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Abstract 
In the eternal dominating set problem, guards form a dominating set on a 
graph and at each step, a vertex is attacked. We consider the “all guards 
move” of the eternal dominating set problem. In which one guard has to 
move to the attacked vertex and all the remaining guards are allowed to move 
to an adjacent vertex or stay in their current position after each attack. If the 
new formed set of guards is still a dominating set of the graph then we success-
fully defended the attack. Our goal is to find the minimum number of guards 
required to eternally protect the graph. We call this number the m-eternal do-

mination number and we denote it by ( )m Gγ ∞ . In this paper we find the eternal 

domination number of Jahangir graph ,s mJ  for 2,3s =  and arbitrary m. 

We also find the domination number for 3,mJ . 
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1. Introduction 

In graph protection, mobile agents or guards are placed on vertices in order to 
defend against a sequence of attacks on a network. See [1] [2] [3] [4] [5] for 
more background of the graph protection problem. The first idea for eternal 
domination was introduced by Burger et al. in 2004 [1]. The “all guards move 
model” or “multiple guards move version” of eternal domination was introduced 
by Goddard et al. [2]. General bounds of ( ) ( ) ( )mG G Gγ γ α∞≤ ≤  were determined 
in [2], where ( )Gγ  denotes the domination number of G and ( )Gα  denotes 
independence number of G. The eternal domination number for cycles nC  

and paths nP  was found by Goddard et al. [2] as follows: ( )
3m n
nCγ ∞  =   

 and 
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( )
2m n
nPγ ∞  =   

. Jahangir Graph ,s mJ  for 1m ≥  is a graph on 1sm +  vertices,  

i.e. a graph consisting of a cycle smC  with one additional vertex which is adja-
cent to m vertices of smC  at distance s from each other on smC  see [6] for 
more information on Jahangir graph. Let 1smv +  be the label of the central vertex 
and 1 2, , , smv v v�  be the labels of the vertices that incident clockwise on cycle 

2mC  so that ( )1deg 3v = . We will use this labeling for the rest of the paper. The 
vertices that are adjacent to 1smv +  have the labels ( )1 1 1 2 1 1, , , ,s s m sv v v v+ + + −� . We 
denote the set ( ){ }1 1 1 1, , ,s m sv v v+ + −�  by R. So, { }1  : 0,1, , 1isR v i m+= = −� . By 
definition, for 1s = , Jahangir Graph 1,mJ  is the wheel graph mW  and it was 
mentioned in [6] that ( ) 2m mWγ ∞ =  for 3m ≥ . The k-dominating graph ( ),H G k  
was defined by Goldwasser et al. [7] as follows: Let G be a graph with a domi-
nating set of cardinality k. The vertex set of the k-dominating graph ( ),H G k , 
denoted ( )V H , is the set of all subsets of ( )V G  of size k which are dominat-
ing sets and two vertices of H are adjacent if and only if the k guards occupying 
the vertices of G of one can move (at most distance one each) to the vertices of the 
other, ( )m G kγ ∞ ≤  if and only if ( ),H G k  has an induced subgraph ( ),S G k  
such that for each vertex x of ( ),S G k , the union of the vertices in the closed 
neighborhood of x in ( ),S G k  is equal to ( )V G . 

Proposition 1.1 [6]: ( )2, 1
2m
mJγ  = +  

 for 4m ≥ . 

2. Main Results 

Eternal Domination Number of 2,mJ  
In this section, we give the exact eternal domination number of 2,mJ . 
Lemma 2.1: Let us have a graph 2,mJ . For 6m >  when m is even and 9m >   

when m is odd, then a set ( )2,mS V J⊂  of cardinality 1
2
mS  = +  

 can’t do-

minate 2,mJ  if 2 1mv S+ ∉ . 

Proof: Since 2 1mv S+ ∉  that means all the vertices of S are vertices from the  

outer cycle 2mC . We know that ( )2
2
3m
mCγ  =   

. So let’s find out the values of 

m for which: 2 1
3 2
m m   > +      

. This arbitrator is true for m is even with 6m >  

and for m is odd with 9m > .                                         ■ 

Theorem 2.1. ( ) ( )
( ) { }

2,
2,

2,

1: 3,

: 2, 4,5,6,7,9 .
m

m m
m

J m
J

J m

γ
γ

γ
∞

 + == 
∈

 

Proof: We know from the definition of eternal domination that  

( ) ( )2, 2,m m mJ Jγ γ ∞≤ . 

