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Abstract 

In this paper, we combine the theory of stochastic process and techniques of 
machine learning with the regression analysis, first proposed by [1] to solve 
for American option prices, and apply the new methodologies on financial 
derivatives pricing. Rigorous convergence proofs are provided for some of the 
methods we propose. Numerical examples show good applicability of the al-
gorithms. More applications in finance are discussed in the Appendices.  
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1. Introduction 

Theoretical and empirical finance research involves the evaluation of conditional 
expectations, which, in a continuous time jump-diffusion setting, can be related 
to second order partial integral differential equations of parabolic type (PIDEs) 
by the Feynman-Kac theorem, and other types of equations such as backward 
stochastic differential equations with jumps (BSDEJs) or quasi-linear PIDEs in 
more complicated settings. In theoretical continuous-time finance, many prob-
lems, such as asset pricing with market frictions, dynamic hedging or dynamic 
portfolio-consumption choice problems, can be related to Hamil-
ton-Jacobi-Bellman (HJB) equations via dynamic programming techniques. The 
HJB equations, from another perspective, are equivalent to BSDEs derived from 
a probabilistic approach. The nonlinear BSDEs, studied in [2], can be decom-
posed into a sequence of linear equations, which can be solved by taking condi-
tional expectations, via Picard iteration. For empirical studies, the focus of the 
literature has been the evaluation of the cross sectional conditional risk-adjusted 
expected returns and the explanation of them using factors. See [3] [4] and [5] as 
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good illustrations. It is easily seen that, regardless of the fact whether the under-
lying models are continuous-time or discrete-time, evaluating conditional ex-
pectations is inevitable in finance literature. Moreover, in order to perform XVA 
computations for the measurement of counterparty credit risk, we need to eva-
luate the conditional expectations, i.e., the derivative prices, on a future simula-
tion grid, as outlined in [6]. These facts call for efficient methods to compute the 
quantities aforementioned. 

In this paper, we extend the basis function expansion approach proposed in [1] 
with machine learning techniques. Specifically, we propose new efficient me-
thods to evaluate conditional expectations, regardless of the dynamics of the 
underlying stochastic process, as long as they can be simulated. Rigorous con-
vergence proofs are given using Hilbert space theory. The methodologies can be 
applied to time zero pricing as well as pricing on a future simulation grid, with 
the advantage of ANN approximation most prominent in high dimensional 
problems. In the sequel, we show applications of our methodologies on the 
pricing of European derivatives and extension to contracts with optimal stop-
ping feature is straightforward through either [1] approach or reflect-
ed-BSDEs. 

Compared to the literature on traditional stochastic analysis, our methodolo-
gies are able to handle large data sets and high-dimensional problems, therefore 
suffering much less from the curse of dimensionality due to the nature of ANN 
methods. Moreover, our methodologies are very efficient when evaluating solu-
tions of BSDEJs and PIDEs on a future simulation grid, where none of the tradi-
tional methodologies applies. With respect to recent machine learning literature 
on numerical solutions to BSDEs and PDEs, our methodologies enjoy the theo-
retical advantage of being able to handle equations with jump-diffusion and 
convergence results are provided. When applied to the solutions of BSDEJs and 
PIDEs, our methodologies require much less number of parameters, as com-
pared to the current machine learning based methods to be mentioned below. At 
any step in the solution process, only one ANN is needed and we do not require 
nested optimization. In terms of application, not all the prices of OTC deriva-
tives can be easily translated into BSDEJs and PIDEs, for example, a range ac-
crual with both American and barrier (knock-out, for example) feature. Howev-
er, our methodologies are naturally suitable in those situations. To conclude, our 
methods enjoy many theoretical and empirical advantages, which makes them 
attractive and novel. 

There has been a huge literature on applications of machine learning tech-
niques to financial research. Classical applications focus on the prediction of 
market variables such as equity indexes or FX rates and the detection of market 
anomalies, for example, [7] and [8]. Option pricing via a brute-force curving fit-
ting by ANNs dates back to [9]. More applications of machine learning in 
finance, especially option pricing prediction, are surveyed in [10]. See references 
therein. Pricing of American options in high dimensions can be found in [11], 
which is closest to our method 1. However, there are several improvements of 
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our methods compared to this reference. First of all, we enable deep neural net-
work (DNN) approximation and show convergence. Second, we can incorporate 
constraints in DNN approximation estimation and prove the mathematical va-
lidity of this approach. Third, we propose two more efficient methods to com-
plement the first method of ours. Our treatment of constraints in the estimation 
of DNNs extends the work of [12] in that we can deal with a larger class of con-
straints by specifying a general Hilbert subspace as the constrained set. Risk 
measure computation using machine learning can be found in [13]. Applications 
of machine learning function approximation on financial econometrics can be 
found in [14], [15], [16] and [17]. Recent applications include empirical and 
theoretical asset pricing, reinforcement learning and Q-learning in solving dy-
namic programming problems such as optimal investment-consumption choice, 
option pricing and optimal trading strategies construction, e.g., [18], [19], [20], 
[21], [22], [23], [24], [25], [26], [27], [28] and references therein. Numerical 
methods to solve PDEs and BSDEs or the related inverse problems can be found 
in  [29], [30], [31], [32], [33], [34], [35], [36], [37], [38] and [39]. Machine 
learning based methods enjoy the advantage of being fast, able to handle large 
data sets and high dimensional problems. 

Our methodologies are combinations of traditional statistical learning theory 
and stochastic analysis with advanced machine learning techniques, introduc-
ing powerful function approximation method via the universal approximation 
theorem and artificial neural networks (ANNs), while preserving the regres-
sion-type analysis documented in [1]. The methods are very easy to use, effec-
tive, accurate as illustrated by numerical experiments and time efficient. They 
are different from the convergent expansion method, e.g., [40], simulation 
methods such as [41], [42], [43] and [44] or the asymptotic expansion method 
proposed by [45], [46], [47], [48] [49] [50] [51] [52], in that we no longer 
resort to polynomial basis function expansion or small-diffusion type analysis. 
Our methods are also different from the pure machine learning based ones 
documented in [29], [30], [31], [32], [33], [34] and [35], in that we utilize the 
lead-lag regression formula to evaluate the conditional expectations, preserv-
ing the time dependent structure and our methods are able to handle 
jump-diffusion processes easily. 

The organization of this paper is as follows. Section 2 documents the metho-
dologies. Section 3 illustrates the usefulness of our methods by considering Eu-
ropean and American derivatives pricing. Section 4 considers numerical experi-
ments and Section 5 concludes. An outline of the proofs and other applications 
can be found in the appendices.  

