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Abstract

The aim of the paper is to incorporate a stochastic correlation structure when
pricing quanto options under the assumption that both the underlying asset
and the foreign exchange (FX) rate follow a stochastic volatility model. This is
reached not only assuming that the correlation between the underlying asset
and its variance process is stochastic (and the same between the exchange rate
and its variance process), but also assuming a stochastic correlation between
the underlying asset and the exchange rate. Under different stochastic corre-
lation processes specifications, by approximating non-affine terms, we derive
a closed-form approximation for the characteristic function of the underlying
asset. Numerical experiments and comparison with Monte Carlo simulations
are discussed. The analytical tractability of the formulas allows for fast pricing
and calibration purposes.
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1. Introduction

A quantity-adjusting option, also known as a gquanto option, is a cash-settled
cross currency derivative, where the underlying asset is denominated in a cur-
rency (the so-called foreign currency) which is different from the one in which
the option is settled (the so-called domestic currency). Investors use quanto op-
tions when they believe a particular asset will perform well in a country but they

fear that country’s currency will not perform as well. Thus, they will buy an op-

"The views, opinions, positions, results or strategies expressed in this article are those of the author
and do not represent the views, opinions, positions, results or strategies of, and should not be attri-
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tion written on the foreign asset while keeping the payout in their domestic cur-
rency. This makes the option free from the foreign exchange rate fluctuation
risk.

As pointed out in [1], the correlation between the underlying process and the
exchange rate process plays a very important role in pricing. However, assuming
a constant correlation between the underlying asset and the exchange rate is not
realistic and might lead to correlation risk. In this paper, we choose to model
correlation as a stochastic process.

In particular, our model specification attempts at unifying the setup of [2] and
[1]. Indeed, in the first work, the authors extend the Heston model [3], incorpo-
rating a stochastic correlation between the underlying asset and its variance
process, while in the second one, the same authors assume a stochastic correla-
tion between the underlying asset and the exchange rate but within a constant
volatility framework for both the underlying asset and the exchange rate.

In this paper, we relax the assumption of constant volatility for the underlying
asset and the exchange rate, and we will assume that both of them follow a sto-
chastic volatility model where, not only the correlation between the underlying
asset and its variance is stochastic (and the same assumption holds for the ex-
change rate and its variance), but also the one between the underlying asset and
the exchange rate is stochastic.

Adopting different stochastic correlation processes specifications, such as the
Ornstein-Uhlenbeck and the bounded Jacobi processes, the characteristic func-
tion for the underlying asset can be derived in closed-form, by approximating all
the non-affine terms in the model.

The remainder of the paper is organized as follows. In Section 2, we introduce
the stochastic evolution for the underlying asset and for the exchange rate under
the stochastic volatility model assumption with stochastic correlation structure.
In Section 3 we show how to embed a stochastic correlation structure into the
pricing of FX quanto options. In Section 4, we investigate the approximations of
non-affine terms in the model, and by using different stochastic correlation
processes specification, we derive the corresponding characteristic functions for
the underlying asset in closed-form. In Section 5, we discuss how to discretize
the model dynamics in order to run Monte Carlo simulations and in Section 6
we test the accuracy of the proposed approximation by comparing it with the

Monte Carlo method. Conclusions are reported in Section 7.

2. A Joint Stochastic Volatility Model for the Underlying
Price and the FX Rate with Stochastic Correlation
Structure

Let S(z) be the price at time ¢ for a certain underlying asset denominated in a
foreign currency and let X (¢) be the (spot) exchange rate at time #between the
foreign and the domestic currencies. In what follows, we will assume that, under
the historical measure P, the stochastic dynamics for S(¢) and X (¢) are

given by the following system of stochastic differential equations (SDEs):
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ds(z
S((t)) = ugde + .V (1)dW, (1), 5(0)> 0,
Av (1) =&y (g =V (1)) de + oy |V (1)dW (1) .V (0) > 0,
(1)

X(1)
dU (1) = &y (1 ~U (1)) dt + 0, JU (1)dW, (2),U(0) >0,

where V(t) and U(t) are the variance processes for S(r) and X(r) re-
spectively, following the well-known CIR process, as introduced in [4]. In par-
ticular, the stochastic dynamics for the pairs (S(t),V(t)),(X(t),U(t)) is

nothing less than the Heston dynamics, but instead of assuming a constant cor-

(1)

= udt + . JU (1)dw, (1), X (0) >0,

relation coefficient as in [3], we impose a stochastic correlation structure, in the

sense that
Corr(dW (¢)",a,, (1) ) =n(t)dr and Corr(dWy (¢),dW, (1)) =7(r)dr, (2)

where 77(#) and y(z) are stochastic processes, whose dynamics is given by:
dn(r)=a(t,n(t))de+b(e,n(e))dw, (1), n(0) e [-1.1],
dy (£)= (.7 (1)) de+d (e.7(1))dW, (1), 7 (0) e[-1.1],

for opportune coefficients a(t,77(t)),b(t,n(t)).c(t.7(¢)).d(t.7(t)), which will

depend on the assumption for the stochastic correlation process and which will
be defined in Section 4.

(3)

Therefore, as previously done in [2], we have assumed that the underlying as-
set S(z) (respectively the exchange rate X (r)) is stochastically correlated with
its own variance process ¥ (¢) (resp. U(r)), with correlation process given by
n(t) (resp. y(¢)).

Besides that, we will assume that the underlying asset S() and the exchange
rate X (¢) are stochastically correlated, with correlation process p(r), whose

stochastic dynamics is given by:
dp(0)=1 (6. (0)dr+g (6. 8(1))dW, (1), (O)e[-L1), @)

once again for opportune coefficients f (t, yij (t)), g(t, p (t)) to be specified.

We note that assuming a stochastic correlation between the underlying asset S
and the exchange rate X has been proposed in [1], but in their work the authors
assume a constant volatility structure for S and X. Therefore, our model specifi-
cation attempts at unifying the setup of [2] and [1].

As far as the other correlations are concerned, we will assume that the only

non-zero correlations are as follows:
Corr (W (1) W, (1) ) = pygdt, Corr(Wy ()" W, (1)" ) = o dt,
(5)
Corr (W (1) .1, (1)") = Pyt Corr(W (¢) ., (1)7 ) = py i,

Le. we assume that the three stochastic correlation processes (ﬂ(t),}/(t), p (t))

are not correlated among each other, and that they are not correlated with the
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variance processes (V(t),U (t)) either. Finally, the variance processes them-
selves are not correlated between each other, and that »(¢) (resp. U(¢)) is not
correlated with x () (resp. S(z)).

In summary, our model specification under the historical measure P reads

as:

dég((z;) = e+ Y (1), (1)
AV (1) =ry (g —V (1)) de + oV (1)dW (1)
)=

an(e)=afr (>>dr+b<rn< ), () n(0)[-1.1],
X<(f>)‘uxdr+ U(0am (1), ©

o,

U(t) =y (1t ~U (¢))de + 0, JU (0w, (1)
dy (1) =c(t.y (1))dr+d (.y (1)) aW, (1) .7 (0) [-1.1].
dp(1)= 1 (t.B(1))de+g(1.5(0)dW, (1) . B(0) e[-1.1].

with the following correlation structure for the seven-dimensional Brownian

motion

(AONAONAGNAONAGRAGIAGY

1 77(t) Psy ﬁ(t) 0 Psp
n) 10 0 0 0 0
p, O 1 0 0 0 0
R=(p,),=|[B(t) 0 0 1 y(t) py, Pl
o 0 0 y& 1 0 0
o 0 0 p, 0 1 0
| Psp 0 0 pux 0 0 1 ]

which satisfies the common requirements of being symmetric and positive
semi-definite.
By the argument of change of measure and using the Girsanov theorem, the

model in Equation (6) can be specified under the risk-neutral measure Q as:

% (e = B (DU (0))de+ o (e)ams (1)°

av (1) =[x (s = () =2 (1) Jat oy ¥ ()ams (1)

drp (1) = (a(t.(1))= 4, (1)) de +b(t,0()) AW, (1) m (0) e [-1,1],
d;((tt))=(rd—q)dt+ U () (1)°, @
U (1) =[xy (11 = U (1))~ Ay (0) ]de + 0 JU (1)aW, (1),

dy (6)=(c(t:7(1))= 2, (0))dr+d (2 (1)) a7, (1) (0) [-1.1],

dp ()= (f (£.8(0)) =25 (1)) de+ 2 (1. 5(0)) 4, (1) B (0) [-1.1],

with the same correlation structure as the one above, and where (xlv (1), 4, (t))
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and (/1,7 (t),/Iy (t),/lﬁ (t)) represent the price of volatility and correlation risk
respectively.

In particular, in what follows, we will assume that the market price of volatili-
ty risk is linear in the variance process, namely A, (¢)=A,V(¢) (resp.
Ay (t) = A4,U (1)), and that the market price of correlation risk is constant, in the
sense that 4, ()=, andthesamefor 4 (z) and A,(r) respectively.

The risk-neutral dynamics for the variance process Vreads as'

v (£) = (xy + 4y )[K“Tviv_v(t)szvadWV ()
=&y (@, ~V (1)) dt+oy (1), (1)

where we have defined &, =« +4,, i, =

respectively.
\Y%

Furthermore, under the log-transform for the underlying asset S and for the
exchange rate X; ie. Y(l):ln(S(t)), and Z(¢) =ln(X(t)), the risk-neutral

dynamics for Sand Xin the model of Equation (7) can be re-written as:

v (¢)= [n__V ﬂ(trrjdt+ v (1)dwg (1)°,
dZ(t)z(rd—rf—%U(t)jdt+ U (), (1)°,

with the same dynamics for the variance and correlation processes as the one

above.

3. FX Quanto Options Pricing under Stochastic Volatility and
Correlation

Let P(7)= P(t,Y(t),V(t),f](t),Z(t),U(t),}/(t),ﬂ(t)) be the value at time ¢
of any contract written on the underlying asset S, denominated in the foreign
currency, but paid in the domestic one.

