
Journal of Intelligent Learning Systems and Applications, 2019, 11, 33-63 
http://www.scirp.org/journal/jilsa 

ISSN Online: 2150-8410 
ISSN Print: 2150-8402 

 

DOI: 10.4236/jilsa.2019.113003  Aug. 14, 2019 33 Journal of Intelligent Learning Systems and Applications 
 

 
 
 

Predicting Credit Card Transaction Fraud Using 
Machine Learning Algorithms 

Jiaxin Gao1, Zirui Zhou2*, Jiangshan Ai3, Bingxin Xia4, Stephen Coggeshall5 

1Hebei University of Economics and Business, Shijiazhuang, China 
2China University of Political Science and Law, Beijing, China 
3Wuhan Maple Leaf International School (High School), Wuhan, China 
4Wuhan Jinde Education Consulting, Co., Ltd., Wuhan, China 
5University of Southern California, Los Angeles, USA 

 
 
 

Abstract 
Credit card fraud is a wide-ranging issue for financial institutions, involving 
theft and fraud committed using a payment card. In this paper, we explore 
the application of linear and nonlinear statistical modeling and machine 
learning models on real credit card transaction data. The models built are 
supervised fraud models that attempt to identify which transactions are 
most likely fraudulent. We discuss the processes of data exploration, data 
cleaning, variable creation, feature selection, model algorithms, and results. 
Five different supervised models are explored and compared including lo-
gistic regression, neural networks, random forest, boosted tree and support 
vector machines. The boosted tree model shows the best fraud detection re-
sult (FDR = 49.83%) for this particular data set. The resulting model can be 
utilized in a credit card fraud detection system. A similar model development 
process can be performed in related business domains such as insurance and 
telecommunications, to avoid or detect fraudulent activity. 
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1. Introduction 

Credit card fraud remains an important issue for theft and fraud committed us-
ing a payment card, such as a credit card or debit card. To combat this many 
fraud detection algorithms are widely used in industry [1] [2] [3] [4]. Card fraud 
can happen with the theft of the physical card as well as with the compromise of 
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the card, including skimming, breach, account takeover, that would otherwise 
look like a legitimate transaction. According to the Global Payments Report 
2015 [5], the credit card is the highest-used payment method globally in 2014 
compared to other methods such as an e-wallet and Bank Transfer. Along with 
the rise of credit card usage, the number of fraud cases has also been steadily in-
creasing [6]. The rise in credit card fraud has a large impact on the financial in-
dustry. The global credit card fraud in 2015 reached a staggering USD 21.84 bil-
lion [7]. 

Financial institutions today typically develop custom fraud detection systems 
targeted to their own portfolios [8]. The data mining and machine learning 
techniques are vastly embraced to analyze patterns of normal and unusual beha-
vior as well as individual transactions in order to flag likely fraud. Given the re-
ality, the best cost-effective option is to tease out possible evidence of fraud from 
the available data using statistical algorithms [9]. Supervised models trained on 
labeled data examine all previous labeled transactions to mathematically deter-
mine how a typical fraudulent transaction looks and assigns a fraud probability 
score to each transaction [10]. Among the supervised algorithms typically used, 
the neural network is popular, and support vector machines (SVMs) have been 
applied, as well as decision trees and other models [3] [9] [11]-[21]. However, 
little attention has been devoted in the literature to some comparison of all the 
common algorithms, particularly using real data sets.  

In this paper, we explore the application of various linear and nonlinear statis-
tical modeling and machine learning models on credit card transaction data. The 
models built are supervised fraud models that attempt to identify which transac-
tions are most likely fraudulent. 

2. Description of Data 

The data available for this research project are a collection of credit card transac-
tions from a government agency located in Tennessee, U.S.A. The particular 
agency is not known. 

The data consist of 96,753 credit card transactions during the year 2010, with 
1059 labeled as fraud. The file contains the fields: 
• Record: A unique identifier for each data record. This field also represents 

the time order; 
• Cardnum: The account number for the transactions (we note that they are 

Mastercard transaction since the account numbers begin with the digits 54); 
• Date: The date of the transaction. Month, day and year only (no time of day); 
• Merchnum: A typically 12-digit merchant identification number; 
• Merch Description: A brief text description field of the merchant, typically 

around 20 characters; 
• Merch State: The state of the address for the merchant; 
• Merch Zip: The zip code of the merchant; 
• Transtype: A code denoting the type of transaction; 
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• Amount: The dollar amount of the transaction; 
• Fraud: A label for the transaction to indicate whether or not it was a fraudu-

lent transaction. 
Table 1 shows summary information about all the fields. Only the Amount 

field is a numeric type field; the other fields are all categorical or text. The statis-
tical magnitudes in the table were calculated with the outliers eliminated. Three 
fields have some missing values: Merchnum, Merch state, and Merch zip. It was 
noticed that the number of unique values of the Merch state field is 227, which is 
unexpected because the U.S. has only 50 states. Some of the values in this field 
might be from other countries, such as Canada and/or Mexico. 

Below we show some further information about the data. 
Figure 1 shows the number of transactions each month. We noticed the gen-

eral upward trend through September, followed by a sharp drop in October. The 
monthly transactions are fewer in the last quarter of the year compared with 
other quarters. This is due to the government fiscal year which starts on October 
1, and people tend to be more cautious with their money in the first few months 
of the new fiscal year. 

Figure 2 shows the top 10 of the most frequently traded merchant descrip-
tions. The total transaction frequency of the top 15 categories is 13,256, which is 
about 13.7% of the records. The top 200 categories account for 41% of the total 
records. In Table 1, we see that there are 13,126 kinds of merchants by this 
Merch description field, and 48.6% of the merchant descriptions only occurred 
once. 

Figure 3 depicts the top 10 of the most frequently observed merchant states.  
 

Table 1. Summary description of the data set. 

Fields name Type 
Records that  
have a value 

Percent 
populated 

Mode # Unique values 

Record Index 96,753 100%   96,753 

Cardnum Categorical 96,753 100% 5142148452  1645 

Date Time 96,753 100% 2/28/10  365 

Merchnum 

Categorical 

93,378 96.5% 930090121224  13,091 

Merch description 96,753 100% GSA-FSS-ADV  13,126 

Merch state 95,558 98.8% TN  227 

Merch zip 92,097 95.2% 38118  4567 

Transtype 96,753 100% P  4 

Amount Numeric 96,753 100% 3.62 

Mean 395.33* 

34,909 
Max 30372.46* 

Min 0.01 

Std 814.74* 

Fraud Categorical 96,753 100% 0  2 

*Statistical magnitude without outliers. 
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Figure 1. Monthly count of transactions shows seasonality. 

 

 
Figure 2. Most common merchant descriptions. 

 

 
Figure 3. Most common states. 
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The most frequent state is TN which is about 12.6% of the whole transaction 
frequency, and is not surprising because that is where the facility is located. The 
total number of transactions in the top 15 states is 71,647, which is about 75% of 
the entire records. From Table 1 we see that there are 227 different states in the 
data. And we note that 168 of the state’s field values are numbers rather than 
letters. 