2. The Methodology 

Mathematical Setup 
We use a Markov process modeled by a jump-diffusion as illustration. Sup-

pose that we have a stochastic differential equation with jumps  
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( ) ( ) ( ) ( ) 0 0d , d , d , , d ,d ,t t t t tE
X t X t t X W t X e N t e X xµ σ γ= + + =∫      (1) 

where rX ∈ , dW ∈  is a standard d-dimensional Brownian motion and 
N  is a q-dimensional compensated Poisson random measure, with the com-
pensator ( ) ( )d ,d : d dt e e tν ν= . Information filtration ,W N

t t=   is generated 
by ( ),W N . We hope to evaluate the conditional expectation ( )t TXψ    for 
any 0 t T< < , e.g., see [53]. Assumptions on ψ  and X are stated below.  

Assumption 1 (On Growth Condition of ψ). ψ  has polynomial growth in 
its argument x, i.e., there exists a positive integer P, independent of x, such that 
for all 1x > , we have, for constant C independent of x  

( ) .Px C xψ ≤                         (2) 

The following assumption is w.r.t. X.  
Assumption 2 (On X). There exists a unique strong solution to Equation (1) 

and X has finite polynomial moments of all orders.  
The General Approximation Theory 
First, we need the following assumptions, definitions and results. Please note 

that, some of the spaces we introduce are actually conditional ones. The discus-
sions of conditional Hilbert spaces can be found in [54], e.g., ( )2

tL   is a con-
ditional Hilbert space for all [ ]0,t T∈ .  

Definition 3 (Projection Operator). For Hilbert spaces   and  , where 
⊂  . Define PROJ x  as the projection of x∈  onto  .  

Definition 4 (Orthogonal Space). For Hilbert spaces   and  , where 
⊂  . Define ORTH  as the orthogonal space of   in  .  

Definition 5 (Spanning the Hilbert Space). Assume that { }j
j

e
∈Λ

=  is a 
set of elements in Hilbert space   and Λ  is an index set. Define H  as the 
intersection of all Hilbert subspaces of   containing  .  

Assumption 6 (On Joint Continuity).   and   are two Hilbert spaces 
and ⊂  . Moreover, { } 1n n

∞

=
  is a sequence of Hilbert sub-spaces of   sa-

tisfying 1n n+⊂   for any 1n ≥  and 1 nn

∞

=
=



  . We have 
lim PROJ 0

nn nh h→∞ − = 
 for any h∈  and limn nh h→∞ = .  

The next two theorems are well-known in the literature.  
Theorem 7 (Hilbert Projection Theorem). Let ⊂   be two Hilbert 

spaces and let x∈ . Then, PROJ x  exists and is unique. Moreover, it is 
characterized uniquely by PROJ ORTHx x− ∈  .  

Theorem 8 (Repeated Projection Theorem). Let ⊂ ⊂    be three 
Hilbert spaces. Then, for any x∈ , ( )PROJ PROJ PROJx x=   .  

Remark 9 The conditions of Theorems 7 and 8 on   and   can be re-
laxed to convexity and completeness instead of Hilbert sub-spaces. 

Finally, we have the result below. 
Theorem 10. Suppose   is a Hilbert space, { } 1n n

∞

=
  and   are Hilbert 

subspaces of   satisfying 1n n+⊂   and 1 nn

∞

=
= ⊂



   . x∈ , define 
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PROJ
nnh x=   and PROJh x=  . Then we have limn nh h→∞ =  w.r.t. the norm 

topology in  , if Assumption 6 is satisfied.  
Sometimes we need to add constraints on the calibrated ANN, e.g., the shape 

constraints. The following assumption and theorem deal with this situation.  
Assumption 11 (On Constrained Sub-space). Suppose that Ψ ⊂   such 

that { } 1n n

∞

=
Ψ  is a sequence of non-empty convex and complete subspaces 

of   satisfying Assumption 6, where   and { } 1n n

∞

=
  are described.  

The following theorem handles the constrained approximation and its con-
vergence.  

Theorem 12 (On Constrained Approximation). Under Assumptions 6 and 
11, for x∈ , if PROJh x= ∈Ψ , then, we have lim PROJ

nn x h→∞ Ψ =
 .  

Remark 13 (On ψ). In Theorem 12, the set Ψ  represents prior knowledge 
on constraints that h satisfies. It can be represented by a set of non-linear in-
equalities or equalities on functionals of h. Common constraints for option 
pricing include non-negativity constraint and the positiveness constraint on the 
second order derivatives. The verification of { } 1n n

∞

=
Ψ  satisfying Assump-

tion 6 should be based on a case-by-case manner.  
To proceed further, we need the following assumptions.  

Assumption 14 (On Some Spaces). { }
1

J
t J

∞

=
  is an increasing sequence of 

Hilbert sub-spaces of ( )2
tL  , 1J J

t t
+⊂  , ( )2

1
J

t t tJ
L∞

=
= ⊂



   . Moreover, 

[ ] ( ) [ ] ( ){ } ( ) ( )2 2 2 2| ,t T T T t T t t t T TL L L Lξ ξ ξ∈ ∈ ⊂ ⊂ ⊂ =       .  

Assumption 15 (On Structure of J
t ). { }jt j

e
∈Λ

 is a set of elements of 

( )2
tL  , such that { }H j

t j J

J
t e

∈Λ

= , where 1J J +Λ ⊂ Λ ⊂ Λ  for any 1J ≥  and 

1 JJ

∞

=
Λ = Λ



, satisfies Assumption 141.  

Then, we have the following results.  
Lemma 1. For any adapted stochastic process ξ  such that ( )2

T TLξ ∈  , if 
[ ] ( )2

t T tLξ ∈  , we have  

[ ]
( )

( )
2

2arg min .
t t

t T T t
Lη

ξ ξ η
∈

 = −  


               (3) 

The following proposition is a natural extension of Lemma 1.  
Proposition 16. For any measurable function ψ  and stochastic process X 

such that ( ) ( )2
T TX Lψ ∈   and ( ) ( )2

t T tX Lψ ∈    , we have  

( )
( )

( )( )
2

2
arg min .

t t
t T T t

L
X X

ξ
ψ ψ ξ

∈

 = −     
 


           (4) 

Here t tξ ∈  and the above minimization problem has a unique solution. In 
particular, if X is a Markov process, then ( ),t tt Xξ φ= , i.e., tξ  is a function of 
time t and tX .  

We then have the following theorem.  

 

 

1It is obvious that { }jt j
e

∈Λ
 can be the basis or frame of ( )2

tL  . However, we do not assume so in 

this paper.  
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Theorem 17. Under Assumptions 1, 2, 6, 14 and 15, for any adapted stochas-
tic process ξ  such that ( )2

T TLξ ∈   and [ ] ( )2
t T tLξ ∈  , we have  

( ) ( ) [ ]2
2lim arg min .

