstructed. 
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Figure 3. FN versus ( )3 2 1 3h R hπ −  plot of the “experimental data” of the 

PDMS polymer with a Borosilicate glass ball (R = 192 µm) [15] according to 
(7); it starts at the minimum after jump below the surface; the green line is the 
provisional trendline (only for comparison) with a slope of 0.0005 mN/µm3/2. 

 
Our physical analysis is important, because any non-physical direct plot 

FN-sphere versus h3/2 would give vastly different false indentation hardness values as 
already exemplified with the Ni-based superalloy in Section 3.2.2. Clearly, 
spherical indentations are unable to obtain hardness values. They would change 
from depth to depth for every R/h-value (Table 3). Also the hitherto used older 
formula of [1] (“ 1 2 1 2

r2S E A= π ”) is incorrect for spherical indentations.  
It must be noted here that our AFM (atomic force microscopy) loading curve 

of polystyrene with a silicon cantilever (typical apex radii 10 - 15 nm) in [13] [19] 
is the result of a pyramidal indentation, but not of a “spherical indentation”. Af-
ter an initial effect well below 100 nm depth the pyramidal indentation pro-
ceeded down to 550 nm depth with 16 µN load.  

3.3. The Force-Depth Relation of Flat Cylinder or Beam  
Indentations 

It is widely accepted that the flat indenter (either column or beam) proceeds li-
nearly ([1] [2] [3] and ISO 14577). According to Sneddon the cylinder pene-
trates with ( )2

N 2 1F rh E ν= −  [9] (here r as column radius, h depth, E 
Young’s modulus. and ν Poisson’s ratio). The exponent on h is thus 1, but we 
need a clear-cut deduction without Young’s modulus avoiding the premises of 
Sneddon. This has however never been studied before. As there is also the vo-
lume formation coupled to pressure formation one starts the deduction as in 
Section 3.1, which tells that one does not indent towards a projected indenter 
face, but against the volume formation by the indenter. Any almost negligible 
compression of the very hard indenter is part of the pressure action. The volume 
of the cylinder 2V r h= π  or of the beam 2V a h= , where a means the edge, has 
only h as the variable. In that situation both the pressure and the immersed vo-
lume are both directly proportional to the depth. The pressure part is again lost 
for the depth and we get directly FN-flat = kflat h1 (8). The applied force and thus 
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work is the area of the FN-h triangle (9). It is 1:1 divided between pressure work 
Wflat-pressure and the indentation work Wflat indent. The latter is thus the area of the 
FN-h triangle (9). Wflat-indent is thus 1/4 FN-max hmax (10), again in accordance with 
the first energy law [5] [6]. The penetration resistance kflat is here the physical 
indentation hardness with the dimension [N/m], which is also the full flat load-
ing stiffness (S). And kflat/2 is the energy corrected flat impression hardness = 
stiffness. The definition of [1] (“ 1 2 1 2

r2S E A= π ”) is also here in error, because 
it relies on the unsuitable premises of Sneddon by using area instead of volume 
[9].  

N-flat flatF k h=                            (8) 

flat-applied N-max max1 2W F h=                      (9) 

flat-indent N-max max1 4W F h=                     (10) 

Load versus depth curves of flat punches onto visco-elastic materials seem to 
be rare, as creep and moduli were the prevailing points of interest. However, 
load-depth curves with cylinder of 0.5 cm radius onto F82 H steel at different 
temperatures (92˚C to −196˚C) used loads up to 600 N and were linear up to 100 
N at about 30 µm depths. They continued at first with moderate bending up to 
250 N and further so up to 600 N towards 1 mm depth. The first part up to 
about 50 N or 0.5 GPa with a poorly resolved kink was reported as “fully reversi-
ble”. The kink was followed linearly up to 150 - 200 N or 1.5 - 2 GPa, depending 
on the temperature. This experimentally confirms the indentation law (

flat

1h ) for 
the low resolved initial parts. The bending above these loadings was interpreted 
with three different plastic stages [21]. As such bending is not in accord with (8) 
it has to be concluded that the experimental control was lost at such high loads, 
most probably by macroscopic undetected cracks and perhaps chemical trans-
formations of the different components. The following bending starts with pro-
truding of material around the imprint or chemical reactions [21]. Regular 
pile-up would not destroy the physical law (8) [5] [22]. Interestingly, these re-
sults are comparable with the yield stress of tensile tests, the values of which are 
about 3 times smaller than the stress at the start of the bending for 16 tested me-
tallic materials [21]. The elastic moduli have been obtained from the slopes of 
the initial linear part of the unloading curves from 120 - 110 µm without itera-
tions. But energy law corrections that should be the factor 0.5 according to (9) 
and (10) [5] [6] have not been considered. The obvious comparability of flat 
macro-indentation with tensile tests appears interesting for further applications. 

4. Continuation 

The presented deductions of physical equations for conical/pyramidal/wedged, 
spherical, and flat indentations must urgently replace the false historical equa-
tions of ISO 14577 with their energy law violations for obtaining reliable mechan-
ical parameters and to enable the new applications (detection of phase-transition 
onsets, their transition energies and activation energies) that were previously not 
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possible. Further applications are to be developed particularly at very low tem-
peratures for airplanes and spacecraft vehicles. The spherical indentations are 
the most complicated and least rewarding ones. The spherical work of indenta-
tion by integration of Equation (7) does not provide a rational ratio with the total 
work of indentation, as comparable with the 4/5 ratio in the case cones/pyramids 
[5]. This detracts from the possibility for the important energetic evaluations and 
the not self-similar spherical indentations are thus inferior to the indentations with 
the self-similar indenters. The same is true for paraboloids of revolution for which 
[1] falsely claimed loading parabolas with exponent 3/2. They are centrosymmetric 
but not self-similar. Also ellipsoids and two-sheet-hyperboloids of revolution are 
centrosymmetric but not self-similar indenters that would lack their advanced 
use. 