3. Data Cleaning 

When we examine the field Amount, shown in the box plot distribution Figure 
4, we see that there is one large outlier with the Amount value recorded as over 3 
million dollars. After thoroughly checking that particular record, which is not 
labeled as fraud, we discover that it is an unusual but known transaction in 
Mexican pesos from a particular Mexican organization, and we thus exclude it 
from further analysis. 

Table 2 shows the information about the fields with missing values. All of 
these three fields have a strong relationship with the field Merch description, but 
the same Merch description may also correspond to different values in the three 
above fields. These three fields also have a strong relationship with each other, so 
the mode of each field is used to fill in the missing fields. 
 

 
Figure 4. Box plot distribution of the Amount field. 
 
Table 2. Fields with missing values. 

Field Records with missing values Percentage (%) Mode 

Merchnum 3357 3.49 930090121224 

Merch state 1195 1.24 TN 

Merch zip 4565 4.81 38118 

0 1.0e+06 2.0e+06 3.0e+06
Amount
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4. Variable Creation 

Creating expert variables is a critical step before any model can be built. We 
examine the original fields from the raw data set, as shown in Table 1, and from 
these we create a large universe of candidate variables for our supervised models. 
At this stage, we want to create as many candidate variables as possible, and later 
we will use a variety of feature selection methods to reduce the universe of can-
didate variables to those that will be our final set of possible model inputs. 

This step of creating variables, also called feature engineering, requires us to 
know as much as possible about the dynamics of the particular problem we are 
trying to solve. We want to do our best to create variables that in themselves 
contain as much encapsulated information of the signals of anomalous behavior 
that could be fraud. Thus we interview domain experts to fully understand as 
best as possible the different modes of fraud for this problem and try to build va-
riables that will show the signals of these fraud modes.  

This step of variable creation is arguably the most important step in machine 
learning. Encapsulating the problem dynamics as best as possible into these ex-
pert variables, prepares the data for the model in an as optimal way as possible. 
One should always do as much work upfront in this stage as possible in order to 
minimize the work required by your machine learning algorithm. It is true that 
theoretically all these nonlinear algorithms can discover these expert variable 
dynamics themselves, but it is generally difficult in a high dimensional space 
with sparse data sets. We note that 100,000 records are sparse data in anything 
above a handful of dimensions. Thus we work hard to create a universe of can-
didate variables that have encoded in them as best as possible as many indicators 
of potential fraud as we can think of. The logic behind these special expert va-
riables is described below [22]. 

There are four general types of expert variables that have been built: 
1) Amount variables. These variables are important because the amount spent 

can be immediately indicative of unusual activity. For example, if a person typi-
cally spends about 400 dollars over some time window and one day he spends 
400,000 dollars in one transaction, it would be a signal of odd behavior. There-
fore these amount-type variables are good candidates to detect potential frauds. 

maximum
median
total cardnum
actual-average merchnum

amount spent by at thisactual-median cardnum on this merchnum
actual average cardnum in this zip code
actual max cardnum in
actual total
actual median















1 day
7 days

over the last
14 days
30 days

 this state



 

 
 
 

 

2) Frequency variables. Another example to illustrate the significance of this is 
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that if a person does 2 transactions per day usually, but one day he does 2000 
transactions. That will be suspicious. So frequency variables are helpful to see if 
there is a big difference in a number of transactions. 

cardnum
merchnum

number of transactions with same cardnum and merchnum
cardnum and zip code
cardnum and state

1 day
7 days

over the last
14 days
30 days
















 

3) Days since variables. One example is that if it has been 10 months since the 
last time a person uses his card, someone else might be using it in this case, so 
that it might be a fraud. 

Current transaction date minus date of most recent transaction with same
cardnum
merchnum
cardnum and merchnum
cardnum and zip code
cardnum and state









 

4) Velocity variables. This measure shows how a person may do a large num-
ber of transactions over a day compared to his average transactions over a period 
of time. It is similar to the frequency variables.  

cardnum
number of transactions with same over the last 1 day

merchnum
7 days

cardnum
average daily number of transactions for this over the last 14 days

merchnum
30 days






 
 
 



 

with some variations of characteristics we end up 200 variables of the first type, 
20 variables of the second type, 5 variables of the third type and 12 variables of 
the fourth type. These 237 expert variables are listed in Appendix.  

5. Feature Selection 

A non intuitive fact of dimensionality is that all data points tend to be outliers as 
dimensionality increases. Another danger of high dimensionality is the expo-
nentially growing need of data to find true nonlinearity rather than noise. These 
facts, generally called the curse of dimensionality, demand that one does feature 
selection before attempting to build models in general, but particularly for any 
nonlinear models. Feature selection is of great necessity through the whole 
building process of machine learning algorithm as it not only drastically de-
creases the dimensionality but also helps discover the particular variables that 
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carry the more useful information. 
In general, there are three categories of feature selection methods: filter, 

wrapper, and embedded methods. The former two are applied in this research. A 
filter is a method applied to the data set without using a particular standard 
modeling algorithm. The wrapper method “wraps” a particular model around 
the feature selection process, for example, stepwise selection. Finally, an embed-
ded method has the feature selection built directly into the modeling process, 
such as various tree methods or the use of regularization.  

Here we first apply a filter method of feature selection to reduce the number 
of variables by about half. By calculating certain performance measures across 
every single variable individually and ranking the variables by these measures, a 
filter method can efficiently identify those with low performance. The particular 
filter measures we use for this fraud problem are a univariate Kolmogo-
rov-Smirnov (KS) and the univariate fraud detection rate (FDR) at 3%. The 
Kolmogorov-Smirnov statistical test is a measure to quantitatively determine 
how much two distributions over the same independent variable are separated. 
This is a common test used for feature selection in a binary classification prob-
lem. Here we build the distribution of the two categories of records, one for each 
of the two dependent variables values, across each of the independent variables, 
one by one. The question we are asking is how well each independent variable by 
itself can differentiate the two classes. The equations for calculating the KS sepa-
ration of two distributions are: 

Kolmogorov-Smirnov Formula 

min
max dgood b

x

x adx
KS P P x = − ∫  

min

max go d
x

odx

x

baKS P P = − ∑  

where the first representation is for a continuous distribution and the second is 
what we use in practice for finite data sets.  

For each candidate variable, we build the two distributions of the frauds and 
the non-frauds by this variable, and we calculate the KS separation between 
these two distributions. This measure explicitly tells how well each candidate va-
riable by itself can separate the classes, and is, in essence, a univariate model. 

Another measure of goodness we can calculate is the univariate fraud detec-
tion rate (FDR) for each candidate variable. The FDR is the measure of what 
percent of total frauds are caught at a particular percent of the population, as-
sorted by the fraud score or, in this case, the candidate variable. For a particular 
candidate variable, we sort all the records by the value of this variable. We then 
proceed from the “top” of this list and add up the # frauds observed as we pene-
trate deeper into the list of records. We count the number of frauds observed at 
each of the percents of penetration of the data population, and discover, for ex-
ample, that in this sorted list we might find that 10% of the frauds are contained 
in the top 3% of the records assorted by this particular candidate variable. This 
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FDR (10% fraud at 3% penetration) is a measure of how well the candidate vari-
able by itself separates the frauds from the non-frauds. 