J tt t
T t t TLJ η
ξ η ξ

→∞ ∈

 − =  


               (5) 

Further, for any measurable function ψ  and stochastic process X such that 
( ) ( )2

T TX Lψ ∈   and ( ) ( )2
t T tX Lψ ∈    , we have the following equality  

( )( ) ( ) ( )2

2
lim arg min .

J tt t
T t t TLJ

X X
ξ

ψ ξ ψ
→∞ ∈

 − =     
 


          (6) 

If X is Markov, then we have ( ),t tt Xξ φ= , i.e., tξ  is a function of time t and 

tX .  
The following theorem justifies the Monte Carlo approximation of expecta-

tion in the above optimization problems.  
Theorem 18 (On Sequential Convergence). Under Assumptions 1, 2, 6, 14 

and 15, suppose that J JmΛ = < ∞  for all 1J ≥ , { }
1

Mi
T i

X
=

 and { } ,,

, 1,1

Jm Mj i
t j i

e
=

 
are M i.i.d. copies of TX  and { }

1

Jmj
t j

e
=

. Then we have  

( )( ) ( )
2

=1

1lim lim arg min .
m J
t t

M
m m
T t t TJ M m

X X
Mξ

ψ ξ ψ
→∞ →∞ ∈

− =   ∑  


        (7) 

The following results justify the universal approximation and ANN approxi-
mation approaches proposed in this paper.  

Proposition 19 (On Universal Approximation Theory). Let σ  denote the 
function in the universal approximation theorem mentioned in [55], [56] and 
[57]. Define { } ( ){ }1 1

: nn mmj
t j j tj j

e Xσ α β
= =
= + , where X satisfies Equation (1) and 

Assumption 2, jα  and jβ  have at most n significant digits in total, where 
n∈ , i.e., n belongs to the set of natural numbers, j runs from 1 to nm  and  

nm  is the number of all related { }jte , i.e.,  

( ){ }| and  have at most total significant digitsn tm X nσ α β α β= + . Then,  

{ }
1

H mnj
t j

e
n= ∈

  
 
   

 satisfies Assumptions 6, 14 and 15. Therefore, Theorems 17 and 

18 apply.  
Proposition 20 (On Deep Neural Network Approximation). For the DNN 

defined in ([58], Definition 1.1], observe that ( )l l lW x xα β= + . Define  

( ), 1, 1,:j
t L j L j j te W W W Xρ ρ ρ−=                  (8) 

where ( ), , ,l j l j l jW x xα β= +  satisfies that 1,2, ,l L=  , ( ), ,,l j l jα β  have at 

most n total significant digits and n∈ . Then, 
{ }

1
1,

H mnj
t j

e
n= ∈

  
 
   

, where 1 means  

function ( ) 1f x ≡  for all x, satisfies Assumptions 6, 14 and 15. Therefore, 
Theorems 17 and 18 apply after a localization argument on ψ  and X on a 
compact sub-domain in r .  

Remark 21 (On DNN). Please note that, in Proposition 20, we do not intend 
to prove the convergence when the number of layers goes to infinity. Instead, we 
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show convergence when the number of connections goes to infinity, which can 
be achieved via enlarging the number of neurons in each layer with the total 
number of layers remaining fixed.  

Remark 22 (On Euler Time Discretization). [59] proposes an exact simula-
tion method for multi-dimensional stochastic differential equations. The discus-
sion of discretization error, of the regression approach proposed in this paper, 
with Euler method is not hard if ψ  satisfies Assumption 1, in which case the 
dominated convergence theorem and 2L  convergence of Euler method can be 
applied to show the convergence.  

The proofs of the above results can be found in Appendix A. In what follows, 
we will propose three methods to compute, approximately, the function φ  in 
Proposition 16. 

Method 1 
In general, φ , defined in Proposition 16 and Theorem 17, can not be found in 

closed-form. A natural thought would be to resort to function expansion repre-
sentations, i.e., to find the solution to the following problem  

( )
{ }

( ) ( )
0

2

, 0
arg min , |

j j j

j
t T T j t j

a j
X X a e t X

θ
ψ ψ θ

∞

=

∞

∈ =

  
 = −        

∑ 


      (9) 

where   is an appropriate space for coefficients { } 0
,j j j

a θ
∞

=
 and ( ){ }

0

j
j j

e θ
∞

=
 

is a set of functions, with ( ){ }( )0
Span j

j j
e θ

∞

=

2 dense in an appropriate function 
space Φ 3. To further proceed, we seek a truncation of the function representa-
tion formula as follows  

( )
{ }

( ) ( )
0

2

, 0
arg min , |

J
j j Jj

J
j

t T T j t j
a j

X X a e t X
θ

ψ ψ θ
=
∈ =

  
 ≅ −        

∑ 


    (10) 

for J sufficiently large, where J  is a compact set in the Euclidean space where 

{ } 0
,

J
j j j

a θ
=

 take values. The last step would be to use Monte Carlo simulation to 
approximate the unconditional expectation appearing in Equations (9) and (10). 
Therefore turning the conditional expectation computation problem, into a 
least-square function regression problem, similar to [1]. An obvious choice of 

( ){ }
0

j
j j

e θ
∞

=
 is polynomial basis, for example, the set of Fourier-Hermite basis 

functions. For expansion using Fourier-Hermite basis functions in high dimen-
sions, see [60]. 

In fact, Artificial Neural Networks (ANNs) prove to be an efficient and con-
vergent function approximation tool that we can utilize in the above expressions. 
Write  

( )
{ }

( ) { }( )( )
0

2

0,
arg min ANN , | ,

J
j j Jj

J
t T T J j j tja

X X a t X
θ

ψ ψ θ
=

=
∈

 
≅ −    

 
 


 (11) 

where ANNJ  denotes an ANN with parameters { } 0
,

J
j j j

a θ
=

. 

 

 

2It is the linear space spanned by the set ( ){ }
0

j
j j

e θ
∞

=
. 

3We should understand that distance can be defined in function space Φ . 
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Note that, via proper time discretization and fixed point iteration, solving a 
BSDE with jumps can be decomposed into a series of evaluations of conditional 
expectations. The machine learning based method outlined above can be applied 
there. We will write down the algorithm to solve a general Coupled For-
ward-Backward Stochastic Differential Equation with Jumps (CFBSDEJs) in the 
appendix. Extensions to other types of BSDEJs are possible. 

Here we assume that X is a Markov process. To handle path dependency or 
non-Markov processes, we can apply the backward induction method outlined 
in [1]. With the machine learning approach, it is easy to see that this method 
enables us to get the values of conditional expectations on a future simulation 
grid. 