Applying the multi-dimensional Feynman-Kac formula gives the following
partial differential equation (PDE) satisfied by 2

Lo 20 T oot

+a(r,n<r>>§—§+'<v<uv—V<f>>2—f+'<u<ﬂv—’f<f>>§—§
+e(t,7<z>>2—f+f<nﬂ<t>> ()

oP 1, 0P 1 DLl
o’ 2 oz’

—+—V(t
8,B+2 ()
1 82P 1 a’P

NONGIOE

1, 82P 1, 0
ST (nﬂ(r))

'A similar discussion holds for the variance process Uas well.
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2

ran (O ()L 4 00 2L s p P el p0)
P T (1) 2L T 0080 2 ®
+pxymd(t,7(t))§;—£/—rdP =0.

In case where P represents the price of a quanto (call) option, then its payoff

(i.e the terminal condition of the above PDE) at maturity time 7, reads as:
P(T)=max(S(T)-K.,0), 9)

where Kis the strike price of the option.

Risk-neutral arguments imply as well that
P(t)=P(,8(2), X (¢),7,K) = "X (1)B2 [ (S(T)-K)_| F(£)], (10)

where 7 (¢) represents the flow of information available up to time &

As done in [3], we assume that a solution of (10) has the following form:
P(6,8(¢), X (¢),7,K) = " (BE[S(T)| F (1) ] R -KR), (1)

where the first term is the present value of the underlying asset upon optimal
exercise, and the second term is the present value of the strike price payment (in
the above equation we have also assumed that X (¢)=1).

Being more explicit, the probabilities F,P, are defined as follows:

P =P (Y(T)2InK|F(t)), forj=1,2, (12)

and they are nothing less than the conditional probabilities that the option ex-
pires in-the-money. It is well known that these probabilities are not immediately
available in closed-form, however, we know that not only P, but also their
corresponding characteristic functions ¢, = E[eiux(r) | F (t)} satisfy the same
PDE (8), subject to the terminal condition

¢, (T):e[”X(T), for j=1,2. (13)

From the knowledge of the characteristic functions ¢, one can get the

probabilities P, by applying the following Fourier inversion formula

—iolnK
+00 € .
p-l L R{—qdw. (14)

T2 qgdo io

If we look back at Equation (11), we can observe that the only remaining
quantity to be discussed is E®[S(T)|F(¢)], which takes the following form,

under the model specification of Equation (7):
EQ I:S(T) | ]:(t):| — err(T—’)*'lnS(’)EQ Iie_LTﬂ(X)WWdS | ]:(t):l (15)
Since, in general, there is no closed-form solution for the above expectation,

we propose to approximate the term B¢ [e_j’ PONUE) s | F (t)} as follows:
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EQ [e‘fﬂ(‘?)mmdy |.7:(l‘):|

T T (16)
~ EQ [G’WWL B(s)ds | J:(t)jl ~ EQ [e*mWL B(s)ds | ]:(t):l’

where the last term on the right hand side can be calculated by deriving the cha-

T
racteristic function ¢, of the integrated correlation process éz-[t B(s)ds

under the risk-neutral measure and then set as argument iw,/U (0),/V(0) .

Therefore, we have that
B[S(T)|F(1)] = (1) ", (ioyJU (0)yV (0) ), (17)

from which it follows that our proposed solution would read as:

P(t)=e " (S(t)erf(m)@ (iU (0)¥ (0))R-KP, ) (18)

Obviously, the system of SDEs in Equation (7) is not in the affine form, as
some of the coefficients in the corresponding PDE (8) are not linear in the state
variables (y, v,?],z,u,y,ﬂ). Therefore, as done in [2] and in [1], we linearize the
coefficients of the pricing PDE in order to generate a system of SDEs which is in
affine form. As we leave the specification of the drift and volatility coefficients

for the correlation processes in Section 4, we first consider the following terms:
oyn()V (1) and oy (1)U (), (19)
which can be approximated (see for example [2]) as
on(t)V (t)=oyn(t)BE [V (1) |,ouy (1)U (1) = oy (1)EC[U(1) ], (20)

and this is justified from the fact that we have assumed zero correlation between
the correlation process 7(z) (resp. y(z)) and the variance process V()
(resp. U(1))-

Next, we propose to approximate the term [ (t)mm as follows:

B()JU () (1) = p(0)EC[U (1) JEC [V (1)]. (21)

where we use the fact that the correlation process ﬂ(t) is not correlated with
any of the variance processes Vand U, and also that V'and Uare not correlated
between each other.

As said, the affinity of the terms including the drift and volatility coefficients
of the stochastic correlation processes 77(t), ;/(t) and f (t) is discussed in the

next section, as it will depend on the chosen stochastic process for modelling the

correlations.

4. Stochastic Correlation Processes Specification

In this section, we apply an Ornstein-Uhlenbeck (OU) process and a bounded
Jacobi (B]) process in order to model stochastic correlation. As done in [2], we
will approximate the non-affine terms involving the drift and the volatility coef-
ficients of the correlation processes in order to be able to derive a closed-form

solution for the price of a quanto option under the model in Equation (7).
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4.1. The Ornstein-Uhlenbeck Process

If we assume that the processes n(t),;/(t) and ﬂ(t) follow an OU process,

then their drift and volatility coefficients are given by:

a(t,n(1)) =, (s, =1(0)) =2 E(tr (1) =x, (4, =7(1)) =4,

F(6.B(6) =15 (1, = B(£)) = 2. B(t.7(1)) (22)
d(e.r(1))=0,, g(t.A(1) =0y
In particular, the drift coefficient for 7 can be re-written as follows:
A
a(tn (1) =, (&, = (1)), with 2, = 1, =L, (23)

n

and the same holds for the drift coefficients for y and [

Since the calibration of the model in Equation (7) is done directly under the
Q measure, the usage of /¢ instead of £¢, is not relevant for the derivation
of the results.

As pointed out in [2], one of the main drawbacks of using an OU process for
stochastic correlation is the fact that the process is not bounded over the interval
[-1.1], and this specially happens for a small value of the mean reversion rate
and a large value of the volatility parameter. Nevertheless, because of its analyti-
cal tractability, we will derive the results also under the assumption that the sto-
chastic correlations follow an OU process.

Under the OU assumption for the correlation processes, the remaining

non-affine terms can be approximated as follows:
Poyo sV (0) = Py, B V(1) |-y, |V (1) = oy, B V(1) . o
24
PasOaU (1) = Py, BE [ JU (1) |, oy, 0, U (1) = 0,82 U (1) ],

where the above approximation has been proposed in [5].

In particular, the following expectations FE® [,/V(t)J,EQ [,/U (t)} involv-

ing the square root of the variance processes V and U can be approximated as
stated in the next proposition.
Proposition 1 (3.1 in [2]) Let v(z) a stochastic process, who dynamics is

given by:
dv(t)=x, (u, —v(1))dt+o,\v(1)dW, (1)°. (25)
Then, E@[ v(t)] can be approximated by

E@[ v(z)} ~m, +ne", (26)

where m,,n, and [, are defined as:

5 A
2We, indeed, have that E(t,y(z)) =x, ([1/ _ y(z)) ,with f1, = 4, 7;’ ,and

4

. 5 A
F(.B(t))=x, (i, - B(r)), with /i, =u, —K—".

B
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2 42 _
m, = /uv_go’;‘_/ ’nv:\/z_mwlv:_ln( —— ) (27)

with

2(1_ e 2 o\
dAV _\/[Voekv _M\]_i_luv (l_e—;(v )+ O, H, (1 [§ ) .28

4 8k, 1, +8k,e7 (vy— 1, )

v

Proof. See Appendix A.1.

We have therefore all the elements in order to find a solution for the pricing
PDE (8), under the assumption that the correlation processes follow an OU
process.

First, we observe that Equation (8) becomes
5{4 - pEe [ B U(t)Dg
oP

) eyt L

o ot =0 O) S, (1,705 s~ B0 27

+%V(t)g;f +%U(t)(§75+%af,V(t)(§Tf+%oéU(t)ZZIZ

Ao Tl T L T e [0 [T [ on

ro B[ O 0 B [V (O] ) N
o (O v [P

+ Py, B | U(t)}aiza};+pxyayE@[ U(t)JS;;:/—rdP:O.

By substituting (18) into the pricing PDE (29), we obtain the following PDEs
in A and P, respectively:

%+(4+%V(t)—ﬂ(t)ﬂi[ v (r) B U(r)]jz—f{rd—rf—%lf(t)
+B(0)B[ V() B U(t)})%+(lf,,(ﬂ,7—ﬂ(f))"'/)sno'r;E[ V(f)})?
)

n
oR
ou

J
Ky (,uv —V(t))+aV]E[V(t)]77(t )—+KU My —U(t))
)

o’

L. . +ﬂ(t)E[ V(f)JE[ U(t)l’jyﬁz
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o°P, o°P
+ O'VE[V(I)]T](I)%+ O'UE[U(I‘)]}/(t) o
o’ o’
+psﬁo-ﬁE|: V(e )13/7’8 + Psy 0, ,]]E[ V(t)Jénéy (30)
o°P, o°P,
+ Py B| U(t)]aaﬂ+pxy VE[JU(t)JaZa}/:O,
and
oP, 1 op,
z +(f—EV(t)—ﬁ(t)]E[ qali] u(r)Dg
+[rd—rf—%U(t))%-l—l(”(,uv—77([))2%+KV(,UV—V(t))aa%
oP, oP, oP,
#y (st =0 (1)) 05 (5 = B(O) G540 (=7 (0)
1 62132 1 1, ’p 1, o°P,
+5V(t) ay 2 2 ( ) 022 EUVV(t) a2 +26UU(I) o>
1 , 0P, 1 ,O°P, 1 ,0°P, R
30 3 ot ¥ 2% o +ﬂ(t)]E[,/V(t)]E[1/U(t)]ayaz
2132 62132
voy B[U (0] ()52
(31)
o’Pp,
+ P50y [\/ (t)} '7E|: V(t)}anay

O e TS

As pointed out in the previous section, we know that the corresponding cha-
racteristic functions ¢ = 9 (t,y,z,v,u,,B,r],j/;a)) of P, j=12, must also sa-
tisfy the PDEs (30) and (31), respectively. Their solutions can be found in a
closed-form as stated in the next lemmas.