A wrapper is a popular feature selection method to help determine which va-
riables should be included in the machine learning model. It directly builds many 
models with different sets of variables, selecting them by examining the measure of 
goodness of the model itself. The most common wrapper method is stepwise selec-
tion, typically forward or backward selection. For forward selection, we first build 
univariate models, one for each of the n candidate variables, and examine the 
measure of goodness for each model. We select the variable xi whose univariate 
model is best and then proceed by building n-1 two-variable models, xi combined 
with all the remaining candidate variables, one by one. We select the best 
2-variable model, now having identified xi and another xj as the strongest variables 
(xj strong in conjunction with xi). We continue this stepwise forward selection un-
til we see negligible improvement when adding a new variable.  

Backward selection is similar. Here we start with a single n-variable mode that 
uses all candidate variables. We then build n new models, each using only n-1 
variables, where we have removed one of the n possible variables from each new 
model. The variable whose n-1 model decays the least is then discarded, and we 
continue by building n-1 2-variable models using all combinations of the re-
maining n-1 candidate variables. We continue this way until the removal of the 
next variable causes undesirable model performance degradation. 

Both of these wrapper methods result in a rank-ordered list of the variables, 
sorted by importance in predicting the dependent variable. Note that this wrap-
per feature selection is done with a particularly selected modeling method 
wrapper, and while the rank-order importance is not strongly dependent on the 
choice of wrapper model method there may be some dependence on this choice.  

Because so many models need to be built in stepwise feature selection, it is 
common to use a very fast modeling method as the wrapper, and one typically 
uses linear or logistic regression. We note that this common and expedient 
choice generally ignores the potential of variable interactions. In general, the 
choice of wrapper model method can be independent of the choice of model 
method for the final model. In this work, we used logistic regression, FDR at 3% 
and the forward selection method for the wrapper feature selection process. 

We begin our feature selection process with the universe of 237 expert va-
riables created, and first apply our filter methods to reduce the number of expert 
variables from 237 to 120. By combining the KS and FDR with equal weight, the 
filter reduces our variable set to about half of the variables, and then we apply 
the wrapper to reduce to the final 20 variables, still rank-ordered by importance. 
Figure 5 illustrates the stages of this two-step feature selection process. 

Table 3 below lists the final 20 variables after feature selection. 

6. Model Algorithms 

We explore the use of a variety of supervised modeling methods, starting with a 
baseline logistic regression and then a number of nonlinear statistical/machine 
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Figure 5. Feature selection process. 

 
Table 3. The selected top 20 variables ranked by importance after feature selection. 

Ranking Variables 

1 total amount by this cardnum at this merchnum in 7 days 

2 max amount by this cardnum in 30 days 

3 total amount by this cardnum in this zip code in 14 days 

4 actual-median amount by this cardnum in this zip code in 30 days 

5 total amount by this merchnum in 1 day 

6 total amount by this merchnum in 14 days 

7 max amount by this merchnum in 30 days 

8 total amount by this merchnum in 7 days 

9 total amount by this cardnum at this merchnum in 14 days 

10 #transactions by this cardnum in 1 day 

11 total amount by this cardnum at this merchnum in 1 day 

12 actual/average amount by this cardnum in 30 days 

13 #transactions by this cardnum in this state in 1 day 

14 max amount by this cardnum in this state in 14 days 

15 median amount by this cardnum in this zip code in 30 days 

16 median amount by this cardnum  in 30 days 

17 total amount by this cardnum in this zip code in 30 days 

18 actual-average amount by this cardnum in 30 days 

19 actual-average amount by this cardnum in 7 days 

20 actual/average amount by this merchnum in 30 days 

 
learning methods. For each method, we describe the general principals of the 
algorithm and the parameter searches performed. 

In this analysis we divide our data set into three parts: training, testing and 
out of time/validation. This third data set is chosen to be the final 2 months of 
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our data. We use the first 10 months of our data set to build our best models, 
randomly dividing the records into training and testing in multiple ways, and 
then we evaluate the model on this out of time data set. This gives us the most 
likely model performance that will be experienced when the model is imple-
mented. Although we use this out of time evaluation multiple times during 
model tuning, it still provides a more realistic performance expectation measure 
than what the in-time testing data provides. 

6.1. Logistic Regression 

With 20 variables selected, logistic regression functions as a baseline model for 
its simplicity of parameters interpretation. We note that based on its simplicity 
and generally fine performance, logistic regression is frequently the method of 
choice for many real-world business classification problems. For this study, the 
first step is to build a baseline logistic regression using all variables from our 
feature selection process. Table 4 below is a summary of the main parameters of 
this logistic regression model. Each variable xi is the variable given in Table 3. 

Note that x3 and x16 both have p values higher than 0.05, and therefore should 
be excluded since they are not statistically significant. Thus the new version of 
logistic regression on the remaining 18 variables (removing x3 and x16) is shown 
in Table 5 summary below. 

 
Table 4. First logistic regression output on the training data. 

Optimization terminated successfully. 
     

Current function value: 0.026521 
     

Iterations 10 
      

  
Results: Logit 

   
Model: Logit 

  
Pseudo R-squared: 0.539 

Dependent variable: y 
  

AIC: 
 

3382.435 

Date: 2019/2/1 20:01 
  

BIC: 
 

3572.495 

No. observations: 62976 
  

Log-Likelihood: −1670.2 

Df Model: 20 
  

LL-Null: 
 

−3619.4 

Df residuals: 62955 
  

LLR p-value: 0.0000 

Converged: 1.0000 
  

Scale: 
 

1.0000 

No. iterations: 10.0000 
     

 
Coef. Std. Err. z P > |z| [0.025 0.975] 

Const −6.3774 0.0952 −66.9633 0.0000 −6.5640 −6.1907 

x1 −0.3720 0.0991 −3.7524 0.0002 −0.5664 −0.1777 

x2 0.3912 0.0553 7.0703 0.0000 0.2828 0.4997 

x3 −0.0651 0.0853 −0.7637 0.4450 −0.2322 0.1020 

x4 −0.5262 0.0736 −7.1466 0.0000 −0.6705 −0.3819 

x5 0.6035 0.0385 15.6722 0.0000 0.5280 0.6789 
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Continued 

x6 −1.8396 0.1679 −10.9593 0.0000 −2.1686 −1.5106 

x7 −0.8686 0.0907 −9.5745 0.0000 −1.0465 −0.6908 

x8 1.6247 0.1464 11.0981 0.0000 1.3378 1.9117 

x9 0.8138 0.1118 7.2775 0.0000 0.5947 1.0330 

x10 0.9733 0.0953 10.2176 0.0000 0.7866 1.1600 

x11 −0.4629 0.0645 −7.1806 0.0000 −0.5892 −0.3365 

x12 0.2565 0.0439 5.8379 0.0000 0.1704 0.3426 

x13 −0.5733 0.1005 −5.7035 0.0000 −0.7703 −0.3763 

x14 0.4198 0.0527 7.9630 0.0000 0.3164 0.5231 

x15 −0.1589 0.0636 −2.5002 0.0124 −0.2835 −0.0343 

x16 0.0146 0.0536 0.2721 0.7856 −0.0905 0.1197 

x17 0.3298 0.0405 8.1483 0.0000 0.2505 0.4091 

x18 0.7775 0.0960 8.0953 0.0000 0.5893 0.9658 

x19 −0.3247 0.0478 −6.7955 0.0000 −0.4183 −0.2310 

x20 0.2963 0.0300 9.8665 0.0000 0.2374 0.3551 

 
Table 5. Final logistic regression output on the training data. 