Method 2 
Another method to utilize the idea of [1] is inspired by the boosting random 

tree method (BRT), see, [61], for example. Partition the domain space 

1

Kr k
tk

U
=

=


 4, where { }
1

Kk
t k

U
=

 is a set of disjoint sets in r  and consider  

( ) ( ) ( )( )

( )
( ) ( )( )

1

2

2

,

arg min ,

arg min , .kK t tk kk x Ut

t T T t

T k t X Ut x

X X t X

X t X

φ

φ

ψ ψ φ

ψ φ
= ∈

∈Φ

∈∈Φ∑

 = −     
 ≅ −  

 


1

1
    (12) 

The choice of { }
1

Kk
t k

U
=

 is important and we can use the machine learning 
classification techniques (or any classification rule), such as kmeans function in 
R programming language, in Monte Carlo simulation and related computations. 
Denote ,supU x y Ud x y∈= − . It is possible to show that as long as  

1lim max 0k
t

K k K U
d→∞ ≤ ≤ = , we only need finite number of functions, for example, 

( ){ }
0

Jj
j j

e θ
=

, to approximate each { } 1

K
k k
φ

=
 and obtain convergence. In practice, 

although the domain of tX  is r , it might be centered at a small subspace t , 
therefore facilitating the partition process. Note also that this method might re-
quire us to mollify the function ψ , if it is not smooth. We adopt finite order 
Taylor expansion as the function expansion representation approach. The fol-
lowing theorems provide convergence analysis for this method.  

Theorem 23. For an appropriate function space Φ , we have  

( ) ( ) ( )( )

( ) ( )( )

( ) ( )

( )
( ) ( )( )

1

2

2

=1

2

=1 =1

2

,

arg min ,

arg min ,

arg min ,

arg min , .

k
t t

k k
t t t t

kK t tk kk x Ut

t T T t

K

T t X U
k

K K

T tX U X U
k k

T k t X Ut x

X X t X

X t X

X t X

X t X

φ

φ

φ

φ

ψ ψ φ

ψ φ

ψ φ

ψ φ
= ∈

∈Φ

∈∈Φ

∈ ∈∈Φ

∈∈Φ∑

 = −     
 = −  
  = −  
   

 = −  

∑

∑ ∑

 






1

1

1 1

1

  (13) 

Theorem 24. Let J
t  be as described previously and  

( ){ }, |t tt Xφ φ= ∈Φ . Then, we have  

 

 

4K can be positive infinity, i.e., K = ∞ . 
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( ) ( )
( )1 2max 0 1

ˆlim , , 0k
t tk K kUt t

K

k t tX Ud k L

t X t Xφ φ
≤ ≤

∈→ =

− =∑


1          (14) 

with J large enough, fixed, finite and k̂φ  is an approximation to kφ , which sa-
tisfies  

( )( )2ˆ( , ) , k
t t

k t k t KX U
t X t Xφ φ

∈
 − ≤  

 1               (15) 

for any 1,2, ,k K=  , K ∈ , lim 0K KK→∞ =  and K  is independent of k 
when K is sufficiently large.  

Method 3 
Next, we propose an algorithm combining the ANN and universal approxi-

mation theorem (UAT). Suppose that ( )2
tL   is the space where we are per-

forming the approximation. Also assume that ,W N X
t t=  , i.e., the information 

filtration is equivalently generated by X. Define an ANN with connection N by 
( )ANN , , ,jx N jθ , where x is the state variables that the ANN depends on, jθ  is 

the vector of parameters and j is its label. We define the following nested regres-
sion approximation  

( ) ( ) 1
1 ,ANN , , ,1T t t TX X Nψ θ= +                 (16) 

( )1 2
, 2 ,ANN , , , 2t T t t TX N θ= +                  (17) 

( )2 3
, 3 ,ANN , , ,3t T t t TX N θ= +                  (18) 

=                            (19) 

( ) 1
, 1 ,ANN , , , 1J J

t T t J t TX N Jθ +
+= + +               (20) 

=                           (21) 

where ( ){ }1
1 0
ANN , , ,J

t jj J
X N jθ

∞+

= =
∑  is the approximate sequence of ( )t TXψ   . 

In this paper, we will test and compare the performance of all of the proposed 
methods. A general discussion and rigorous proofs can be found in Appendix 
A5.  

3. Applications in Derivatives Pricing 

3.1. European Option Pricing 

Suppose that the payoff of a European claim can be written as, similar to [62] 
and [63], ( ),f ψ , where tf  is a stream of cash flows materialized at each time 
instance t and Tψ  is a one-time terminal payoff at time T. Therefore, under 
no-arbitrage condition, the price of this European payoff can be written as, un-
der risk neutral measure  

, ,: d
Te

t t t u u t T Tt
V D f u D ψ = +  ∫                   (22) 

where d
, : e

u
vt r v

t uD −∫=  is the stochastic discount factor. If we assume a Markov 
structure ( ),t tf f t X=  and ( )T TXψ ψ= , then ( ): ,e e

t tV v t X= , i.e., e
tV  is a 

 

 

5We will only show convergence of Methods 1 and 2. 
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function of time t and state vector tX . This problem is a canonical application 
of the evaluation of conditional expectations and we can apply the methodolo-
gies outlined in Section 2 to solve it. European claims with barrier features can 
be incorporated and priced in a similar way. For example, the price of a 
knock-in European claim can be written as  

, ,: d
Te

t t t u u T TV D f u Dττ
ψ = +  ∫                  (23) 

where [ ] { },inf |v tv t T X Xτ ∈= ∈ ∉  , where r⊂  . In our setting, the dy-
namics of X can be arbitrary, possibly stochastic differential equations with 
jumps, Markov chains, or even non-Markov processes. Previously, Monte Carlo 
based method for option pricing can be found in [64] and [65], among others. 

3.2. American Option Pricing 

Still use ( ),f ψ  to denote the payoff structure of an American claim, whose 
price can be obtained via formula  

[ ]
, ,

,
: sup d .a

t t t u u ttt T
V D f u D

τ
τ τ

τ
ψ

∈

 = +  ∫


             (24) 

Here [ ],t T  is the space of all the stopping times in [ ],t T . We refer the in-
terested readers to [62] and [66] for general derivation and explanation of Equa-
tion (24). It is also possible to derive the general BSDE that an American claim 
price satisfies, for example [67]. Moreover, in [27] and [1], the authors utilize a 
backward induction approach to solve optimal stopping problems. The idea can 
be carried out using the methodologies documented in Section 2. American 
claims with barrier features can be incorporated and priced in a similar way. It is 
also known that American option prices can be related to reflected BSDEs 
(RBSDEs), a rigorous discussion of existence and uniqueness of such equations 
can be found in [68] and references therein.  