Lemma 1. The characteristic function of P, in (18), under the assumption

that the correlation processes pB(t),n(t) and y(t) follow an OU process, is

given by:
¢ =exp(4 (r,0)+ B, (r,0)v(1)+C (z,@)u(t)+ D, (r,0)z(1) )
32
+E (1,0) B(t)+F, (r,0)n(t)+ G, (z,0)y (1) +ioy(1)),
where C, (T,a)) =D, (r,a)) =G, (r,a}) =0 and where
K _E l_e—glr
B (r,0)=—F"———, 33
(7.0) YT (33)
E (r,0)= —ia){—mva (1—efk'”1)+—man ¢ o) (1—67(’%%})1)
Ky Ky +ly
+ 2ol e’lV(T’T)(l—e_(K” +[V)T) (34)
Kg+ly

N nyny e,(lU 1y )(T-7) (1 B e—(;cﬁﬁu +y ) ):| ’

Kptly+1y
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E (T’ a)) _ (/J )E KV [%)rﬂrvT n (V(O)_/'lv )Bl er(v(r—T)
,+EK K +K
\Y% X n v (35)
+—'UVB1 ——'uVBl_ e+ BB,
K, K,—B
4 (r,0)=riot+x,u H (7,0)+ (Kq,un +(iw+1) pg,0,my )H2 (r,0)
+(iw+1) py,0,n,H, (7,0)
. 36
+(/<ﬂ/1/,+(za)+1)psﬂ0'ﬂmv)H4 (7,0) (36)
+(iw+1) pyyo4ny Hs (7, a))+;aﬂH (7, a))+;0' H,(7,).
The H functions in Equation (36) are defined as:
H (1,0)= J.TB1 (s,0)ds, H,(r,0)= L)TFI (s,0)ds,
H,(r,0)= I 7S)F, (s,0)ds, H, (1’,a))=.[OTEl (s,0)ds, .
37
,a)):I e VI w)ds, Hy (7,0 ):I;El(s,w)zds,
and the coefficients B,,B,,B,,B,,B, are respectively given by
B, =iy +oyo(w-i), (38)
B -v*5 (39)
Ky + B
B _ 5 B
B --In [ﬂ} (40)
1-Be?
é]=ia)+1(l('v—§l), (41)
Oy
l'}z My V(O)—,Uv VT _ Hy _V(O)_ o T 4 ,uv_ ) (42)
Ky K, +Ky K, + Ky — B, K, — B,

with my,my,ny,ny,l,l, asin Proposition 1.

Proof. See Appendix A.2.

Lemma 2. The characteristic function of P, in (18), under the assumption
that the correlation processes [3 (t),r](t) and ;/(t) follow an OU process, is
given by:

¢ =exp(4,(r,0)+B, (r,0)v(t)+C, (r,0)u(t)+ D, (z,0)z(t)

43
+E, (r,a))ﬂ(t)-i-Fz (T,a))n(t)+ G, (r,w);/(t)+ia)y(t)), “
where C,(7,0)=D,(7,0)=G,(r,0)=0 and where
By(ro)= S o (44)

2 S —Br’
oy 1-Be
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E,(r,0)=iw MMy <l—efkﬂr)+—mVnU eflU(T*r)(l—ef(K”””)T)
: Ky Ky +1y

T myhy, eflv(T*T) (1 _ e_(’(ﬂ+1V)r )
Ky +1ly

M gy (1 _e’(”ﬂ*lU *’V)T) )
Kp+ly+1

(e 0 ONB fovemon | (O =) B eon

E = =
? (r,a)) K, +Kky — B, K, + iy

B B NP

AP NP B | B
K, K, - B,

4, (r,0) = riot + gy, H )+(K' 1, +iops,c,m )

+iwps,o,n,H ( )+( Kgty +za)psﬂ0'ﬂmv)
+iwps,0,n, Hs (T,
The H functions in Equation (47) are defined as:

H (r,0)= J.TB2 (s,w)ds, H,(r,0)= L:Fz (s,0)ds,

(r,w) J.OreflV (7= S)Fz (s,a))ds, 1:14 (r,a)) = OTE2 (s,a))ds,
(r,a)) J‘Orefl" (r- v)Ez (s,0)ds, H, (r,0)= OTE2 (s,a))2 ds,
(r,a)) J'OTF2 (s,a))2 ds,
and the coefficients B, B,,B,,B/,B, are respectively given by
B =i +oro(wri),
5= NtB
Ky + B

bt O e m=v(0) s
’ KV Kr] +KV K,] +KV _B3 K —B3

with my,my,n;,ny,l,,l, asin Proposition 1.

o)+ Lo, (z, a))+;a a, (r.0).

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

The proof of Lemma 2 is similar to the one for Lemma 1 and is left to the

reader.

Next, we turn to the calculation of the term

EC [e—mmﬁmw } ,

in (18), where fj:.[fﬁ (s)ds is the integrated OU process. Since the OU
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process is an affine process, we can calculate the above expectation in
closed-form. This is presented in the next lemma.
Lemma 3. Let

£=[ p(s)ds

be an integrated correlation process, where p(t) follows an OU process.
Then, we have that

RO [e_ NZONGO) ﬁ(s)ds:l _ o 00-A0)2() (54)

E

with

5(1):@(1—ew), (55)

2= 000 (20 13y, ONTO) ey
: 0)U(0)0? ' (56)
J{ﬂﬁ WJWO) _V(2—K;,; L.

Proof. The proof follows the same line as the corresponding result proven in
[1], Lemma 3.3, with constant volatilities ./ V(O),, U (0) respectively.

4.2. The Bounded Jacobi Process

In this section, we assume that the processes 7(¢),y(¢+) and p(¢) follow a
bounded Jacobi (B]) process. In particular, the drift coefficient for a B] process is
exactly the same as the one for an OU process. What changes is the volatility

coefficient, and in particular, we have that
b(t,r](t)) =0, 1—77(1)2 ,
d(t,y(t))=0,1-7(), (57)

2(t.B(1)=o,\1-B(1) .

The BJ process is bounded to (—1,1)* as long as the following restriction on

the model parameters holds (for the detailed derivation, see [6]):

o,
K, > . (58)
1£u,

Similar to what we have done in Section 4.1, we observe that the non-affine
terms under the B]J stochastic correlation assumption in the pricing PDE (8) can

be approximated as follows:

J
ol (17t )= o2 (1-B2[ (). (59)
o} (1-() )~ o3 (1-E°[ A1)

It means that the boundaries —1 and 1 are not attractive and unattainable.
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and

puT T ONI= Y = 2y, B[V (1) B i (oY .
pos FONI=(0) = oo B [P [ i |
pusoUNI= A1) = prgory [ U0 B[ 1= |
PO TONI=7 () = pyyo, 8 [JU ) B[\ 1) |

Now, if we look at Equation (59), we can see that the proposed approxima-

(60)

tions involved the second moment of the BJ stochastic correlation process.
In particular, [7] has shown that, for a stochastic process p(¢) following the

B] process dynamics, the second moment is given by:

= [p0r]
—t(of,+2;cp)
(& 2 4 2 2
Gz +3KPO'2 +2/<i (p( ) (Gp K0, F Kp)

o+, ol +2k
+2/1pr,0(0)(0'£ +2Kp)(e( )l —lj+o-i (af, +K‘p)[et( 5425 _lj
—ZﬂZKp (Kp [Zet(of)+Kp) _et(o'f)JrZKp) _lj_o_;et(o'f,ﬂ(p) (eth —1))}

As Equation (61) is rather complicated and not convenient for further calcula-

(61)

tions, we rely instead on an approximation, which has been proposed in [2], and
used as well in [1]. The result is reported in the following proposition.
Proposition 2 (3.2 in [2] or alternatively 3.1 in [1]) Let p(¢) a stochastic

process, whose dynamics is given by:

4p(1) =, (1, ~ p (1) di + 0,1~ p(2) 01, (1)° (62

Then, the function h,(t)=E® [ p(t) } can be approximated by:

E? [p(t)z} ~e " +re +q,, (63)
where
2 2 2
q (s ) v = p(0) -q,-1 (64)
L 02+3/<p0;+21(; T L
o ra, —\ria: -0y
pp pZp  Uptp
sp:—ZIn[ap—rpe 2 ], p,==2n 7 , (65)
P
with
2
a, :hp(O.S)—qp, 0, :rp(l—i-rp), v, :ap-i-qp—hp(l). (66)

Proof. See Appendix B.2 in [2].
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Finally, if we look at Equation (60), the only remaining quantity we need to
calculate is E@[ 1-p(1) } , where p e {n,y,} . In order to calculate this ex-

pectation, we state the result in [2], where it is shown that

EQ[ l—p(t)z}

Il
Q
&
(=]
1
—
—_
N—
S
| I—
|
| =
(=]
1
i)
—_~
~
N—
L—
5
-
(=]
|
i)
—_
~
~—
| I—

The next proposition contains the relevant approximation.
Proposition 3 (3.3 in [2] or alternatively 3.2 in [1]) Let p(¢) a stochastic

process, whose dynamics is given by:

dp(t)=x, (1, —p(1))dt+0 1= p(t) dW, ( (68)

Then, the function h E° [«/1 p(t)2 } can be approximated by.

where
(O’f)+l(‘p)(0'2+ZK ,u;)—,u:(o“‘+3/c 0'2+2K/§)
q,=[1- , (70)
(1 yp)(a +31<a +2K)
> o
P, = 1-p(0) -q,-1, §,="2In|a, -7 * |, (71)
PG, —\26% 0,
ﬁp=—21n{p o NG T | (72)
6
P
with

a,=h,(05)-4,, 6,=5 (1+7,), v,=a,+q,-h,(1).  (73)

Proof. See Appendix B.3 in [2].

We have therefore all the elements in order to find a solution for the pricing
PDE (8), under the assumption that the correlation processes follow a bounded
Jacobi process.

First, we observe that Equation (8) becomes

%—f+(rf—%V(t)—ﬂ(t)E@[W:|EQ[ U(t)Da—P

o)
+[rd—rf —%U(t))aa—f+ic (,u,] n(t)) 77+K (,uv—V(t))Z—f
Ky (/“U _U(t))g_:JrKr (/“y _7(t))g_];+Kﬁ (”ﬁ _ﬂ(t))g_;
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82P1 Pl
v e (0 5E o (05

m})jp : y(l E@[y(u)ijz
NAC J (Ww]Ss

ro B [V (0] — vl
+ Psp0 sl |:\/V_:| [1 ALY }ﬁy;
B [ 8 [ | 28

o [T T 125

o*P
+pX70'7EQ|: U(I)JEQ[ 1—}/(t) }%—rszo.