Optimization terminated successfully. 
     

Current function value: 0.026716 
     

Iterations 10 
      

  
Results: Logit 

   
Model: Logit 

  
Pseudo R-squared: 0.538 

Dependent variable: y 
  

AIC: 
 

3402.9056 

Date: 2019/2/1 19:57 
  

BIC: 
 

3574.8652 

No. observations: 62976 
  

Log-Likelihood: −1682.5 

Df Model: 18 
  

LL-Null: 
 

−3642.2 

Df residuals: 62957 
  

LLR p-value: 
 

0.0000 

Converged: 1.0000 
  

Scale: 
 

1.0000 

No. iterations: 10.0000 
     

 
Coef. Std.Err. z P > |z| [0.025 0.975] 

Const −6.3268 0.0932 −67.8687 0.0000 −6.5096 −6.1441 

x1 −0.3722 0.1000 −3.7566 0.0002 −0.5714 −0.1796 

x2 0.4580 0.0533 8.5863 0.0000 0.3534 0.5625 

x3 −0.5297 0.0607 −8.7208 0.0000 −0.6488 −0.4107 

x4 0.5835 0.0386 15.1147 0.0000 0.5078 0.6591 

x5 −1.7827 0.1667 −10.6910 0.0000 −2.1095 −1.4559 

x6 −0.9201 0.0903 −10.1885 0.0000 −1.0970 −0.7431 

x7 1.6306 0.1491 10.9381 0.0000 1.3384 1.9228 
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Continued 

x8 0.7779 0.0893 8.7147 0.0000 0.6030 0.9529 

x9 0.9498 0.0906 10.4809 0.0000 0.7722 1.1274 

x10 −0.4543 0.0652 −6.9706 0.0000 −0.5820 −0.3265 

x11 0.2262 0.0439 5.1566 0.0000 0.1402 0.3122 

x12 −0.5552 0.0966 −5.7447 0.0000 −0.7446 −0.3658 

x13 0.3950 0.0516 7.6543 0.0000 0.2939 0.4962 

x14 −0.1463 0.0581 −2.5207 0.0117 −0.2601 −0.0326 

x15 0.2931 0.0405 7.2453 0.0000 0.2138 0.3724 

x16 0.7826 0.0943 8.2965 0.0000 0.5977 0.9674 

x17 −0.3139 0.0494 −6.3490 0.0000 −0.4108 −0.2170 

x18 0.2648 0.0307 8.6278 0.0000 0.2047 0.3250 

 
To optimize the logistic regression the number of variables chosen is an ad-

justable factor in the tuning process. Models with different numbers of variables 
are compared in Table 6 below. Note that each experiment of a different num-
ber of variables is achieved by removing the last several variables since they are 
ranked by importance.  

Table 6 shows the results of FDR (at 3%) on the out of time data for logistic 
regression using different numbers of variables, always selected in the rank order 
shown in Table 3. The nonmonotonic nature of the results is simply a statistical 
variation due to the sparsity of records. 

6.2. Artificial Neural Network 

An artificial neural network (ANN) is an algorithm that shares simulative struc-
ture of the neural network of human brain. As shown in Figure 6. There are an 
input layer, hidden layers and an output layer in the overall network architec-
ture. Each of these layers contains nodes or neurons, which are gathering loca-
tions for the receipt and transmission of numerical signals from the previous to 
the next layer of the neural net. Each neuron embedded in the structure receives 
a signal from the nodes in the previous layer, applies a transfer function to the 
signal, and then outputs a new signal to the nodes in the next layer. The signal 
received from the previous layer is in general a linear combination of the outputs 
of the previous layer nodes. This combined linear combination signal, received 
by the node, is then passed through a transfer function, typically a sigmoid or 
logit function. Other transfer functions are also used, but the sigmoid/logit is the 
most common.  

In this work, we use this sigmoid/logistic nonlinear transfer function, with the 
equation below. 
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Table 6. Logistic regression performance for different number of variables. 

OOT FDR for logistic regression 

Number of variables %OOT FDR (at 3%) 

5 44.30 

6 45.25 

8 44.53 

10 31.84 

15 34.47 

20 39.22 

 

 
Figure 6. Neural net architecture1. 

 
The variable x in this equation is the linear combination of the weighted sig-

nals received from the nodes in the previous layer. 
During the parameter tuning process, the key parameters that mainly define 

the structure of the ANN are number of variables/inputs, hidden layer sizes 
(number of layers & number of nodes in each layer), a regularization weight al-
pha and the learning rate, all of which become the searchable parameters in our 
tuning experiments. Table 7 below shows the parameters settings of the optimal 
ANN after tuning. 

We note that, even though this was our best ANN model it is likely not the 
best possible. With only one node in a single hidden layer and the logit trans-
form function, it is mathematically equivalent to a logistic regression.  

6.3. Support Vector Machine 

A Support Vector Machine (SVM) is a wildly applied binary classifier for super-
vised machine learning problems. The main characteristics of the SVM algo-
rithm are:  

 

 

1The figure is quoted from http://image.baidu.com. 
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Table 7. Final parameters for the Artificial Neural Net model. 

Main parameters of artificial neural net 

Activation: Logistic Solver: Sgd 

Alpha: 0.01 Learning rate: Adaptive 

Hidden layers sizes: (1)* Bach size: Auto 

Max iter: 200 Number of variables: 6 

*layer: 1 nodes: 1. 
 
• Expand the dimensionality;  
• Look for a linear classifier separation surface in this higher dimensional space. 

It is counterintuitive to expand the dimensionality of a nonlinear machine 
learning algorithm, since as we argued previously, dimensionality is in a sense 
the enemy of nonlinear modeling. Expanding the dimensionality can provide 
new variables, such as the many varieties of the products and higher order pow-
ers of the original variables, where a linear separation in this complex higher 
dimensional space might be a good separation surface. But adding these dimen-
sions is against the principals recognized by the curse of dimensionality. 

The SVM algorithm achieves this balance by not using explicit new variables 
in this extended dimensionality, but introduces “virtual” new variables through 
the use of a kernel trick. It is observed that as the algorithm searches for the best 
linear separator in the space, all that is needed is some measure of distance. The 
kernel is a generalized measure of distance and can be employed in this virtual 
higher dimension without explicitly calculating new variables or explicitly ex-
panding the space. 

Another important characteristic of the SVM algorithm is the use of a margin 
concept, where the best linear classifier is selected not just on the basis of the 
classification error but also considering the best spread around the data, tilting 
the surface so that this margin of classification/misclassification is as optimal as 
possible. This is shown in Figure 7. 

The choice of a radial basis function (RBF) kernel function is used in this 
study. The number of variables, C and gamma, are key parameters of the SVM 
algorithm with the RBF kernel. C is a weight for each of the classes, set to one 
here, and gamma is a scale factor for the width of the radial basis functions. Ta-
ble 8 below shows the final settings of parameters of the SVM after tuning. 