4. Numerical Experiments 

4.1. European Option Pricing 

In this section, we consider a Heston model  

0 0
d

d d ,t
t t

t

S
r t W S s

S
ν= + =                    (25) 

( ) ( )2
0 0d d d 1 d ,t t t t tt W B vν κ θ ν σ ν ρ ρ ν= − + + − =        (26) 

where ( ),W B  is a two dimensional standard Brownian motion. The parameter 
values are chosen as 0.05r = , 1.00κ = , 0.04θ = , 0.10σ = , 0.50ρ = − , 

0 1.00s = , 1.00K =  and 0 0.04v = . Time to maturity is set to be 0.50T = ,  

with time discretization step 0.01h =  and 50TN
h

= = . The number of  

simulation paths is 10000M = . We price a plain vanilla European call option 
( )TS K +−  as an illustration. The QQ-plots are displayed in Figures 1-10. The 
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first three correspond to a recursive evaluation, i.e., regressing the values at 1t +  
on state variables at time t. The rest of the plots correspond to direct regression, 
i.e., regressing the discounted payoffs at time T on state variables at time t. Fig-
ures 10-12 are for the prices of a digital call option under Black-Scholes set-
ting and Figures 13-15 are QQ-plots for Delta values. Figure 16 and Figure 
17 show the QQ-plots for method 3 under Heston model with 3 nested ANN 
approximations of size 4 and one ANN approximation of size 12 using R rou-
tine nnet. The absolute RMSE for the former is 0.1938% and latter 0.2581%, 
with the running time 10.36 seconds compared to 52.31 for ANN approxima-
tion with size 12. 
 

 
Figure 1. QQ-plot for Method 1, 0.05τ =  and relative pricing error is 1.20%. 
 

 
Figure 2. QQ-plot for Method 1, 0.25τ =  and relative pricing error is 1.50%. 
 

 
Figure 3. QQ-plot for Method 1, 0.45τ =  and relative pricing error is 1.20%. 
 

 
Figure 4. QQ-plot for Method 1, 0.05τ =  and relative pricing error is 1.66%. 
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Figure 5. QQ-plot for Method 1, 0.20τ =  and relative pricing error is 1.75%. 
 

 
Figure 6. QQ-plot for Method 1, 0.30τ =  and relative pricing error is 3.00%. 
 

 
Figure 7. QQ-plot for Method 2, 0.05τ =  and relative pricing error is 1.80%. 
 

 
Figure 8. QQ-plot for Method 2, 0.20τ =  and relative pricing error is 3.50%. 
 

 
Figure 9. QQ-plot for Method 2, 0.30τ =  and relative pricing error is 3.53%. 
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Figure 10. QQ-plot for Method 1, 0.02τ =  and relative pricing error is 0.40%. 
 

 
Figure 11. QQ-plot for Method 1, 0.05τ =  and relative pricing error is 0.80%. 
 

 
Figure 12. QQ-plot for Method 1, 0.08τ =  and relative pricing error is 0.60%. 
 

 
Figure 13. Delta QQ-plot for Method 1, 0.02τ = . 
 

 
Figure 14. Delta QQ-plot for Method 1, 0.05τ = . 
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Figure 15. Delta QQ-plot for Method 1, 0.08τ = . 
 

 
Figure 16. Price QQ-plot for Method 3, 0.20τ = . 
 

 
Figure 17. Price QQ-plot for Method 3, 0.20τ = . 

4.2. American Option Pricing 

Here we refer the readers to [67] for the BSDE satisfied by a plain vanilla Amer-
ican option. For 0.03r = , 0.07d = , 0.20σ = , 3.00T = , 150N = , 0 100S =  
and 100K = , the benchmark American option price at 0 0t =  is 9.0660 and 
the relative difference of our Monte-Carlo price is 0.27%. The running time is 
less than 30 seconds.  

5. Conclusion and Future Research 

In this paper, we show how machine learning techniques, specifically, ANN 
function approximation methods, can be applied to derivatives pricing. We re-
late pricing problems to the evaluation of conditional expectations via BSDEJs 
and PIDEs. Future research topics can, potentially, be the development of rein-
forcement learning methodologies to solve dynamic programming problems and 
apply them in the context of empirical asset pricing literature. Moreover, the 
evaluation of energy derivatives calls for SDEJs defined in a Hilbert space. The 
same theoretical constructions can also be found in the evaluation of fixed in-
come derivatives, such as the random field models proposed and studied in [69]. 
One can, of course, apply Karhunen-Loéve expansion for a dimension reduction 
to reduce the problem to the evaluation of conditional expectations of regular 
SDEJs. However, the development of machine learning based methods to solve 
directly the conditional expectations on the stochastic processes defined in a 
Hilbert space is important. In addition, stochastic differential games, that arise 
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in the context of American game options, equity swaps, and the related 
Mckean-Vlasov type FBSDEJs (mean-field FBSDEJ, see [70]) are important top-
ics in mathematical finance. They are also related to the theoretical analysis of 
high-frequency trading. Finding machine-learning based numerical methods to 
solve these equations is of great interest to us. Last, but not least, machine learn-
ing methods in asset pricing and portfolio optimization, which can be found in 
[71], [72], [73], [28], [74] and [75], admit an elegant way to price financial de-
rivatives under  -measure. For example, we can use the method in [72] to ca-
librate the SDF process and use [75] to generate market scenarios. These me-
thodologies, combined with the methods documented in this paper and [1], have 
the potential to solve for any derivative price. We leave all the development to 
future research.  
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Appendix 

A. Convergence of the Proposed Methodologies 

Proof of Theorem 10. It is known from the projection theorem of Hilbert space 
that { } 1n n

h ∞

=
 and h actually exist and are unique. Moreover, PROJ

n nh h=  as 
indicated by the repeated projection theorem. It is also known that 

ORTH
nnh h− ∈   . As we ask that Assumption 6 hold, we know that 

0nh h− → +


 as n →∞ .  
Proof of Theorem 12. The proof follows from Assumption 6 and Theorem 8. 

We have  

lim PROJ
nn
xΨ→∞                            (27) 

lim PROJ PROJ
n nn

xΨ→∞
=

                    (28) 

lim PROJ
n nn
hΨ→∞

=
                         (29) 

PROJ hΨ=
                             (30) 

.h=                                    (31) 
This concludes the proof.  
Proof of Lemma 1. For any ( )2

t tLλ ∈  , we have  

( )2
T tξ λ −                         (32) 

[ ]( ) [ ]( )2 2
T t T t t Tξ ξ λ ξ   = − + −      

               (33) 

[ ]( ) [ ]( )
0

2 t t T T t Tλ ξ ξ ξ
=

 + − − 


               (34) 

[ ]( ) [ ]( )2 2
T t T t t Tξ ξ λ ξ   = − + −      

              (35) 

[ ]( )2
.T t Tξ ξ ≥ −  

                     (36) 

Therefore we have the claim announced.  
Proof of Theorem 17. The proof of this theorem follows from Assumptions 1, 

2, 6, 14, 15 and Theorem 10, by choosing  
[ ] ( ) [ ] ( ){ } ( ) ( )2 2 2 2| ,t T T T t T t t t T TL L L Lξ ξ ξ∈ ∈ ⊂ ⊂ ⊂ =       .  