By substituting (18) into the pricing PDE (74), we obtain the following PDEs
in B and P, respectively:

%{rf v 0-pB[ i 5] U(t)DaH

+(rd—rf_%U(t)+ﬂ(t)E[WJE[ U(t)])%
+(K‘,,(ﬂ,,—7](t))+psno-'7E|: V(t)JE[ I_U(I)ZDZ_P;

P [‘/T} [V }Sﬂg
P ”E[FJE[J*E:@

T PxpOp [\/T} [\l }sz?ﬂ
+ oy, B[ T | [Ji }g_a’;:o,

(75)
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and
2 (bl R
+(rd ’”r_1U(f)ji3izz+’(ﬂ(ﬂn_U(t))gi;;+,(v(#v V(t))%
(1, U (1) =2+ x5 (1 'B(t))g%Jr (=1 ))aai;
R

sl oS

+Eaf(l—E[}/(t)2J) [ J [JTJéyaz

(76)

+o B[V (1 ]n(z o +aUE[U )7 (2)
0*P,
+ GE[JV t ]E[ 1- tz} 2
PspOp (t) B(t) 050y
o*P,
+p. o Bl V(1) [E|J1- tz}—z
7] 0°P,
+ 0B U(:)]E[ - A1) }Mﬂ
2] 0°P, B
+ P, 8| U(I)JE[./l—y(t) }826;/ -

As pointed out in the previous section, we know that the corresponding cha-
racteristic functions ¢ =g, (¢,y,z,v,u, f,7,7;0) of P, j=1,2, must also sa-
tisfy the PDEs (75) and (76), respectively. Their solutions can be found in a
closed-form as stated in the next lemmas.

Lemma 4. The characteristic function of P, in (18), under the assumption

that the correlation processes p(t),n(t) and y(t) follow a BJ process, is
given by

Y = f:xp(ﬂ1 (r,0)+ B, (7,0)v(t)+C, (r,0)u(t)+ D, (7,0)z(1)
+E (r,0)B(1)+F (r,0)n(t)+ G, (z,0) 7 (1) +ia)y(t)),

where B,,C,,D,E,,F, and G, areasin Lemmal, and where A, 1Isgiven by

(77)

A (7,0) = niot + Ky 1 H, (r,a))+<1c,7,u” +(iw+1) ps,0,mq, )H2 (7,0)
+(iw+1) ps,0, (mvH3 (r,0)+myi H,(1,0)

+nyH (7,0)+ny7,Ho (7,0)+ 1,4, H, (r,a)))

(k15 + (10 +1) pyoymyd s ) Hy (7,0)

+(iw+1) pgyo, (mVH9 (r.0)+myiyH (z,0)+n H, (7,0)
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i (.0, (.00} 03 (12, 1 5.0
+o, (l_q’f)H‘S (r,w))—%(a; (Hm (v.0)+7,Hy; (T’a’)) (78)
+ aj (ng (T,a))+ rHy, (r,a))))

The H functions in Equation (78) are defined as:

H, (7,0)= .[OTB, (s,0)ds, H,(r,0)= J.OTF] (s,)ds,

Ay, Hy(r,0)= I(:El (s,0)ds,

Sp)s Hyo(r.0)=H(z.0. ).

1l
T
R
R

~
—_ o~ —_~
N
S
~—  ~— ~— —
Il
>
—_—~ o~ —_
D
S

H, (r,0)= ﬁ(r,a),lv +§ﬁ), Hy,(7,0)= ﬁ(r,a),lv +13ﬂ),
Hy(r,0)= H(T"‘”lv)’ Hy,(r,0)= J-TEl (S"‘))z ds,
H(7,0)= OTFI (S’a’)z ds, Hs(r,0)=H" (T’w’sﬂ)’ (79)
H, (7,0)=H" (r,w,pﬂ), Hyg(r.0)=H" (r,a),s,]),
Hy(r,0)=H"(r,0,p,).
where the functions H,H,H* and H° are given by:
H(r,0,a) = J.;e’“(r"v)lﬂ (s,0)ds, H(r,0,a)= .[Ore’“(T"Y)EI (s,@)ds, (50)

H*(1,0,a) = J‘OT({“(T*S)EI2 (s,0)ds, H (7,0,a) = J‘gef"(rﬂ)lﬂz (s,0)ds,

and all the other parameters have been already defined in Lemma 1.

Proof. See Appendix A.3.

Lemma 5. The characteristic function of P, in (18), under the assumption
that the correlation processes B(t),n(t) and y(t) follow an BJ process, is
given by

¢ = exp(il2 (z,0)+ B, (1,0)v(t)+C, (r,0)u(t)+ D, (7,0)z(1)
+E,(t,0)B(t)+F,(r,0)n(1)+G, (T,w);/(t)+ia)y(t)),

(81)

where B,,C,,D,,E,,F, and G, are as in Lemma 2, and where A4, Is given

by:

4, (r,0) =riot +x,u H (r,0)+ (K,]‘uﬂ +iwps,0,myq, )I:I2 (r,0)
+iwps,0, (mVHQ (r,0)+myf H, (7,0)

+n Hy (z,0)+nyi, H (t,0)+n,4,H, (7,0))

+(Kptty +iwpsy05my ) Hy (7, 0)

+i0py,0, (mvflg (r,0)+myiHy (t,0)+n,H, (7,0)
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+nyfyH, (1,0)+nyG,H, (r,w))+%(a§ (1 —qﬂ)ﬁ14 (r,0)
+o, (1 -q, )Fl,s (r,w))—%(aﬁ, (ﬁ16 (r,0)+ rﬁﬁ” (r,a))) (82)
+0; (A (r,0)+ 1,0, (. 0))).

The H functions in Equation (82) are defined as:

=K(r,0.,1,), ﬁg(r,w)=j;E2(s,w)dS,
1,(r.0)=K(r,0.5,), H,(r.0)=K(t.0,p,),
1, (r.0)=K(r,0.l,+3,), H,(r.0)=K(r,0.0, +p,).
Ay (z,0)=K(r,0,l,), H,(r,0)=[E(s,0) ds,
15 (r.0)= [ F(s.0) ds, f,(r.0)=K" (ros,). (83)
H,(r.0)=K"(r.0.p,), Hy(r.0)=K (z,0.5,)
Hy,(r,0)=K"(7,0,p,).

where the functions K,K,K* and K° are given by

ra)a J.efav sa)ds Kra)a Ie =) sa)ds
(84)

K*(r,0,a) :IOe o) g2 (s,w)ds, K*(r,0,a) =joe (2 (s,0)ds,
and where all the other parameters have been already defined in Lemma 2.
The proof of Lemma 5 is similar to the one for Lemma 4 and is left to the

reader.

Lemma 6. Let
e=[B(s)os

be an integrated correlation process, where p(t) follows a B process.
Then, we have that

(85)

>

[ OO A } -S0-P0)2(0)

with

t) W\/_( *K/ff) (86)

(wp+sp) _ (wprpp)
B0 ) D )
5 Kp+5p Kp+ Dp

e(ZK/; +sp )t _ 1 I"ﬂ (67(2’(5 +pﬁ)t — 1)

2K, +sg, 2K, + Py
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+ —
Ky 2Kﬂ
e Ty (e ppt 1)
_ — +(q,—1)t (87)
. o (95-1)
v (0)JU(0): U(0) V(O)(ef'(ﬂ’—l)
Kp K ’

where ¢,r,s,p have been defined in Proposition 2.

5. Monte Carlo Model Simulation: A Numerical Scheme

In this section, we discuss how to simulate the paths for the model in Equation
(7) in order to compute the price of FX quanto options applying Monte Carlo

simulation. In particular, we need to generate random paths of

(U (0).7 ()0 (2).7(£). B(2),2(2).Y(t)) forall tefs}’ =T*
To be more precise, for an arbitrary time increment A, we need to generate a

random sample of
(U(1+A),V(I+A),77(t+A),}/(t+A),ﬁ(l+A),Z(l+A),Y(Z+A)) for given

(U @),V (0).n(0).7 (1) ()7 (1))
Repeated application of the resulting one period scheme will generate a full

path:
(@)Y (1) (0),7 (), (1), 2 (1), Y (1)), 1 €T,
for the model
1) =[ (1, U (£)) = 2, (1) [t + 0 \JU (1)a,, (1)
<,) [0 (s = ()= (1) Jde b oy ¥ ()M (0)°
=(c(67(1)- y(t))de(W()) ()", 7(0)e[-1.1].
(a(t.n(1)= 2, (1)) de+b (e (1)) dW, (1)°. n(0)e[-1.1].
(£ (. 8(0)) = (1)) de+ g (0.5 (1)) W, (1), B(0) €[-L.1],
=( rf—;Ut)jdt+U ()7,

(88)

dY(t)z[rf—%V(t )= B()V (1)U (1) jdt+\/V )dw, (1)°,

5.1. Cholesky Decomposition

As pointed out in [8], a straight discretization of the model in Equation (88) may
lead to the problem of Jeaking correlation. To tackle this problem, we reformu-
lated the system of SDEs (88) with respect to independent Brownian motions as
defined below:

*As mentioned in Section 2, we apply the log-transform to the underlying asset S, ¥(#) = In&(#), and
to the exchange rate X, Z(#) = InX(9).
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AW, (t) = dW, (¢),dw, (¢) = A, (¢),dW, ()= dW, (¢),dW, (¢) = A, (¢),dW, (¢) = dIT, (1),
Ay ()= 7 (£)dWy (£)+ py, AW, () + py AV, (t)+\/1 —y (1) - P2, - plydiy (1), (89)

AW (¢) =0 (¢)dW, () + pspdiy (1) + Py Ay (t)+\/1—77(t)2 — piy — Pax A (1),

where
t —_
o = ﬁ( )2 ppoPSﬂ 2 E[—l,l], (90)
\/1 —;/(t) ~Pxy T Pxp
under the conditions that
y(t) + o5, +ps <1, n(t) +pds+ pox <1. (91)

Therefore, the Cholesky decomposition of the correlation matrix R defined in
Section 2 can be easily calculated. In the following sections we will discuss the

discretization schemes for each of the processes in Equation (88).