6.4. Random Forest 

A decision tree algorithm is one where the space of data is separated into a 
number of distinct boxes that, combined, cover all the possible space. It is built 
by doing iterative cuts of the space, typically dividing an existing box into two 
“child” boxes, which is thus called a binary tree. At each iteration, the algorithm 
considers a box of data and examines what might be the best way to split it into 
two separate boxes where some criterion is optimal. The splitting criterion for a 
binary classification problem is typically an impurity measure, where the split  
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Figure 7. Support vector machine separation surface2. 

 
Table 8. Parameter settings for the SVM model. 

Main parameters of support vector machine 

Kernel: rbf Number of variables: 6 

C: 1 Gamma: 1 

 
attempts to separate into two child boxes of the greatest type purity, meaning, 
the two classes are separated as well as possible. The splitting algorithm contin-
ues, considering each child box as a new parent box, and continues to split until 
a stopping criterion is reached. 

Decision trees are an early and ubiquitous machine learning, nonlinear statis-
tical modeling methodology. Used extensively decades ago they are known to 
have serious flaws that are easy to succumb to. The primary deficiency is the 
tendency to overfit, followed by instability and fragility. The structure of a tree 
can change substantially depending on near-random choices of the first few 
splitting locations, which can easily change with small changes in the fitting data 
set. These deficiencies have been largely overcome through more modern algo-
rithms that take advantage of the good properties of trees and greatly avoid these 
known pitfalls. The use of multiple trees rather than a single complex tree sub-
stantially removes many of the problems. Two widely-used architectures that use 
multiple trees are random forests and boosted trees. 

A random forest, shown in Figure 8, is a large collection of decision trees, 
where the final output is a committee choice across many individual trees. The 
principle of random forest is that many trees are built, and each uses a random-
ly-chosen subset of features. All the results are then combined, typically by  

 

 

2The figure is quoted from http://image.baidu.com. 
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Figure 8. Random forest architecture. 

 
averaging or voting. A random forest, as compared to a single decision tree, can 
get a more accurate prediction. Further, since the tree depths are usually smaller 
and many trees are combined, overfitting issues are largely avoided. While tun-
ing the parameters it is important to know what each parameter means. There 
are 5 important parameters that can be tuned for the random forest algorithm 
selected: 
• max_features: Maximum number of features the random forest can try in 

each individual tree; 
• max_depth: Maximum depth of each tree;  
• min_samples_leaf: The minimum number of samples required to split an in-

ternal node; 
• n_estimator: Number of trees to be built. 

After multiple trials, the setting of parameters was finalized as is shown in 
Table 9 below. 

6.5. Boosted Tree 

Boosted trees or gradient boosting trees is a type of supervised model that again 
uses a collection of decision trees, but constructed in a very different way from 
the random forest. As shown in Figure 9, the boosting process is an iterative 
approximation process, where we incrementally add more trees, in a fashion 
similar fashion to a Taylor series, each adding slightly more predictive power to 
the whole.  

This series of “weak learners” has several important characteristics. First, each 
tree is a very simple tree, limited in depth and variables. The first tree in the se-
ries makes a very crude fit to the target output. The error in this fit is calculated  
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Table 9. Parameter settings for the random forest model. 

Final parameter choices of the random forest 

Max depth: 5 Max features: 6 

Min sample leaf: 2 Min sample split: 10 

Estimator: 400 Number of variables: 8 

 

 
Figure 9. Boosted tree architecture. 
 
for each record, and this error becomes a weighting factor for the next training 
iteration. Thus as this series of weak learners continues, each next additive tree 
tends to focus its learning objective on the records for which there is the largest 
error so far. The use of the latest error as the weights for the next training itera-
tion is what gives the algorithm the name boosting, and indeed any weak learner 
can be used in a boosting algorithm.  

Boosted tree models have a set of parameters that can be tuned to improve the 
quality of the series of weak learners. Some important parameters were explored, 
specifically the parameters. 

Max_depth: Maximum depth of a tree. Increasing this value will make the 
model more complex and more likely to overfit.  

Learning_rate: Step size shrinkage used for the next iterative tree and can help 
to prevent overfitting. Empirically it has been found that using small learning 
rates yields dramatic improvements in the model’s generalization ability over 
gradient boosting without shrinking. 

Scale_pos_weight: Control the balance of positive and negative class weights, 
useful for unbalanced classes. 

Min_child_weight: Minimum sum of instance weight (hessian) needed in a 
child. If the tree partition step results in a leaf node with the sum of instance 
weights less than min_child_weight, then the building process will give up fur-
ther partitioning. 

Table 10 below illustrates the final settings of these parameters for the boosted 
tree after tuning. 

7. Model Results 

Table 11 below summarizes the FDR at 3% for each model. 
The ultimate purpose of this research is to find a relatively robust model which  
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Table 10. Parameter settings for the boosted tree model. 

Main parameters of boosted tree 

Learning rate: 0.01 Number of trees: 300 

Max depth: 5 Number of variables: 20 

 
Table 11. Model results on the card transaction data on the training, testing and out of 
time validation data sets. These numbers are averages over 10 runs for each data set. 

Model 
FDR (at 3%) 

Train (%) Test (%) OOT (%) 

Logistic regression 72.85 72.96 45.25 

Artificial neural net 72.65 68.95 44.86 

Support vector machine 90.12 82.29 47.54 

Random forest 80.97 79.58 45.42 

Boosted tree 89.86 90.08 49.83 

 
can handle the real-time data flow required for a credit card transaction fraud 
model. The out of time (OOT) data set is set aside, separated from the train-
ing/testing data, to simulate how the model will perform when implemented. 
Thus, the key measure to determine which nonlinear model to deploy is natu-
rally the FDR performance on OOT data. Obviously, the boosted tree (FDR = 
49.83%) slightly outperformed the next best model (SVM, FDR = 47.54%) and 
become our best choice for our nonlinear model. 

Having settled on the boosted tree as our final model we then examined the 
FDR at different population cutoff locations, separately on training set, testing 
set and OOT data set. Tables 12-14 below illustrate these results. Here the FPR 
is the false positive ratio, the number of incorrectly flagged non-frauds divided 
by the correctly caught frauds, another common measure of model goodness. 

These three tables show the model performance statistics of the three data sets 
(Table 12 of training data set, Table 13 of testing data set, Table 14 of OOT da-
ta set), and the OOT data set (Table 14) shows our best guess of how the model 
will perform when implemented. In this table, we see that the model pushes the 
majority of the fraud records to the top bins, which is what is desired. The bin 
statistics tell us what is happening in each population percentile bin and the cu-
mulative statistics tell us what would happen if we were to select any particular 
percentage as a score cutoff. We see in the cumulative statistics the FDR of the 
OOT data set at 3%, which means that if we set the score cutoff at 3% we expect 
to catch about 50.84% percent of all the fraudulent transaction attempts. A score 
cutoff of 3% means that the business will reject the top 3% of transaction volume 
as sorted by the fraud score. Note that the FDR at 3% for each data set here are 
different from those in Table 11 because Table 11 reflects average FDR for over 
10 runs for each data set, while FDR here is generated over one run when build-
ing boosted tree. 
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Table 12. Training results. 