Proof of Theorem 18. Essentially, Equation (7) is the result of Gauss-Markov 
Theorem and the consistency property of OLS estimator.  

Proof of Proposition 19. This is a direct consequence of the discussion in ([57], 
Section 3) (see Equation (5)) and Theorem 10. To elaborate, consider 

( )2
T TL=  , ( )Tx Xψ= , its projections h and nh  on ( )2

1
n

t t tn
L∞

=
= ⊂


    
and n

t  defined in this proposition. Suppose that  

1
j

j tjh eλ∞

=
= ∑  and 1

nm n j
n j tjh eµ

=
= ∑ , 

where 1n nm m +<  and { }
1

j
t j

e
∞

=
 is a set of orthonormal basis in t . From the 

repeated projection theorem, we know that 1n n
j j jµ µ λ+ = =  for any 1 nj m≤ ≤ 6 

 

 

6Here we only consider the case where n nmΛ = < ∞  for any n∈ . The case with nΛ = ∞  is 
analogous. 
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and n∈ . From the 2L  property of h, we know that 2
1 jj λ∞

=
< ∞∑ . Therefore, 

( )2
2

1 0
Tn jj nLh h λ∞

= +
− = →∑

 as n →∞ .  
Proof of Proposition 20. This is a direct consequence of the discussion in ([58], 

Theorem 2.2), localization arguments, Theorem 10 and the proof of Proposition 
19.  

Proof of Theorem 23. The first, second and third equality are obvious given an 
appropriate choice of Φ  depending on the Markov property of X and its mo-
ment conditions in Assumption 2. Actually, because of the existence and uni-
queness of φ ∈Φ  such that the RHS of the first equality achieves minimum, we 
know that  

( ) ( )
2

1 1
min ,k k

t t t t

K K

T tX U X U
k k

X t X
φ

ψ φ
∈ ∈∈Φ = =

  −  
   

∑ ∑ 1 1           (37) 

( )
( ) ( )( )

1

2

,
min , .kK t tk kk x Ut

T k t X Ut x
X t X

φ
ψ φ

= ∈
∈∈Φ∑

 ≤ −  


1
1          (38) 

From another perspective, we know that  

( ) ( ) ( )( )
1

2

,
min ,K k

k k t tk x Ut
T k tt x X U

X t X
φ

ψ φ
= ∈

∈Φ ∈∑
 −  


1

1  is a piecewise minimization. 

Therefore  

( ) ( )
2

1 1
min ,k k

t t t t

K K

T tX U X U
k k

X t X
φ

ψ φ
∈ ∈∈Φ = =

  −  
   

∑ ∑ 1 1          (39) 

( )
( ) ( )( )

1

2

,
min , .kK t tk kk x Ut

T k t X Ut x
X t X

φ
ψ φ

= ∈
∈∈Φ∑

 ≥ −  


1
1          (40) 

The last equality in Equation (13) holds.  
Proof of Theorem 24. The proof of this theorem is a direct consequence of 

Equations (13), (15) and triangle inequality.  

B. Other Applications 

In this section, we document other applications of our methodologies in finance. 
B.1. Joint Valuation and Calibration 
Suppose that there are N derivatives contracts whose prices at time 0t  can be 

expressed as { }0 1

Nn
t n

V
=

.  Their payoffs are ( ){ } 1

N
n n

Xϕ ⋅ =
,  where X is an  

r-dimensional vector of state variables. Sometimes we write X θ  to explicitly 
state dependence of X on its vector of parameters θ . Here suppose X θ  satis-
fies a system of stochastic differential equations with jumps  

( ) ( ) ( ) ( )d , | d , | d , , | d ,d .t t t t tE
X t X t t X W t X e N t eθ θ θ θµ θ σ θ γ θ= + + ∫    (41) 

The main idea is that { }0 1

Nn
t n

V
=

 might contain derivatives contracts from dif-
ferent asset classes or hybrid ones. Therefore, we need to model X as a joint high 
dimensional cross-asset system. One potential problem is that θ  is in general a 
high-dimensional vector, which will be hard to estimate using usual optimiza-
tion routines in R or MATLAB software system. However, we can apply ADAM 
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method, studied in [76] for the parameter estimation. It is based on a stochastic 
iteration method via the gradient of the MSE function. The key to evaluate the 
gradient of the MSE function is to evaluate the dynamics of tX θ

θ∂ . It satisfies 
the following system of SDEJ  

( ) ( )
( ) ( )
( ) ( )

( ) ( )

d , | d , | d

, | d , | d

, , | d ,d

, , | d ,d .

t t x t t

t t x t t t

tE

x t tE

X t X t t X X t

t X W t X X W

t X e N t e

t X e X N t e

θ θ θ θ
θ θ θ

θ θ θ
θ θ

θ
θ

θ θ
θ

µ θ µ θ

σ θ σ θ

γ θ

γ θ

∂ = ∂ + ∂ ∂

+ ∂ + ∂ ∂

+ ∂

+ ∂ ∂

∫
∫





        (42) 

The existence and uniqueness of the solution to the SDEJ system (42) can be 
obtained with necessary regularity conditions on the coefficients. 

B.2. Option Surface Fitting 
There is a strand of literature that strives to fit option panels using different 

dynamics for the underlying assets, for example, [77] on stochastic volatility 
models, [78] on local volatility models and [79] on local-stochastic volatility 
models. Models that incorporate jumps can be found in [80], [81] and references 
therein. 

Consider the following stochastic differential equation  

( ) ( )

( ) ( )

0 0

0 0

d
, d , , d ,

d , d , d , .

t
t t t t

t

t t t t

S
r t X t t S X W S s

S
X t X t t X W X x

σ

α β

= + =

= + =

             (43) 

Here we model σ  by a DNN. The advantage of doing so is that it might fully 
capture the market volatility surface meantime ensuring a good dynamic fit, 
while still preserving the existence and uniqueness result for the related stochas-
tic differential equation system (43). 

B.3. Credit Risk Management: Evaluation on a Future Simulation Grid 
We refer the problem definition to [6]. It is easy to illustrate that the problem 

is equivalent to the evaluation of conditional expectations on a future simulation 
grid and our methods are suitable for this type of problems. Note that, some 
XVA quantities, such as KVA, require the evaluation of CVA on a future simu-
lation grid. Our methodologies, such as the ones proposed in Sections 2 and B.7, 
can be applied on the evaluation of KVA, once we obtain future present values of 
financial claims. 

B.4. Dynamic Hedging 
There are references that utilize machine learning (mainly Reinforcement 

Learning, or RL) to solve dynamic hedging problems, e.g., [82], [83] and [84]. 
However, here in this paper we will not follow this route. Instead, we use the 
BSDE formulation of the problem in [2] and try to solve the BSDE that cha-
racterizes the hedging problem. The methodology is outlined in Appendix 
B.11. 