5.2. Discretization Scheme for U(t) and V(t)

To discretize the variance processes U(r) and ¥ (r), we employ the full trun-

cation scheme as in [9], which reads as:

P(t+A)=v(t)+px,A—x,Amax(v(r),0)+0,, /max(v(t),O)x/XZv,

(92)
V(t+A)=max(v(t+A),0),

which is a valid alternative to the Quadratic-Exponential (QE) scheme proposed
in [8].

5.3. Discretization Scheme for 7(¢), y(¢) and f(t)

Let us assume first that the correlation processes 7(¢),y(¢) and pg(¢) follow
an OU process. It is well know that if the process p(z) follows an OU dynam-
ics

dp(1)=x, (1, = p(1))d+,dW, ().

then its exact solution at time ¢+ A, given the information available at time ¢ is
given by:
1 _ e—2pr
p(t+A):p(t)efk"A+yp(l—ef'("A)+ap —Z,, (93)
2Kp
where Z, isa standard Gaussian random variable.
If we instead assume that the correlation processes y(¢),7(¢) and y(z),

follow a BJ dynamics, then its SDE is given by:

dp(t)=x, (,up —p(t))dt+apw/1—p(t)2de (1), for pe{y.n, B}.

Given the lack of an explicit solution for the above SDE, we propose to dis-

cretize the dynamics of p(7) via either the Euler scheme
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o \1-p(t)'AZ,, (94)

p(t+A)= p(t+A)=r,u,A+(1-K,A)p
or via the Milstein scheme
p(t+A)=p(t+A)

=K, 1,A+(1-x,A)p

—aj[a(t)A(zj—l).

o \1-p(1) Az, (95)

5.4. Discretization Scheme for Y(t) and Z(t)

To discretize the dynamics for the log-underlying price Y (¢)=InS(¢) and for
the log-FX rate Z(¢)=1InX(¢z), we employ the Euler scheme based on the
Cholesky decomposition presented in Section 5.1. In particular, we have that

ZA(I+A)=ZA(I)+(Vd—I’f—%U(l)jA
\/U \/7( Z +pX;/ ;/+pXﬂ ﬂ \/1 pX;/ pXﬂ

(96)

and

);(t+A):);(t)+[rf——I}

FF]
+\/7\/7( Z +/03ﬁ +pSXZ +\/1 pszﬁ_:aszxzs

We conclude this section by remarking that, although the FX rate does not

97)

explicitly enter in the payoff of a quanto option, we do still need to simulate it, as
the standard Gaussian random variable Z, enters explicitly in the dynamics

for the log-underlying price ¥, as shown in Equation (97).

6. Numerical Experiments

In this section we compare the option prices using the closed-form approxima-
tion Formula (18) to the prices computed by performing a Monte Carlo simula-
tion according to the numerical scheme presented in Section 5. In particular, we
have considered quanto call options on a foreign stock priced in the domestic
currency, where the majority of the model parameters are defined at the bottom
of Table 1.

In Table 1 we have reported the results using different stochastic processes
specification (namely the Ornstein-Uhlenbeck and the bounded Jacobi processes)
and for different strikes. Six different scenarios have been considered under the
following assumptions (as said all the other model parameters are at the bottom
of the table and they have been kept fixed along the scenarios):

1) p(0)=p, =0 and py, =py, =pg, =px, =0,

2) p(0)= 0,45 =0.5 and Psp = Pxp = Psy = Pxy =05

3) B(0)=0,u,=-0.5 and py, = py; = p5, = px, =0

4) B(0)=u,; =0, ps,=px; =05 and pg, =py, =0,
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Table 1. The other parameters are assumed as: §(0)=100, X (0)=1, =003, =005, T=1, U(0)=r(0)=0.02,
Uy =ty =003, x,=x,=21, oy,=0,=0.1, and p(0)=y(0)=-02, u,=u,=-03, x,=x,=34, 0,=0,=0.1. The

numbers in round brackets represent the standard deviations. The number of Monte Carlo simulations is equal to 100,000.

Model Parameters OU Stochastic Correlation BJ Stochastic Correlation
Scenario
B (0) Hy Strike MC Price Approx Rel Error MC Price Approx Rel Error
1 0 0.0 80 24.6479 (0.0506) 24.6472 —-0.00% 24.6483 (0.0506) 24.6476 —-0.00%
85 20.1757 (0.0489) 20.1426 -0.16% 20.1761 (0.0489) 20.1430 -0.16%
90 16.0172 (0.0463) 15.8726 -0.91% 16.0177 (0.0463) 15.8731 -0.91%
95 12.2973 (0.0423) 12.0183 -2.32% 12.2976 (0.0427) 12.0186 -2.32%
100 9.1217 (0.0384) 8.7531 -4.21% 9.1221 (0.0384) 8.7535 -4.21%
105 6.5438 (0.0335) 6.1505 -6.40% 6.5440 (0.0335) 6.1507 -6.39%
110 4.5422 (0.0285) 4.1780 -8.72% 4.5425 (0.0285) 4.1784 -8.71%
115 3.0571 (0.0236) 2.7525 -11.07% 3.0573 (0.0236) 2.7527 -11.07%
120 2.0019 (0.0192) 1.7642 —13.48% 2.0020 (0.0192) 1.7643 -13.47%
2 0 0.5 80 23.8150 (0.0498) 23.8102 -0.02% 23.8138 (0.0498) 23.8090 -0.02%
85 19.3741 (0.0480) 19.3008 -0.38% 19.3729 (0.0480) 19.2995 -0.38%
90 15.2703 (0.0453) 15.0387 -1.54% 15.2693 (0.0453) 15.0376 -1.54%
95 11.6337 (0.0416) 11.2522 -3.39% 11.6329 (0.0416) 11.2513 -3.39%
100 8.5556 (0.0371) 8.0958 -5.68% 8.5549 (0.0371) 8.0949 -5.68%
105 6.0753 (0.0321) 5.6123 ~8.25% 6.0748 (0.0321) 56117 ~8.25%
110 4.1717 (0.0271) 3.7607 -10.93% 4.1713 (0.0271) 3.7602 -10.93%
115 2.7783 (0.0223) 2.4455 -13.61% 2.7781 (0.0223) 2.4452 -13.61%
120 1.7961 (0.0180) 1.5425 -16.44% 1.7958 (0.0180) 1.5422 -16.44%
3 0 -0.5 80 25.4883 (0.0514) 25.4847 -0.01% 25.4900 (0.0514) 25.4864 -0.01%
85 20.9794 (0.0498) 20.9712 —-0.04% 20.9811 (0.0498) 20.9728 —-0.04%
90 16.773 (0.0473) 16.7199 -0.32% 16.7746 (0.0473) 16.7217 -0.32%
95 12.9872 (0.0439) 12.8213 -1.29% 12.9885 (0.0439) 12.8226 -1.29%
100 9.7213 (0.0396) 9.4572 -2.79% 9.7224 (0.0396) 9.4585 -2.79%
105 7.0384 (0.0348) 6.7269 -4.63% 7.0394 (0.0348) 6.7281 -4.63%
110 4.9338 (0.0298) 4.6267 —6.64% 4.9345 (0.0298) 4.6275 —6.63%
115 3.3552 (0.0249) 3.0870 -8.69% 3.3557 (0.0249) 3.0876 -8.68%
120 2.2245 (0.0204) 2.0091 -10.72% 2.2248 (0.0204) 2.0094 -10.72%
Psy Pp Strike MC Price Approx Rel Error MC Price Approx Rel Error
4 0.5 0.5 80 246494 (0.0506)  24.6487  —-0.00%  24.6492 (0.0506)  24.6485  —0.00%
85 20.1723 (0.0489) 20.1386 -0.02% 20.1718 (0.0489) 20.1380 -0.18%
90 16.0182 (0.0463) 15.8726 -0.92% 16.0172 (0.0463) 15.8712 -0.92%
95 12.3098 (0.0427) 12.0310 -2.32% 12.3086 (0.0427) 12.0292 -2.32%
100 9.1403 (0.0383) 8.7727 -4.19% 9.1389 (0.0383) 8.7705 -4.20%
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Continued
105 6.5570 (0.0334) 6.1636 —6.38% 6.5555 (0.0334) 6.1614 —6.40%
110 4.5517 (0.0284) 4.1869 -8.71% 4.5502 (0.0284) 4.1847 -8.73%
115 3.0590 (0.0235) 2.7530 -11.12% 3.0576 (0.0235) 2.7510 -11.14%
120 1.9949 (0.0191) 1.7552 -13.65% 1.9935 (0.0191) 1.7534 -13.69%
5 -0.5 -0.5 80 24.6577 (0.0508) 24.6571 —-0.00% 24.6594 (0.0508) 24.6588 —-0.00%
85 20.1758 (0.0492) 20.1431 -0.16% 20.1776 (0.0492) 20.1451 -0.16%
90 16.0215 (0.0465) 15.8785 —-0.90% 16.0236 (0.0466) 15.8811 —-0.90%
95 12.3172 (0.0430) 12.0432 -2.27% 12.3196 (0.0430) 12.0464 -2.27%
100 9.1541 (0.0386) 8.7932 -4.10% 9.1568 (0.0386) 8.7969 -4.09%
105 6.5792 (0.0337) 6.1939 -6.22% 6.5818 (0.0337) 6.1974 -6.20%
110 4.5789 (0.0286) 4.2220 -8.45% 4.5811 (0.0286) 4.2249 -8.43%
115 3.0899 (0.0238) 2.7908 -10.72% 3.0919 (0.0238) 2.7934 —10.69%
120 2.0307 (0.0194) 1.7970 -13.01% 2.0324 (0.0194) 1.7991 -12.96%
Ps, Px, Strike MC Price Approx Rel Error MC Price Approx Rel Error
6 -0.5 -0.5 80 246515 (0.0506) 246508  —-0.00%  24.6515(0.0506)  24.6508  —0.00%
85 201751 (0.0490)  20.1416  —0.16%  20.1748 (0.0490)  20.1412  —0.18%
90 16.0203 (0.0463) 158749  —0.92%  16.0195(0.0463) 158738  —0.93%
95 12.3113 (0.0427) 12,0326 -2.32%  123101(0.0427) 120308  -2.32%
100 9.1420 (0.0383) 8.7744 -4.19% 9.1406 (0.0383) 8.7723 ~4.20%
105 6.5574 (0.0335) 61638 —639% 65562 (0.0334) 61619  —6.40%
110 45516 (0.0284) 41866  —8.72%  4.5562(0.0284) 41900  —8.74%
115 3.0605 (0.0236) 27545  —1111%  3.0592 (0.0236)  2.7527  —11.14%
120 1.9973 (0.0192) 17578  -13.62%  1.9959 (0.0192) 17560  —13.66%

5) B(0)=u, =0, pgy=py, ==0.5 and p, =py, =0,

6) ﬂ(O):yﬁ =0, psp=px; =05 and Ps, = Px, =—0.5.