The possibilities of flat punch indentation require further development and 
promise interesting further applications beyond the creep determinations. ISO 
must be further urged to thoroughly revise and modernize ISO 14577 on the 
physical basis without iterations and data-fittings. This will remove the falsely 
obtained mechanical materials parameters; which is of urgent importance for 
avoiding the risks with technical products in daily life. The certification of in-
dustrial producers must be based on physical reality rather than on historical 
errors to enable the use of the correct novelties and the development of im-
proved materials in a correct way, so that catastrophic mechanical failures can be 
avoided or at least minimized. Responsibilities can no longer be shifted to ISO 
14577 and from there to historical researchers.  

5. Conclusions 

The most severe misconception in the powerful (nano) indentation field has been 
reported in this paper. It is the two-dimensional treatment of the three-dimensional 
impression into solids, with its now obsolete “iron-rule” (“cone exponent 2, 
sphere exponent 3/2, and flat exponent 1”). The main problem was the impossi-
ble equality of exponent 3/2 for conical/pyramidal [11] and for spherical inden-
tation loading curves [1] [2] [3]. This had to be solved despite the common ISO 
14577 standards. Only the exponent 1 for flat punch indentation was not de-
bated, but it also required the deduction of a correct Equation (8). By prescrip-
tion of [1] and ISO 14577 conical parabola should have the exponent 2 on h in-
stead of 3/2. Therefore, faithful researchers tried to question the universality of 
h3/2 for cones/pyramids/wedges and iterated huge tip rounding with 8 free para-
meters for indenters, while proposing exponent 3/2 parabolas for spheres. By 
doing so these researchers had to iterate and fit their data from spherical inden-
tation for example with JKR techniques, in order to obtain treated data provid-
ing four-nines-correlations that exhibited what they expected to observe. Both 
detrimental techniques (iteration of excessive tip radii and iterative data fitting 
treatments) are uncovered in this work. It could be done because the undeniably 
deduced physically formulas cannot be overcome. Also CSM Instruments Ap-
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plication Bulletin 35 advocates for FEA (finite element models) and JKR itera-
tions for spherical indentations on the basis of h3/2 parabolas. The enormous er-
rors of such iterative and fitting data treatments are roughly judged. Another 
iteration and fitting technique is the continuous change of “effective radii” along 
the loading curve with power-law fitting [17]. It is particularly bothersome that 
the materials are falsely calculated (including violation of the energy law) and 
that phase-transitions under load cannot be traced with false exponent and 
shape of the untreated loading curves. The correct value of the exponents is of 
utmost importance for increased precision by regression, the calculation of ma-
terials’ properties, the recognition of initial surface effects, gradients, and phase 
transitions with their transition energies and activation energies [5] [13] [22] [23] 
[24] [25]. The therein and in this paper challenged behaviors create high risks 
and miss the important possibilities for avoiding catastrophic failures by grain 
formations that initiate catastrophic failures within the polymorph interfaces 
[22]. All of that is inaccessible with the unphysical exponents and iterations with 
fittings. The differentiation between loading parabolas, non-parabolas, and 
straight lines is also important. The physical deductions of the loading curves 
use the volume of the indenters, rather than their surface area or “contact area”, 
to obtain closed formulas without any iterations and data fittings in a very ele-
gant and simple way as compared to previous work. A comprehensive under-
standing has been achieved now for conical/pyramidal/wedged, spherical, and 
flat-punch indentations. This has been shown for experimental nano- and mi-
cro-indentations. Further applications are expected for AFM studies of vis-
co-elastic-plastic biological and medical preparations. The universal exponent 
3/2 loading parabola is only valid for cones/pyramids/wedges [11]. Spherical in-
dentations provide non-parabola loading curves according to the now deduced 
Equation (7), and flat-punch indentation with exponent 1 follow the new Equa-
tion (8). The reason for the non-parabola at spherical indentations is the geome-
trically not self-similar impression of sphere calottes.  

Clearly, undeniable closed physical formulas based on sacrosanct calculation 
rules stands before regression analysis of a physically incorrect parabola. This 
shows that any good linear correlations without physical background are a han-
dle to detect data-treatments. Sorry to say: it might perhaps be easier for main-
stream researchers, who do not dare to challenge ISO 14577, to please it and its 
proponents. 

The new unprecedented physical deductions rely on the indented volume (not 
on projected area) by using undeniable calculation rules [11]. All of the errors 
from the previous falsely believed (including violation of the energy rule) inden-
tation exponents are to be abandoned. The still exacting of the world by the 
common ISO 14577 standards with the energy law violations derived from the 
unsuitable mathematical premises of [1] [2] [3] [4] [9] [10] that did not consider 
that the “depth formation work” (projected area instead of volume) is coupled to 
the pressure work, which can however not be created from nothing. ISO 14577 
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and [1] [2] [3] [4] are incorrect. They required, prescribed, or allowed data fit-
tings and iterations. These missed all of the named unprecedented further ap-
plications and cannot even detect the calibration errors in calibration standard 
indentions of [1] (five of the six standards with calibration error; two mix-ups of 
figure designations; ignoring phase-transitions). These experimental errors are 
not corrected and still used in ISO 14577 documents. The unprecedented novel-
ties have already been applied for conical/pyramidal/wedged indentations [5] [6] 
[13] [22] [23] [24] [25], and further applications are expected for the Equations 
(2), (7) and (8) when ISO 14577 will be profoundly revised on sound physics but 
not on historical errors. Unfortunately, there are non-scientific problems for a 
rapid ISO decision, including severe liability questions [23]. 
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