B.5. Dynamic Portfolio-Consumption Choice 
We use [85] as an example and try to solve the related coupled FBSDE with 

jumps. The methodology is outlined in Appendix B.11. Other examples of dy-
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namic portfolio optimization can be found in [53], [86], [87], [88], [89], [90], 
[91], [92], [93] and [94]. Essentially, dynamic portfolio-consumption choice 
problems are stochastic programming in nature and can be related to HJB equa-
tions or BSDEs. An example of using HJB representation of the problem can be 
found in [95]. The equations can be solved using the methodologies outlined in 
Section 0 and Appendix B.11. 

B.6. Transition Density Approximation 
We can generalize the theory in [96] and [97] to approximate the transition 

density of a multivariate time-inhomogeneous stochastic differential equation 
with jumps. According to [96] and [97], the transition density of a multivariate 
time-inhomogeneous stochastic differential equation with or without jumps can 
be approximated by polynomials in a weighted-Hilbert space. See ([97], Equa-
tion (2.1)), for example. The key is to evaluate the coefficients { }cα α , which is, 
again, the evaluation of conditional expectations. The resulted transition density 
can be used in option pricing, MLE estimation for MSDEJs and prediction, fil-
tering and smoothing problems for hidden Markov models, see [98]. 

B.7. Evaluating Conditional Expectations via a Measure Change 
Consider the following equation  

( ) ( ) ( ), ; , drt X t x y y yτψ τ ψ  = Γ  ∫               (44) 

( ) ( )
( ) ( )0 0

0 0

, ; ,
, ; , d

, ; ,r

t x y
t x y y y

t x y
τ

τ ψ
τ

Γ
= Γ

Γ∫              (45) 

where 0Γ  is the transition density of a stochastic differential equation with 
jumps, which can be simulated for arbitrary ( ),t τ  without using time discreti-
zation7 and Γ  is the transition density function of X. Γ  can be approximated 
by the method outlined in Appendix B.6. It is immediately obvious that we can 
generate random numbers from 0Γ  and reuse them for the evaluation of the 
conditional expectation on the left hand side of Equation (44) for different 
( ),t τ . 

B.8. Empirical Asset Pricing with Factor Models: Evaluating Expected 
Returns 

In this section, we propose to use machine learning, mainly, ANN techniques, 
to construct factor models and evaluate the conditional expected asset returns 
and risk-premium cross-sectionally. Related references are [28] and [74], among 
others. [3] provide a good example with basis function expansion to capture the 
non-linearity in asset returns. Specifically, consider the following lead-lag re-
gression  

( )1 , 1, .t t t tR f t X ε+ += +                     (46) 

Here , 1 0t t tε +  =   and X is a set of risk factors. Then, [ ] ( )1 ,t t tR f t X+ = . 
Linear factor models assume that ( ), t tf t x a b x= + . f can also be approximated 
by basis function expansion, using universal approximation theorem, or via 
ANNs. The fitted conditional expected asset returns can be fed into the 

 

 

7For example, a Lévy process.  
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mean-variance optimizer, i.e., [99] and construct long-short portfolios or other 
trading strategies. 

B.9. Recovery and Representation Theorem 
In [100], the authors propose a model-free recovery theorem, based on a se-

ries expansion of higher order conditional moments of asset returns. Their work 
inspires us to exploit the ANN-factor models to represent the higher order con-
ditional moments of the asset returns and therefore validating the recovery 
theorem proposed there-in. Moreover, similar to [57], our machine learning ap-
proximation to the conditional expectations of financial payoffs amounts to a 
compound option representation of arbitrary 2L -claims in the financial eco-
nomic system. Also, the second numerical method means that any financial 
claim, can be locally approximated by a linear combination of power derivatives, 
following the same idea. 

B.10. Theoretical Asset Pricing via Dynamic Stochastic General Equili-
brium 

Note that, the equation systems proposed in [101], [102] and [103] can be 
transformed into BSDEs and we can use time discretization and apply the tech-
niques proposed in Section 2 and Appendix B.11 to solve them. In this paper, 
however, we will not test our methods on this strand of literature. 

B.11. Solving High-Dimensional CFBSDEJs 
A coupled forward-backward stochastic differential equation with jumps 

(CFBSDEJ) can be written as  
( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( )

( )

0 0

d , , , , d , , , , d

, , , , , d ,d

d , , , , d d d ,d

d

t t t t t t t t t t

t t t tE

t t t t t t t tE

t tE

T T

X t X Y Z V t t X Y Z V W

t X Y Z V e N t e

X x

Y f t X Y Z V t Z W U e N t e

V U e e

Y X

µ σ

γ

ν

φ

= +

+

=

= + +

=

=

∫

∫
∫





        (47) 

where ( ) ( ) ( )d ,d d ,d d dN t e N t e e tν= −  is a compensated Poisson random 
measure. We take the following steps to solve Equation (47) numerically. 

Time Discretization 
Discretize time interval [ ],t T  into n-equal distance sub-intervals 

[ ){ } 1
1 0

,
n

i i i
t tπ

−

+ =
=  with 1i it t

h
n

+ −
= , 0t t=  and nt T= . Consider the following 

Euler discretized equation.  

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( )

0 0

d , , , , , , , , d

, , , , , d ,d

d , , , , d d ,d

d

i i i i i i i i i i

i i i i

i i i i i i i i

i i

t i t t t t i t t t t t

i t t t t iE

t i t t t t t t t iE

t tE

T T

X t X Y Z V h t X Y Z V W

t X Y Z V e N t e

X x

Y f t X Y Z V h Z W U e N t e

V U e e

Y X

µ σ

γ

ν

φ

= +

+

=

= + +

=

=

∫

∫
∫





      (48) 
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where 
1

d :
i i it t tX X X

+
= −  and 

1
d :

i i it t tY Y Y
+

= − . Denote the solution to the 
time-discretized CFBSDEJ as ( ), , ,X Y Z Uπ π π π . We need the following assump-
tion.  

Assumption 25. Under the norm [ ]
2

,t T⋅


 introduced in [104], we have  

( ) ( )
[ ]

2

,
, , , , , , 0

t T
X Y Z U X Y Z Uπ π π π− →


             (49) 

as n →∞ .  
Mollification 
Define a sequence of functions ( ), , , ,m m m m mfµ σ γ φ , which are bounded and 

have bounded derivatives of all orders and  

( ) ( )lim , , , , , , , ,m m m m m

m
f fµ σ γ φ µ σ γ φ

→∞
=              (50) 

in a point-wise sense. Also denote the solution to the CFBSDEJ with coefficients 

( ), , , ,m m m m mfµ σ γ φ  as ( ), , ,m m m mX Y Z U . Then, we have the following theo-
rem.  