Training 

#Records #Goods #Bads Fraud rate     

62,976 62,339 637 0.0101     

Bin statistics Cumulative statistics 

Population 
bin% 

#Records #Goods #Bads %Goods %Bads 
Total 

#records 
records  

Cumulative 
good 

Cumulative 
bad 

%Good 
%Bad 
(FDR) 

KS FPR 

1 630 90 540 14.3 85.7 630 90 540 0.14 84.77 84.63 0.1667 

2 630 601 29 95.4 4.6 1260 691 569 1.11 89.32 88.22 1.2144 

3 630 628 2 99.7 0.3 1890 1319 571 2.12 89.64 87.52 2.3100 

4 630 627 3 99.5 0.5 2520 1946 574 3.12 90.11 86.99 3.3902 

5 630 629 1 99.8 0.2 3150 2575 575 4.13 90.27 86.14 4.4783 

6 630 630 0 100.0 0.0 3780 3205 575 5.14 90.27 85.13 5.5739 

7 630 628 2 99.7 0.3 4410 3833 577 6.15 90.58 84.43 6.6430 

8 630 627 3 99.5 0.5 5040 4460 580 7.15 91.05 83.90 7.6897 

9 630 630 0 100.0 0.0 5670 5090 580 8.17 91.05 82.89 8.7759 

10 630 618 12 98.1 1.9 6300 5708 592 9.16 92.94 83.78 9.6419 

11 630 624 6 99.0 1.0 6930 6332 598 10.16 93.88 83.72 10.5886 

12 630 625 5 99.2 0.8 7560 6957 603 11.16 94.66 83.50 11.5373 

13 630 630 0 100.0 0.0 8190 7587 603 12.17 94.66 82.49 12.5821 

14 630 630 0 100.0 0.0 8820 8217 603 13.18 94.66 81.48 13.6269 

15 630 630 0 100.0 0.0 9450 8847 603 14.19 94.66 80.47 14.6716 

16 630 627 3 99.5 0.5 10,080 9474 606 15.20 95.13 79.94 15.6337 

17 630 630 0 100.0 0.0 10,710 10,104 606 16.21 95.13 78.93 16.6733 

18 630 630 0 100.0 0.0 11,340 10,734 606 17.22 95.13 77.91 17.7129 

19 630 630 0 100.0 0.0 11,970 11,364 606 18.23 95.13 76.90 18.7525 

20 630 629 1 99.8 0.2 12,600 11,993 607 19.24 95.29 76.05 19.7578 

 
Table 13. Testing results. 

Testing 

#Records #Goods #Bads Fraud rate     

20,993 20,750 243 0.0116     

Bin statistics Cumulative statistics 

Population 
bin% 

#Records #Goods #Bads %Goods %Bads 
Total 

#records 
records 

Cumulative 
good 

Cumulative 
bad 

%Good 
%Bad 
(FDR) 

KS FPR 

1 210 20 190 9.5 90.5 210 20 190 0.10 78.19 78.09 0.1053 

2 210 183 27 87.1 12.9 420 203 217 0.98 89.30 88.32 0.9355 

3 210 208 2 99.0 1.0 630 411 219 1.98 90.12 88.14 1.8767 

4 210 210 0 100.0 0.0 840 621 219 2.99 90.12 87.13 2.8356 

5 210 209 1 99.5 0.5 1050 830 220 4.00 90.53 86.53 3.7727 
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Continued 

6 210 210 0 100.0 0.0 1260 1040 220 5.01 90.53 85.52 4.7273 

7 210 208 2 99.0 1.0 1470 1248 222 6.01 91.36 85.34 5.6216 

8 210 209 1 99.5 0.5 1680 1457 223 7.02 91.77 84.75 6.5336 

9 210 210 0 100.0 0.0 1890 1667 223 8.03 91.77 83.74 7.4753 

10 210 209 1 99.5 0.5 2100 1876 224 9.04 92.18 83.14 8.3750 

11 210 206 4 98.1 1.9 2310 2082 228 10.03 93.83 83.79 9.1316 

12 210 210 0 100.0 0.0 2520 2292 228 11.05 93.83 82.78 10.0526 

13 210 210 0 100.0 0.0 2730 2502 228 12.06 93.83 81.77 10.9737 

14 210 210 0 100.0 0.0 2940 2712 228 13.07 93.83 80.76 11.8947 

15 210 209 1 99.5 0.5 3150 2921 229 14.08 94.24 80.16 12.7555 

16 210 209 1 99.5 0.5 3360 3130 230 15.08 94.65 79.57 13.6087 

17 210 209 1 99.5 0.5 3570 3339 231 16.09 95.06 78.97 14.4545 

18 210 210 0 100.0 0.0 3780 3549 231 17.10 95.06 77.96 15.3636 

19 210 209 1 99.5 0.5 3990 3758 232 18.11 95.47 77.36 16.1983 

20 210 210 0 100.0 0.0 4200 3968 232 19.12 95.47 76.35 17.1034 

 
Table 14. OOT results. 

Out of time 

#Records #Goods #Bads Fraud rate     

12,427 12,248 179 0.0144     

Bin statistics Cumulative statistics 

Population 
bin% 

#Records #Goods #Bads %Goods %Bads 
Total 

#records 
Cumulative 

good 
Cumulative 

bad 
%Good 

%Bad 
(FDR) 

KS FPR 

1 124 81 43 65.3 34.7 124 81 43 0.66 24.02 23.36 1.8837 

2 124 81 43 65.3 34.7 248 162 86 1.32 48.04 46.72 1.8837 

3 124 119 5 96.0 4.0 372 281 91 2.29 50.84 48.54 3.0879 

4 124 122 2 98.4 1.6 496 403 93 3.29 51.96 48.66 4.3333 

5 124 123 1 99.2 0.8 620 526 94 4.29 52.51 48.22 5.5957 

6 124 124 0 100.0 0.0 744 650 94 5.31 52.51 47.21 6.9149 

7 124 103 21 83.1 16.9 868 753 115 6.15 64.25 58.10 6.5478 

8 124 109 15 87.9 12.1 992 862 130 7.04 72.63 65.59 6.6308 

9 124 124 0 100.0 0.0 1116 986 130 8.05 72.63 64.58 7.5846 

10 124 123 1 99.2 0.8 1240 1109 131 9.05 73.18 64.13 8.4656 

11 124 122 2 98.4 1.6 1364 1231 133 10.05 74.30 64.25 9.2556 

12 124 124 0 100.0 0.0 1488 1355 133 11.06 74.30 63.24 10.1880 

13 124 116 8 93.5 6.5 1612 1471 141 12.01 78.77 66.76 10.4326 

14 124 122 2 98.4 1.6 1736 1593 143 13.01 79.89 66.88 11.1399 

15 124 123 1 99.2 0.8 1860 1716 144 14.01 80.45 66.44 11.9167 

16 124 123 1 99.2 0.8 1984 1839 145 15.01 81.01 65.99 12.6828 

17 124 124 0 100.0 0.0 2108 1963 145 16.03 81.01 64.98 13.5379 

18 124 124 0 100.0 0.0 2232 2087 145 17.04 81.01 63.97 14.3931 

19 124 122 2 98.4 1.6 2356 2209 147 18.04 82.12 64.09 15.0272 

20 124 122 2 98.4 1.6 2480 2331 149 19.03 83.24 64.21 15.6443 
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8. Conclusions and Further Work 

In this paper, we explore the application of linear and nonlinear statistical and 
machine learning models on credit card transaction data. The models we build 
are supervised fraud models that attempt to identify which transactions are most 
likely fraudulent.   