As pointed out in [2] and in [1], one should choose a large value for the mean
reversion rate of the correlation processes and a small value for the volatility
coefficient in order to ensure that the generated correlations by the OU process
lie in the interval (—1,1), while for the BJ process the condition in Equation (58)
has to be fulfilled. Besides that, care has to be taken also in the choice of the
other model parameters for the stochastic processes (namely the initial value
and the long term mean level) because of the conditions implied by the Cho-
lesky decomposition, see Equation (91). We remark that in all the scenarios
considered in this Section all the model constraints have been taken into ac-
count.

If we look at the relative errors reported in Table 1, we can see that the ap-
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proximations in both models give accurate results, but the accuracy of the ap-
proximation decreases when passing from in-the-money to out-of-the-money
options. If we consider Scenarios 1 - 3 first, we can see the effect of changing the
long-term mean level for the correlation process () on the option value. In-
deed, the fact that the price in Scenario 2 (resp. 3) is lower (higher) than the one
in Scenario 1 can be explained from the fact that the drift of the underlying
process decreases (increases), under the same volatility assumption. If we com-
pare Scenarios 4 and 5 with Scenario 1, we can see that increasing (decreasing)
the correlations between the stochastic drivers for the underlying price (resp. FX
rate) and the correlation process £ does not have a huge impact on the option
price. This has been already noted in [2] and it is due to the fact that we are
pricing the option under a low volatility regime for the correlation process /[ .
Also, this explains as well why the option price given by the two model specifica-
tions for the correlation process are very close. The same conclusion holds for
Scenario 6 where we have assumed a non-zero correlation between the stochastic

drivers for the underlying price (resp. FX rate) and the correlation process 7

(resp. 7).

7. Conclusion and Future Work

In this paper we have incorporated a stochastic correlation structure into the
pricing of FX quanto options where both the dynamics for the underlying asset
and for the exchange rate are given by a stochastic volatility model. This has
been done not only assuming a stochastic correlation between the underlying
asset and its variance process (and the same between the exchange rate and its
variance process), but also assuming a stochastic correlation between the under-
lying asset and the exchange rate. In particular, under the assumption that the
set of stochastic correlation processes follow an Ornstein-Uhlenbeck and a
bounded Jacobi process respectively, we have derived a closed-form approxima-
tion for the characteristic function of the underlying asset, by approximating
non-affine terms in the model dynamics. The comparison of both approxima-
tions with the Monte Carlo method has also been discussed. Given the fact that
the analytical tractability of the formulas allows for fast pricing and calibration
purposes, improvements of the present work could be to focus on the calibration
of the model parameters by looking at real market quotes from the FX market
and also to run more scenario analysis under stressed market conditions. We

leave them as future work.
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Appendix
A.1. The Proof of Proposition 1

In order to find a first order approximation for E[m] we can apply the
so-called delta method which states that a function ¢(X) can be approximated
by a first order Taylor expansion around E|[.X], for a given random variable X,
with expectation E[X] and variance Var[X], under the assumption that the
first two moments of X exist and that the first derivative of ¢(.x) with respect
to Xexists and is sufficiently smooth.

Therefore, we obtain by first order Taylor expansion:
0
#(X) = $(B[X])+(X ~E[X]) - $(B[ X)) 8

Now, the variance of ¢(.x) can be approximated by taking the variance of

the right-hand side of Equation (98), which reads as follows:
var[4(¥)] = Var{¢(E[X]) H(x- E[X])aiX¢(E[X])}
a 2
_ [a—X¢(E[X])j Var[X].

Now, if we apply this result to the function ¢(v (t)) =,V (t) , we have that

Var[mJ ~ [%;J Var[v(t)] = %% (100)

(99)

E[v(r)]
Besides it, we know from the definition of variance that
Var| v (6) | =B[v()]-(B[v()])", (101)

and combining Equaitons (100) and (101), we obtain the following approxima-
tion for E[ V(l‘):|:

e[ ]- JE[ O S e

Since v(z) is a square root process, then its explicit solution at time #is giv-

en by:

v(t)=v(0)e™ +pu, (l—e”“v’)+ o, _[(; e v (s)dw, (). (103)

Further calculations show that the expectation and the variance of 1 (#) can

be expressed as follows:
Blv(t)]=a,(¢)(b, +& (¢)), Var[v(£)] =4, (¢)" (26, +4¢, (1)), (109)

where the coefficients 4, (¢),b,,c, (¢) are given by:

. (4 4 u, 4rc,v(0)e™
av(t)::;(V(l &™), B, ';2” L (2) 03(1( Zt) (105)

Now, substituting these expressions in Equation (102) gives
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(106)

Finally, if we denote by A(z) the above expectation, then A(¢) can be fur-
ther approximated by a function of the following form:

A(t)=A(t)=m, +ne™, (107)

where the coefficients m,,n,,l, are found by matching the functions A(z)

and A( ) for t—>+0, t—0 andfor t—>1.
In particular, it can be proved that (see Result 3.3 in [5])

Him A=y g = = EmAG).
. B B R (108)
&n{}A(f) =v(0)=m, +n, = PEOIA(t)’
I, _1: ~
1t1_r>r11A(t) A(l)=m, +n.e —lrl_I)IIIA(I),
from which it follows that
o d —m
L n, = vy =m,, lv=—1n[ 0 J (109)
where we have defined
. ol (1-e™ olp, (1-e™ ’
d, = ||ve™ —g +yv(1—e'KV)+ ( - ) . (110)
4x, 8, 11, +8k,e7 (v — 41, )

This completes the proof.

A.2. The Proof of Lemma 1

Since the system generating the pricing PDE for B (30) is of affine form, we
look for a solution ¢ =g, (z,) of the following form:
2 =4 (r.0)+ B (R0 ()£ G (mou()+ D (0)2()
+E, (r,0) B(1)+F,(r,0)n(t)+ G, (r,0)y (1) +ioy(1)),
with
4,(0,0)=B,(0,0)=C,(0,w) =D, (0,0) = E, (0,0) = F, (0,0) = G, (0,0) = 0.

Substituting all the partial derivatives of ¢ into (30) gives:

(6/1 +v%+u£+260 /3’6 nﬁﬂfﬁj

or or or or ot or or

+(rf+ V- ﬂE[ J (rd—rf——u+ﬁE[\/_]E|:«/;DDl
+(/(,7(,u,7—77)+ps”aﬂE[ J) ( +0'VE[V] )Bl

+icy (py —u)C, +(/<ﬁ(yﬂ _ﬂ)+pSﬂO-ﬂE|:\/;:|)El +x, (14, -7)G,
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1 1 1 1 1 1 1
—Ea)zv—i-—uDl2 +50'\2,VBI2 +Eaéqu +EGZ.E12 +EO';FIZ +5072G12

+ BB |[Vu |ioD, + oy B[v]nioB, + o Blu]yDC
+ ps0 B [\/;J ioE, +pS”O'”E|:\/;j| ioF + py 0, [\/;] D\E,

+py,0,B[u | DG, =0.

(112)

Now, collecting together homogenous terms in y,z,v,u,f,n,7 gives the

following system of equations:

%+K\,BI—%G$BIZ+%@(&)—Z'):O, (113)
%muq —%oécf—%Dl (D, ~1)=0, (114)
%:0, (115)
%ﬂcﬁa—E[J&]E[ﬁ}(m(q—1)+Dl):o, (116)
R LY (117)
%+K7GI—GUE[ZA]DIC1 =0, (118)

and

04 . .
ﬁ_rl = rfza)+(l('ﬂluﬂ + pSno-ﬂE[\/;](za)+ 1))F1 + iy iy B, + Ky 14, C,

+(Kﬁ,uﬁ +psﬁ0'ﬁ]Et|:\/;](iaJ+l))El +x,1,G, +%G;E12 +%O‘§F}2 (119)
1
+50'y2G12 +pX/,O'ﬂE[\/;]D1E1 +prO'V]E[x/;]D1GI +(ry—1)D,.

From Equation (115), due to the initial condition D, (0,)=0, we obtain
D, (z,w)=0, which is consistent with the fact that the option payoff does not
depend explicitly on the exchange rate Z(7)=1n X (7).

The fact that D, (7,0)=0 implies thatalso G, (r,w)=0, because of the ini-
tial condition G, (0,0)=0.

Calculation of B (7,m)

Equation (113) is a Riccati equation, whose corresponding second order ordi-

nary differential equation (ODE) reads as follows:
9"+KV9'—%O'\2,a)(a)—i)=0. (120)

The solution of the above equation is:

—Ky tolKy +ovo(w—i)
0, =

2

>

and therefore, the solution of the Riccati Equation (113) is given by:
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2 (0,0e" +6,e™
5 (“’)a—(m— -

Using the initial condition B(0,w)=0, we find that the constant is equal to
(7
0, =——=.
o
Further calculations show that B, (z,®) can be expressed as follows:
20, 1-e%%F

0'\2/ 1_9726(91*92)7 '
o,

B (r,0)=- (121)

Now, it can be shown that

_ K +1/K2+O'20) w—i — B
B - v NTv vol@-i) -k +B (122)

9 —_—

2
2 D
2 2 .
6 KV+\/KV+0'Va)(a)—z) Ky + B,

= 20 -B, .. =
6, -6,=-B, ——;:KV —L, with B, =/xj +oyo(w—-i), (123)
O-V O-V

and hence B, (r,w) readsas:
Ky~ B 1-¢
B (r,0) =5~ ———. (124)
oy 1-B,e™

Calculation of C, (7,0)
If we focus now on Equation (114), this is again a Riccati-type equation in C,

and its corresponding second order ODE reads as:
0" +x,0'=0, (125)

and 6, =-k,,6,=0.
A general solution for C, can therefore be written as follows:

2 0,0 +0,e™"
-2

C (r,0)= (126)

>

2 or
oy 6" +e

but due to the initial condition C,(0,0)=0, we have 6, =0, and hence
C(r,0)=0.