Theorem 26. Under Assumption 25 

( ) ( ), , , ,, , , , , ,m m m m
t u u u u t u u u ug X Y Z V g X Y Z Vπ π π π   →           (51) 

as ,n m →∞  for arbitrary 0T u t> > > . g is a function with at most poly-
nomial growth in its arguments.  

Picard Iteration 
After the time discretization and mollification are done, we will resort to 

Picard fixed point iteration technique to decompose the solution 

( ), , , ,, , ,m m m mX Y Z Uπ π π π  to a sequence of uncoupled FBSDEJs whose solutions 
are denoted by ( ), , , , , , , ,, , ,m k m k m k m kX Y Z Uπ π π π , where k denotes the index of Pi-
card iteration. For zeroth order, consider  

( ) ( )
( ) ( )

, ,1 , ,1 , ,1

, ,1

, ,1
0 0

d , ,0,0,0 , ,0,0,0 d

, ,0,0,0, d ,d

i i i i

i

m m m m m
t i t i t t

m m
i t iE

m

X t X h t X W

t X e N t e

X x

π π π

π

π

µ σ

γ

= +

+

=

∫   

( )
( ) ( )

( ) ( )

( )

, ,1 , ,1 , ,1 , ,1 , ,1 , ,1

, ,1

, ,1 , ,1

, ,1 , ,1

d , , , , d

d ,d

d

i i i i i i i

i

i i

m m m m m m m
t i t t t t t t

m
t iE

m m
t tE

m m
T T

Y f t X Y Z V h Z W

U e N t e

V U e e

Y X

π π π π π π

π

π π

π π

ν

φ

= +

+

=

=

∫
∫



       (52) 

For 2k ≥ , define  

( )
( )
( ) ( )

, , , , , , 1 , , 1 , , 1

, , , , 1 , , 1 , , 1

, , , , 1 , , 1 , , 1

, ,
0 0

d , , , ,

, , , , d

, , , , , d ,d

i i i i i

i i i i i

i i i i

m k m m k m k m k m k
t i t t t t

m m k m k m k m k
i t t t t t

m m k m k m k m k
i t t t t iE

m k

X t X Y Z V h

t X Y Z V W

t X Y Z V e N t e

X x

π π π π π

π π π π

π π π π

π

µ

σ

γ

− − −

− − −

− − −

=

+

+

=

∫ 
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( )
( ) ( )

( ) ( )

( )

, , , , , , , , , ,

, , , ,

, , , ,

, , , ,

d , , , ,

d d ,d

d

i i i i i

i i i

i i

m k m m k m k m k m k
t i t t t t

m k m k
t t t iE

m k m k
t tE

m k m k
T T

Y f t X Y Z V h

Z W U e N t e

V U e e

Y X

π π π π π

π π

π π

π π

ν

φ

=

+ +

=

=

∫
∫



           (53) 

Evaluation of Conditional Expectations 
For Equation system (53), we can start from the last time interval and work 

backwards. The problem is transformed into the evaluation of ( )1

, ,
1,

i i

m k
t i tu t X π

++
 
  , 

where u is the intermediate solution and satisfies ( ) ( ),u T φ⋅ = ⋅ . 
B.12. Pricing Kernel Approximation 
A pricing kernel tη  is an ( )2

tL   stochastic process, adapted to the infor-
mation filtration { }0t t T≤ ≤

 , such that  

, ,t t t T t T TV D Vη =                         (54) 

where TV  is an T  payoff, d
, e

T
vt r vT

t T
t

DD
D

−∫= =  and ,
T

t T
t

η
η

η
= . It is obvious 

that [ ]t t Tη η=  , i.e., η  is a  -martingale. Represent  

( )0
j j

T T T jjD a eη θ∞

=
= ∑  

where { }
0

j
T j

e
∞

=
 is a set of orthonormal basis in ( )2

TL   space and jθ  is the 
vector of coefficients of je . Suppose that we have K derivative contracts, de-
noted by { }

1

Kk
T k

V
=

, with basis representation ( )0
k j j

T k T jjV b e θ∞

=
= ∑ . Therefore  

( ) ( )0 0
0 0 0

.k j j j j j j
t t T j k T j k

j j j
V a e b e a bθ θ

∞ ∞ ∞

= = =

 
= = 

 
∑ ∑ ∑           (55) 

Equation (55), if truncated after J terms, formulates a linear equation system 
and the unknowns { }

0

Jj

j
a

=
 and { } 0

J
j j

θ
=

 can be recovered from ordinary least 
square optimization. After we obtain Tη , tη  can be recovered by [ ]t t Tη η=  , 
via the methodology outlined in Section 2.  

Remark 27. If ( ){ }
0

j
t j j

e θ
∞

=
 is not orthonormal, Equation (55) becomes non-

linear in { } 0

J
j j

θ
=

. The evaluations remain the same, with only more complicated 
numerical computations. The basis can also be represented by ANNs.  

Remark 28. For a specific representation via universal approximation theo-
rem, see [55]. 

Remark 29. It is possible to allow shape constraints in the estimation (55) and 
formulate a constrained optimization problem, see [105], for example.  

We can also directly utilize the method proposed in Section 2, when used with 
time discretization and Monte Carlo simulation. Denote M as the number of  

sample paths and { } ,,

1, 1

M Km k
T m k

V
= =

 as M simulated final payoffs for each of the K 

derivatives. Define { } 1

M
m m

a
=

 as M real numbers. Let { }0 1

Kk

k
V

=
 be K derivative 

prices at time 0 0t = . Find the solution to the following optimization problem  
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{ }
{ } 1

2
,

01
1 1

1arg min .
M

m m

K MM k m k
m m Tm

k m
a V V

Mφ
φ

=
=

= =

  = −  
   

∑ ∑              (56) 

After obtaining { } 1

M
m m

a
=

, we try to find function relation g such that  

( ) 0,, m m m
m T T Ta g T X D η= =  

where { }
1

Mm
T m

X
=

 is a set of simulated state variables at time T. When fitting g, 
we can add some shape or no-arbitrage constraints, or other regularization con-
ditions, to the optimization problem and formulate a constrained ANN  

(ACNN). We always assume that the matrix { }( ){ }, ,, ,

1, 1 1, 1
t

M K M Km k m k
T Tm k m k

V V
= = = =

 is a 

K K×  invertible matrix, where ( )t ⋅  is the matrix transpose operator. 

C. Intuition of Convergence Proof for Appendix B.11 

In Appendix B.11, we propose a method to solve numerically a CFBSDEJ. As 
long as the time discretization step is convergent, we can argue that the metho-
dology converges, in some sense, to the true one, as outlined above in Appendix 
B.11. Potentially, we need an a priori estimate formula, similar to the one in [2], 
for coupled BSDEs, to justify Picard iteration at every time discretization step. 
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