As we would expect, the nonlinear models slightly outperform the linear 
model, except for the artificial neural network. We believe this underperfor-
mance is due to 2 reasons. First, we recognize that we have likely not sufficiently 
tuned the neural net model and improvement can be found with a different set 
of model parameters. Second, we note that the data set is substantially limited, 
and only has 179 labeled fraud events in this OOT data set. The results of any 
model, particularly a nonlinear one, can be volatile and sensitive to the statistical 
aberrations and the variation of model parameters. The boosted tree model per-
forms the best and can detect about half of the fraud attempts within only the 
top 3% data that was sorted as suspicious by the fraud algorithm score. 

The resulting model can be utilized in a credit card fraud detection system. 
We note that similar model development process can be performed in related 
business domains such as insurance and telecommunications, to avoid or detect 
fraudulent activity. 

We also found that we can use the scores of statistical significance in the logis-
tic regression models as the criteria for selecting variables: high statistical signi-
ficance score or the low p-value means strong correlation between fraud and re-
lated variable. It was found that the logistic regression model works quite well, 
once sufficiently good expert variables are constructed, which is also seen quite 
often in practice. What is observed in practice is that well-designed linear models 
are difficult to beat even with sophisticated nonlinear algorithms. The most impor-
tant step is the construction of good expert variables that encode the signals of the 
problem dynamics as much as possible into clever variables. It is for this reason 
that linear and logistic regression models are so prevalent in the business field. 

More data with more fields (for example, adding point of sale information, 
time of day, or other cardholder or merchant information) would certainly allow 
model performance improvements. Further model parameter tuning would also 
provide improvements to any of the models. 
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Appendix: List of 237 Candidate Expert Variables 

#transactions with same cardnum in 1 day/average daily #transactions for this cardnum in 7 days 

#transactions with same cardnum in 1 day/average daily #transactions for this cardnum in 14 days 

#transactions with same merchnum in 1 day/average daily #transactions for this merchnum in 7 days 

#transactions with same merchnum in 1 day/average daily #transactions for this merchnum in 14 days 

#transactions with same merchnum in 1 day/average daily #transactions for this merchnum in 30 days 

#transactions with same cardnum in 1 day/average daily #transactions for this cardnum in 30 days 

maximum amount by this cardnum in 30 days 

total amount by this cardnum in 30 days 

median amount by this cardnum in 30 days 

median amount by this merchnum in 30 days 

median amount by this cardnum at this merchnum in 30 days 

median amount by this cardnum in this zip code in 30 days 

median amount by this cardnum in this state in 30 days 

total amount by this merchnum in 30 days 

total amount by this cardnum at this merchnum in 30 days 

total amount by this cardnum in this zip code in 30 days 

total amount by this cardnum in this state in 30 days 

maximum amount by this cardnum in this state in 30 days 

maximum amount by this cardnum in this zip code in 30 days 

maximum amount by this cardnum at this merchnum in 30 days 

maximum amount by this merchnum in 30 days 

average amount by this merchnum in 30 days 

average amount by this cardnum at this merchnum in 30 days 

average amount by this cardnum in this zip code in 30 days 

average amount by this cardnum in this state in 30 days 

average amount by this cardnum in 30 days 

#transactions with same cardnum in 30 days 

#transactions with same merchnum in 30 days 

#transactions with same cardnum and merchnum in 30 days 

#transactions with same cardnum and zip code in 30 days 

#transactions with same cardnum and state in 30 days 

#transactions with same cardnum in 1 day/30 days 

#transactions with same merchnum in 1 day/30 days 

actual-average amount by this cardnum in 30 days 

actual by this merchnumedian amount by this cardnum in 30 days 

actual/average amount by this cardnum in 30 days 

actual/maximum amount by this cardnum in 30 days 
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Continued 

actual/total amount by this cardnum in 30 days 

actual/median amount by this cardnum in 30 days 

actual-average amount by this merchnum in 30 days 

actual amount by this merchnum in 30 days 

actual/average amount by this merchnum in 30 days 

actual/maximum amount by this merchnum in 30 days 

actual/total amount by this merchnum in 30 days 

actual/median amount by this merchnum in 30 days 

actual-average amount by this cardnum at this merchnum in 30 days 

actual/average amount by this cardnum at this merchnum in 30 days 

actual-average amount by this cardnum in this zip code in 30 days 

actual-average amount by this cardnum in this state in 30 days 

actual amount by this cardnum in this zip code in 30 days 

actual/average amount by this cardnum in this zip code in 30 days 

actual/maximum amount by this cardnum in this zip code in 30 days 

actual/total amount by this cardnum in this zip code in 30 days 

actual/median amount by this cardnum in this zip code in 30 days 

actual amount by this cardnum in this state in 30 days 

actual/average amount by this cardnum in this state in 30 days 

actual/maximum amount by this cardnum in this state in 30 days 

actual/total amount by this cardnum in this state in 30 days 

actual/median amount by this cardnum in this state in 30 days 

actual amount by this cardnum at this merchnum in 30 days 

actual/maximum amount by this cardnum at this merchnum in 30 days 

actual/total amount by this cardnum at this merchnum in 30 days 

actual/median amount by this cardnum at this merchnum in 30 days 

total amount by this cardnum at this merchnum in 1 day 

total amount by this cardnum at this merchnum in 7 days 

total amount by this cardnum at this merchnum in 14 days 

total amount by this cardnum in this zip code in 14 days 

total amount by this cardnum in this zip code in 7 days 

total amount by this cardnum in this zip code in 1 day 

actual/total amount by this cardnum in this zip code in 1 day 

actual/total amount by this cardnum in this zip code in 7 days 

actual/total amount by this cardnum in this zip code in 14 days 

actual/total amount by this cardnum at this merchnum in 14 days 

actual/total amount by this cardnum at this merchnum in 7 days 

actual/total amount by this cardnum at this merchnum in 1 day 
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Continued 