Calculation of E, (z,)

Equation (116) can be re-written as follows:

%-ﬁ-l{ﬁE} +E[\/;]E[x/\_)}ia):o,

where we know that (see Proposition 1)

B[V ()|~ my + 0™ and B[ (1) ] = my, + e 0.

Since
E| v () |B| Vu (¢
5 ()] E[e 0] .
=mymy + mane_lU(T_r) + mun\,e_l"(r_r) + nUnVef(lU e )T=r)
the solution for the first-order ODE in E| reads as:
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Iy(T-s) —Iy (T-s)

E (7,0)=(-iw)e™" J.Ore'(ﬂx (mva +myn,e +mynye

(128)
+ny nve_(lU +)(T=s) )ds.

Further calculations show that

El(z',a)):_ia) M(l_e*'fﬁf)_i_ myny e—zU(T-r)(l_e—(xﬁHUy)
Kﬁ Kﬂ +1U

4 Mty e—lv(rfr)(l_ef(wlv)f) (129)
Ky +ly

bt e )(To) (1 B e—(xﬁ g+l e ) .
Ky +ly+1

Calculation of F (7, ®)
We look then at Equation (117):
OF,

6_11+ K, F = oy E[v]B, (iw+1),

where we know that
Ky —B, 1-¢7*

2 B B’
oy 1-B,e

E[v(t)] = (v(O)_Iuv)e—xv(T—r) +u, and B, (r,a)) =

As done in Teng et al. (2016) (Appendix B.1) we approximate the term
_ B ~ B B _poh
1_e_§z 1-e ™, with B, = —In| =—2°__ |,
1-B,e™" 1-B,e ™
from which it follows that

6F _E _Bar — Ky -7
She R :Kva—vl(ia)+l)(l—e )y +(v(0)= 1y )e ), (130)

whose solution reads as (since we have F (0,0)=0):

(lu\/ _V(O))él e(KV—E;)Tfva i (V(O)_#V)El e’(V(T’T)

i (r.0)= L
K, + Ky — By K, tKy (131)
é é B- 5 B —KpT
e e e ™ +BB,e ™,
K, K,—B;
with
A~ io+1 =
B = (k0 —B,). (132)
Oy
and
b=t 2O o i V(O0) r B (133)
Ky K, + Ky K, + Ky - B, K, -B,

Calculation of 4 (z,)
The last term to be computed is 4, :
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A (r,0)= rfia)z-+J.Or(K,],u” +(iow+ l)ps,]a,l]E[Jv(T—s)J)E (s,0)ds
+ iy fy j(:Bl (s,a))ds+for(1(ﬂ,uﬂ +(ia)+1)psﬂ0'ﬁE[ v(T—s)J) (134)
1 r r
<, (s,a))ds+5[0§ i B (s.0)ds + 07 [[F2 (s.0)ds |
In particular, it can be proved (after tedious calculations) that

‘ - 1-Bye B
Kvﬂv_[OBl (S,a))ds:%[(zcv —Bl)r—zln[%ﬂ, (135)
\% 2

(V(O) —Hy )éle_KVT 1R

K,],U,? ‘[0 E (S,Cl))ds - Kﬂlu” [ K, + Ky —B3 Ky —§3

_ n —xyT D
. (ﬂv v(O))Ble v (1—e’KVT)+#V_BIT (136)
K, T Ky Ky

uB o)y BBy ()
T |

Besides that, we notice that

IJE[ v(T—s)JF1 (s,0)ds = mv_[OTF{ (s,0)ds+ny JOT{[V(T”)FI (s,)ds, (137)
where

jreflv(T—x)Fi (S, a))ds

0

(1~ ()7 ion By

K‘”+K'V—§3 I, +x, — B,
v(0)= e VI (g iy ) _1
+( (0)- ) © (138)
K, + Ky Iy + Ky
A N Iy-B3)r
+,UvBle v e _1)_ﬂvBle_]VT e 3)__1

K, Ly

n BleeilvT (C(IV_K”)T _1)

Iy - K,

k,—By [, —B

Now, further calculations show that

T
KﬂﬂﬁI0E1 (s,a))ds
—KpT lyt
. mym e -1 mymy, eV —1
:_le/?luﬂli U V(r+ J+ U veluf[_
Ky Ky Ky +ly Ly

KT . ~KpT 139
e’ _1J+ myhy, e,VT[el" —1+e s —1J (139)

Ky K, +1y Iy Ky

Iy+ly )t —KgT
N nyhy )T eliu+hv) —1+e ] ,
Kg+ly+1y Iy +1, Ky

+

and
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J‘OTE[ v(T—s)]E1 (s,0)ds =~ m, L:El (s,@)ds+n, ‘[Orefl"(Tfs)El (s,@)ds, (140)

where

re’lV(T’S)El (s,)ds

0

j (IV—K )r
oA

Ky Iy I, —ky

- (141)
Ky +ly

+Iv )1 Iy—xg)t
.\ myny, olito)r elu+iv)r _q e(v 5) -
+ly K,

2lyt (tv—xp)r
m,ny e 1 e -1
UV 2IVT[ _

Ky +ly 21, Ly =Ky

Kytly+1y

+ T NS L3
y v )T v g e(V s) -1 ‘
Iy +21, Iy — K,

Finally, it can be proved that

L:El (s, a))2 ds

K 2K, Kp Ky +Ky)
% ( 2lyt 1) 1 (e—ZKﬁr _1)_i( KpT _1>
21, 2K, Ky
+ mlzjn\zl e—ZIVT [621\/7 -1 _ 1 (e—ZKﬁr _1)
2
(Kﬂ +ZV) Zlv ZK‘ﬁ
B 2 (e(lv"(/})T _I)J-i_ néné e—2(1U+[V)T (62(lu+lv)r 1
2
ly K, (Kﬂ+lU+lV) 2(ZU+IV)
—2Kp3T
_e s —1_ 2 (e(lVJrIUfKﬁ)T _1)
2K, Ly +ly —x,

+ u— —
Ky (Kﬂ +1, Ly Ky ly =K, 2k

—K Iy -k -2k
) memyny, i B B A (I R
) )

Ky (/cﬂ +1

—K K -2k
) mymgn, T e’V’—1+e A
) Ly K L, —Ky 2K

Gy Rl e
9 mymyny iy e(,U”V)T{e -1 e -1 e -1

- +
Kﬁ(Kﬂ+lU+lv Iy +1, Iy +1y —x, K

—2K3T +Iy )T Iy -Kkg )t
_e ! _1J+2( My iy My Ny )e_(lu#v)T[e([U ) -1 C(V '/}) -1

2K, K+l )(/cﬂ +1, Ly +1y I, -k
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e([u 7Kﬁ)1 .l B e—ZKﬂT -1 o mvnf) ny e—(2IU +Iy )T
[ 2k, ( +IU>(Kﬂ+ZU+lV)

X[Q(QIUHV)T _1 e(lU —Kﬁ)r _1 e(IUHV—Kﬁ)r _1 e—ZKﬁT _I\J

2+l ly-x,  tl-k, 2k,

142
Iy +2ky )z _1 e(ZUHV—xﬂ)r 1 ( )

lo+2l, L+l -k,

(K'ﬂ +lv)(1cﬂ +1; +1,

B e(lv —Kﬁ)T -1 ~ e—ZKﬂr -1
Ly =k, 2K, ’

and that

) mUnUn\z, )e(lu +20y)T {e(

J.OTFI (S,a))2 ds

2 B- 2
— Mézequr CZ(KV—Bs)T -1 . (V(O)_ﬂv) éze*ZKvT e2xvr 1

(K”+KV—E3)2 1 Z(KV_§3) (K +KV)2 1 2Ky
P TREY F

7 (x,-B) K
+2(/uv_v( ))( ( ) /UV)BZ Arv=Bs)e 1+2 /UV(IUV_V(O)) élze_KVT

(K + Ky — B)( +K‘) Z(KV—§3) KU(KU+KV—E3)

VP (= v(0) BT RS
X =2 — = =
Ky — B, ( ) B)(K' +KV—BS) Ky —2B,

no A

{1y ~v(0)) BiBre ™" el Bk 1, A (v(0) =y ) Bre ™ e
Kty =B Ky _7B3 K Ky (Kﬂ +Kv) Ky (143)
5 Hy (V(O)—yV)Blze’KvT ovB) o (V(O)_ﬂv )Blsze*"vT e(Kv-Kn) 1
(Kn+KV)(Kn_§3) Ky =B, Ky tK, Ky — K,
-2 ’U‘Z’élz_ e—Eir -1 _9 ,Uvélzéz e -1 ) ﬂvélzéz 6753: —1.
K, (K'n - B3) B, K, K, k,—B, B,

Collecting all the terms together completes the proof.

A.3. The Proof of Lemma 4

Since the system generating the pricing PDE for B (75) is of affine form, we

look for a solution ¢ = ¢ (7,@) of the following form:
¢ =exp(T; (r.0)+ L, (r,0)v(t)+ M, (r,0)u(t)+ N, (r,0)z(t) (144)
+0i(r,0) B(1)+ R (r,0)n (1) + S, (7. 0) (1) +iwy (1)),
with

T,(0,0)=L (0,0) =M, (0,0) = N, (0,0) = 0, (0,0) = R (0,0) = S, (0,0) = 0

Substituting all the partial derivatives of ¢ into (75) gives:
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o7 oL, oM, ON, 001 OR, oAy
| —+VvV—tu—+z—+f—+n—+y—
or or or or or ot or

o+ gy B[ T[N i 51 =S [N T[]
+(K,] (,u,] —n)+pSnaﬂE[x/;]E[\/l—n2 ])Rl +(K‘V (yv —V)+GVE[V]7])L]

+ iy (g —u)M, +(K‘ﬁ (,uﬂ —ﬁ)—kpsﬁaﬂE[\/\_/]E[\/l_ﬂz ])Q]

+K, (yy —7)S1 —%a)zv—k%ule +%O'\2,VLf +%O'éuM12 +%G§ (l—E[ﬁzJ)Qf
+%0§(1—E[n2])R,2 +%o-f(1—]E[7/2J)Slz + BB ][ Vu JioN,
+oyE[v]nioL, + oy Elu]yN.M, +psﬂ0'ﬂ]E[\/;]E[1/1_ﬂ2 }ia)Ql
+ps,]O'qE[\/;}E[\/1_,72 }ia)R1 +pXﬂ0'ﬂE[\/;JE[,/1_ﬁ2 }NIQ1
+nyayE[x/;}E[w/l—yz}NlSl ~0.