actual/maximum amount by this cardnum at this merchnum in 1 day 

actual/maximum amount by this cardnum at this merchnum in 7 days 

actual/maximum amount by this cardnum at this merchnum in 14 days 

actual/maximum amount by this cardnum in this zip code in 14 days 

actual/maximum amount by this cardnum in this zip code in 7 days 

actual/maximum amount by this cardnum in this zip code in 1 day 

maximum amount by this cardnum in this zip code in 1 day 

maximum amount by this cardnum in this zip code in 7 days 

maximum amount by this cardnum in this zip code in 14 days 

maximum amount by this cardnum at this merchnum in 14 days 

maximum amount by this cardnum at this merchnum in 7 days 

maximum amount by this cardnum at this merchnum in 1 day 

average amount by this cardnum at this merchnum in 1 day 

average amount by this cardnum at this merchnum in 7 days 

average amount by this cardnum at this merchnum in 14 days 

actual-average amount by this cardnum at this merchnum in 14 days 

actual-average amount by this cardnum at this merchnum in 7 days 

actual-average amount by this cardnum at this merchnum in 1 day 

actual/average amount by this cardnum at this merchnum in 1 day 

actual/average amount by this cardnum at this merchnum in 7 days 

actual/average amount by this cardnum at this merchnum in 14 days 

actual/average amount by this cardnum in this zip code in 14 days 

actual/average amount by this cardnum in this zip code in 7 days 

actual/average amount by this cardnum in this zip code in 1 day 

actual-average amount by this cardnum in this zip code in 1 day 

actual-average amount by this cardnum in this zip code in 7 days 

actual-average amount by this cardnum in this zip code in 14 days 

average amount by this cardnum in this zip code in 14 days 

average amount by this cardnum in this zip code in 7 days 

average amount by this cardnum in this zip code in 1 day 

median amount by this cardnum in this zip code in 1 day 

median amount by this cardnum in this zip code in 7 days 

median amount by this cardnum at this merchnum in 14 days 

median amount by this cardnum at this merchnum in 7 days 

median amount by this cardnum at this merchnum in 1 day 

median amount by this cardnum in this zip code in 14 days 

actual-median amount by this cardnum in this zip code in 1 day 

actual-median amount by this cardnum in this zip code in 7 days 
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Continued 

actual-median amount by this cardnum in this zip code in 14 days 

actual-median amount by this cardnum at this merchnum in 14 days 

actual-median amount by this cardnum at this merchnum in 7 days 

actual-median amount by this cardnum at this merchnum in 1 day 

actual/median amount by this cardnum at this merchnum in 1 day 

actual/median amount by this cardnum at this merchnum in 7 days 

actual/median amount by this cardnum at this merchnum in 14 days 

actual/median amount by this cardnum in this zip code in 14 days 

actual/median amount by this cardnum in this zip code in 7 days 

actual/median amount by this cardnum in this zip code in 1 day 

Current transaction date - date of most recent transaction with same cardnum and state 

Current transaction date - date of most recent transaction with same cardnum and zip 

Current transaction date - date of most recent transaction with same cardnum and merchnum 

Current transaction date - date of most recent transaction with same cardnum 

Current transaction date - date of most recent transaction with same merchnum 

average amount by this cardnum in this state in 1 day 

average amount by this cardnum in this state in 7 days 

average amount by this cardnum in this state in 14 days 

maximum amount by this cardnum in this state in 1 day 

maximum amount by this cardnum in this state in 7 days 

maximum amount by this cardnum in this state in 14 days 

total amount by this cardnum in this state in 1 day 

total amount by this cardnum in this state in 7 days 

total amount by this cardnum in this state in 14 days 

median amount by this cardnum in this state in 1 day 

median amount by this cardnum in this state in 7 days 

median amount by this cardnum in this state in 14 days 

actual-average amount by this cardnum in this state in 1 day 

actual-average amount by this cardnum in this state in 7 days 

actual-average amount by this cardnum in this state in 14 days 

actual-median amount by this cardnum in this state in 1 day 

actual-median amount by this cardnum in this state in 7 days 

actual-median amount by this cardnum in this state in 14 days 

actual/average amount by this cardnum in this state in 1 day 

actual/average amount by this cardnum in this state in 7 days 

actual/average amount by this cardnum in this state in 14 days 

actual/maximum amount by this cardnum in this state in 1 day 

actual/maximum amount by this cardnum in this state in 7 days 
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Continued 

actual/maximum amount by this cardnum in this state in 14 days 

actual/total amount by this cardnum in this state in 1 day 

actual/total amount by this cardnum in this state in 7 days 

actual/total amount by this cardnum in this state in 14 days 

actual/median amount by this cardnum in this state in 1 day 

actual/median amount by this cardnum in this state in 7 days 

actual/median amount by this cardnum in this state in 14 days 

average amount by this cardnum in 1 day 

average amount by this cardnum in 7 days 

average amount by this cardnum in 14 days 

average amount by this merchnum in 1 day 

average amount by this merchnum in 7 days 

average amount by this merchnum in 14 days 

maximum amount by this cardnum in 1 day 

maximum amount by this cardnum in 7 days 

maximum amount by this cardnum in 14 days 

maximum amount by this merchnum in 1 day 

maximum amount by this merchnum in 7 days 

maximum amount by this merchnum in 14 days 

median amount by this cardnum in 1 day 

median amount by this cardnum in 7 days 

median amount by this cardnum in 14 days 

median amount by this merchnum in 1 day 

median amount by this merchnum in 7 days 

median amount by this merchnum in 14 days 

total amount by this cardnum in 1 day 

total amount by this cardnum in 7 days 

total amount by this cardnum in 14 days 

total amount by this merchnum in 1 day 

total amount by this merchnum in 7 days 

total amount by this merchnum in 14 days 

actual-average amount by this cardnum in 1 day 

actual-average amount by this cardnum in 7 days 

actual-average amount by this cardnum in 14 days 

actual-average amount by this merchnum in 1 day 

actual-average amount by this merchnum in 7 days 

actual-average amount by this merchnum in 14 days 

actual-median amount by this cardnum in 1 day 
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Continued 

actual-median amount by this cardnum in 7 days 

actual-median amount by this cardnum in 14 days 

actual-median amount by this merchnum in 1 day 

actual-median amount by this merchnum in 7 days 

actual-median amount by this merchnum in 14 days 

actual/average amount by this cardnum in 1 day 

actual/average amount by this cardnum in 7 days 

actual/average amount by this cardnum in 14 days 

actual/average amount by this merchnum in 1 day 

actual/average amount by this merchnum in 7 days 

actual/average amount by this merchnum in 14 days 

actual/maximum amount by this cardnum in 1 day 

actual/maximum amount by this cardnum in 7 days 

actual/maximum amount by this cardnum in 14 days 

actual/maximum amount by this merchnum in 1 day 

actual/maximum amount by this merchnum in 7 days 

actual/maximum amount by this merchnum in 14 days 

actual/total amount by this cardnum in 1 day 

actual/total amount by this cardnum in 7 days 

actual/total amount by this cardnum in 14 days 

actual/total amount by this merchnum in 1 day 

actual/total amount by this merchnum in 7 days 

actual/total amount by this merchnum in 14 days 

actual/median amount by this cardnum in 1 day 

actual/median amount by this cardnum in 7 days 

actual/median amount by this cardnum in 14 days 

actual/median amount by this merchnum in 1 day 

actual/median amount by this merchnum in 7 days 

actual/median amount by this merchnum in 14 days 

#transactions with same cardnum in 1 day 

#transactions with same cardnum in 7 days 

#transactions with same cardnum in 14 days 

#transactions with same merchnum in 1 day 

#transactions with same merchnum in 7 days 

#transactions with same merchnum in 14 days 

#transactions with same cardnum at this merchnum in 1 day 

#transactions with samebcardnum at this merchnum in 7 days 

#transactions with same cardnum at this merchnum in 14 days 
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Continued 

#transactions with same cardnum in this zip code in 1 day 

#transactions with same cardnum in this zip code in 7 days 

#transactions with same cardnum in this zip code in 14 days 

#transactions with same cardnum in this state in 1 day 

#transactions with same cardnum in this state in 7 days 

#transactions with same cardnum in this state in 14 days 
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