Now, collecting together homogenous terms in y,z,v,u,B,n,7 gives the

(145)

following system of equations:

oL 1 1 .
a—T‘+KVL1—EO'\2,Lf+Ea)(a)—z):O, (146)
oM 1 1
6—T1+;<UM1 —Eang —EN1 (N, -1)=0, (147)
Ny, (148)
or
00 ,
a—T‘+KﬁQ1—E[\/;JE[\/;J(Z(O(NI—1)+N1):0, (149)
?+ K, R, — o B[] L, (iw+1) =0, (150)
T
Bi s k.8, ~ o BN M, =0, (151)
T

and

% = rfia)+(/c,7,uq +ps”a,]E[\/;JE[./1 -7’ ](ia)+1))R1 + Ky iy Ly
+ Ky oM, +(Kﬂ,uﬁ +pSﬁGﬁE|:\/;:|E|:\/1—ﬂ2 }(ia)+l))Q1
R WS, +%0'/2; (1-B[#])o +%o-§ (1-E[7*])R? (152)
+%aﬁ (1-E[*])s? +pX/,0'ﬁE[\/;JE[J1_ﬁ2 ]NIQI
+prO'7E[x/;]E[w/l—]/2 ]NISI +(ry =1 )N,

If we compare Equations (146)-(151) with Equations (113)-(118), we can con-
clude that
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L (7,®)= B (r,0),M,(r,0)=C (7,0),N,(r,0) = D, (7,0),

0 (r,0)=E, (r,0),R(r,0)= F (r,0) and G,(r,0)=S,(7,0), (153)

and therefore the only term to be calculated is 7}(2‘,(0) , which can be

re-written as follows:

Tl(r,a)):rfia)f+_|.or(/cqﬂn+(ia)+1)ps,70'77E[ V(T_S)}E[ 1—77(T—s)2D
xF, (s, 0)ds +xy [ B, (s,0) ds
+j( K1, +(i0+1) g0 ﬂE[F][ ,B(T—s)zD (154)
xEl(s,a))ds+l[ [(1-B[B(T=s) ]) B (s.0)ds

+a77j (l E[ ( )J) lz(s,a)) }

Now, from Propositions 1, 2, and 3 respectively, we know that

E[\/;J,]E[pq, and E[\H—pz}, with pe{ﬂ,n}, can be approximated as

follows:

B[ (T =5) | = my +nge 0, (155)
E[.h— B(T-s) } ce W) e g (156)
E[ 1-n(T-s) } e e g (157)

B A(T-s) [xe™ ™) are ) g, (158)
B[ (T -s) [xe " 4re ™) g, (159)

where the coefficients my,ny,l,,s,.7,,P,,q,,5,.75,P,,4,> for p e{ﬁ 7]} are
defined in the relevant propositions.

Therefore, further calculations show that

I, B[ T=) JE[i=7 (T=9) | (s 0)as

=my I;e_s”(T_s)Fl (s,@)ds +myF, J-Ore_i"’(T_S)F1 (s,0)ds

R (160)
+ mvc}” J.OTF{ (s,a))ds +n, '[Ofe"(lws,,)(r-s)Fl (s,a))ds

o I (5,0)ds i fre TR, (5,0)ds.

Repeating the same calculation for the same integral with S and E, in-

steadof 77 and F| gives

.[;E[\/V(T_S)JE[\/l—ﬁz (T—S)}E1 (s,0)ds

=m, J.Oref‘eﬂ(px)El (5, @)ds +my7, J.Orefﬁﬂ(T*S)E1 (s,0)ds

A (161)
+mvc}ﬂJ.TE S,a))ds+nVJ.Te7(lVHﬁ)(T7S)E (s,0)ds
+nyf, ﬂj v rpp)(7- )E (s, a))ds+nvqﬂj e S)El (s,0)ds.
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Besides it, it can be shown as well that
(162)

JB[A(r-s)" |} (s.0)es
e (s.0)ds [ R (s,0)ds 44, L7 (5,0) s,

and
JiB[n(1=s) | (s.0)ds hon
= J‘Ofefs”(rf’ 'R (s,0)ds + r, .[(:efp"(H)If (s,0)ds+q, J'OTFI2 (s,0)ds.
Hence, the only integrals to be computed are of the following form
(164)

jore'”(T'S)El2 (s,@)ds and '[Ore'“(T'S)FIZ (s,0)ds
since all the other integrals
[E o) [Rlsos. [ B (o)
[[e I (s,0)ds, [T E] (s,0)ds, [ F(s,0)ds
have been already computed in Appendix A.2.
In particular, it can be proved that
J'Te—a(T—x)F;Z (s,0)ds

0
2 +2(xy-B3))r
(e =v(0)" 2 sz €

= — 1
(K',]+K'V—B3)2 a+2(Kv_Bs)
2
v O _ . (a+2/(v)z' _ 2 R ar
( ( ) /”vz) Blzef({”zx\,)r e 1 +ﬂ_\2/Blze-aT € 1
(Ku +’<v) a+2xy K, a
2 R 2B BBl " (e(aﬂ(”){ - 1)
'f‘lu—v_zBlzeﬂﬂw — +
(Kn_B3) a—2B, a-k,
(a+2xy—B3)r 1

) (:uv —v(O))(v(O)—,uv) Rle(av2xy)T _
] a+2x, — B,

(1(77 +KV)(K” +Ky —B3)
(armey-B)e

+2 My _V(O):uv_ B@fe—(aﬂcv)T -
K”(K”+KV—B3) a+x,—B,
D] el ) B S e
(/( —B3)(K” + Ky —B3)
, e(u+xv—§3—7(,7)r ~1

a+x, —2B,

+2 /“IV _V(O)_ BIZEQef(aH(V) _
K, + Ky — B, a+xy—B; -k,
+2(V(0)_ﬂV)ﬂv Bre e e’ -1 o, M (V(O)—ﬂvl B
K’I(KV+K’7> a (KW+KV)(K'7_B3)
y e*(aﬂ(\/)T (G+Kv*K'I)T _1 " 2 V(O) - /’IV éféze—(a+KV)T
a+ky -k, K, tKy
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and that

T _
[le
0

ar a=2xp )t a-kg |t
) mym;, eﬂ[e —1+e( ) —1_2e( ) —IJ
a

2.2 a+2l,

+

+

€

(a“fv —x,])r _ 2 . (a—§3)
Xe 1_2 (:uV E)BIZe—aT E 1
a+Ky —K K |k — a—
ey ety O
a—ky )t Py —
S5 -1 £ 5 -]
2 B eer © 2 pperS
K, a-k, K, — B, a-B;,-«k,

TR (5,0)ds

2
K

a—

ZKﬂ a-Kjg

(K'ﬂ +1y

a+2ly)r

a+2l,

a-2xk, a+l, -

e _1 e(a—2r(/;)r _1 e(a+lU—K/,)r _1
Kp

mir
(K'ﬂ +1 )2

a+2l,

_1 . e(a—ZKﬂ)r _1 2 e(a+lv—/(ﬁ)r _1]

a—2ky a+ly -k,

(a+2(lU +ly))r

e(a—Zr(ﬁ)r _ 1

nf,né ef(ﬁz(zu +lv))T[

(Kﬂ+lU+ZV

1
a+2(l +lv) a—-2x,

a+l,+1, -«

5 @A

a+ly+ly—kg |t 1
e( Uty ﬂ) _1J+2 mvm nU a+lUT( a+U

(a—lc/;)r _1 e(a+lu —Kﬂ)r _1 e(a—

a+l;

et [e(aw)r —1 ek

+
a-Kj a+l;, -k, a-2k,

2K |t
oy ) mymin,
Kﬁ(lﬁ'ﬂ+l\,)

_1 e(a+lv —xﬁ)r _ 1

a+l, a—Ky

at+ly —x,

(a+hy +ly )t |

+

e(a—r(/; )T 1 e(a+IU +ly —Kﬁ)r 1

-2
el Kﬁ)T—IJ+2 mymyny

Ky (K'ﬂ +I; + 1y,

a—21<ﬂ

e—(a+1U +Iy )T €
) a+l,+1,

+2

e(a+1U —Kp )r _1 e(a+lv —Kp )r _1

a—kKy a+ly +1y -k,

My My Iy Ny

(Kﬂ +ZU)(K/3 +1

—(a+ly+ly)
)

e(a—ZK/;)T _1
+
a-— ZK/,

, e(a+lU +ly)r ~1
a+l;+1

+2

a+l; -k, at+ly —x,

2
my, ny ny, ef(a+21U +Iy)T (e

(K'ﬂ +ZU)(Kﬂ +1; +1

e(a+1U—K[3)r 1 e(a+lU +IV—K[3)T 1

e(a—Zrcﬂ)r _1
+
a—2ky

(a+2ly+ly)r 1

a+2l, +1,

atly—x, atly+l,—x,

e(a—Zr(ﬁ)r _1
+
a-— ZKﬂ
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(a+2by+ly)r 1

42 mUn\z,nU ~(a+2ty+y)T | ©
(Kﬁ+l\,)(lcﬂ+lu+lv) a+2l, +1;

(167)
e(“‘*’v_’(ﬁ)f 1 e(a+lU +ly —Kﬁ)T 1 e(a—Zr(ﬁ)r -1

—+
at+ly -k, a+ly+l, -k, a-2k,

Collecting all the terms together completes the proof.
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