Therefore from proposition 1.1, we have ( )2,1
2 m m
m Jγ ∞  + ≤  

 for 4m ≥ . This  

means we only need to prove that ( ) ( )2, 2,m m mJ Jγ γ∞ ≤  for { }2,4,5,6,7,9m∈ . 
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In order to do that we form the k-dominating graph ( ),H J k  on graph 2,mJ  
with ( )2,mk Jγ=  and { }2,4,5,6,7,9m∈ . We consider the following cases: 

Case 1. 3m = : It was found in [3] that ( )2,3 2Jγ = . Therefore ( )2,3 2m Jγ ∞ ≥ . 
However, it is obvious that two vertices can dominate 2,3J  if and only if both 
vertices belong to the outer cycle 6C . Therefore if the central vertex 7v  is at-
tacked, then one of the two guards that are located on the two dominating ver-
tices would have to move to 7v  making it impossible for the new distribution of 
guards to dominate the entire graph because 7v  doesn’t belong to any of the 
2-dominating sets of 2,3J . Therefore ( )2,3 2m Jγ ∞ > . We form ( )2,3 ,3H J , the 
3-dominating graph on 2,3J . Let ( )2,3 ,3S J  be the induced subgraph of  

( )2,3 ,3H J  on vertices: { }1 1 4 7, ,D v v v= , { }2 2 5 7, ,D v v v= , { }3 3 6 7, ,D v v v= . 
Since 1 2 3, ,D D D  are all adjacent and ( )1 2 3 2,3 D D D V J=∪ ∪ , therefore we have 

( )2,3   3m Jγ ∞ ≤ , which means ( )2,32 3m Jγ ∞< ≤ , therefore ( )2,3 3m Jγ ∞ = . 
Case 2. 2m = : We have ( )2,2 2k Jγ= = . Let’s form ( )2,2 , 2S J  to be the 

induced subgraph of ( )2,2 , 2H J  on vertices { }1 1 5,D v v= , { }2 2 3,D v v= ,  
{ }3 3 4,D v v= . Since 1 2 3, ,D D D  are adjacent and ( )1 2 3 2,2 D D D V J=∪ ∪  there-

fore we have  

( )2,2 1 2
2m
mJγ ∞  ≤ + =  

 which means ( )2,2 1 2
2m
mJγ ∞  = + =  

.  

Case 3. 4m = : We have 1 3
2
mk  = + =  

. Let’s form ( )2,4 ,3S J  to be the  

induced subgraph of ( )2,4 ,3H J  on the following vertices: { }1 3 7 9, ,D v v v= ,  
{ }2 1 4 7, ,D v v v= , { }3 1 3 6, ,D v v v= , { }4 2 5 8, ,D v v v= . Since 1 2 3 4, , ,D D D D  are all 

adjacent and ( )1 2 3 4 2,4 D D D D V J=∪ ∪ ∪ , therefore  

( )2,4 1 3
2m
mJγ ∞  ≤ + =  

 which means ( )2,4 1 3
2m
mJγ ∞  = + =  

. 

Case 4. 5m = : We have 1 4
2
mk  = + =  

. Let’s form ( )2,5 , 4S J  to be the  

induced subgraph of ( )2,5 , 4H J  on the following vertices: { }1 1 4 7 9, , ,D v v v v= , 
{ }2 2 5 7 10, , ,D v v v v= , { }3 3 6 8 10, , ,D v v v v= , { }4 1 5 9 11, , ,D v v v v= . Since  

1 2 3 4, , ,D D D D  are all adjacent and ( )1 2 3 4 2,5 D D D D V J=∪ ∪ ∪  therefore  

( )2,5   1 4
2m
mJγ ∞  ≤ + =  

 which means ( )2,5 1 4
2m
mJγ ∞  = + =  

.  

Case 5. 6m = : We have 1 4
2
mk  = + =  

. Let’s form ( )2,6 , 4S J  to be the  

induced subgraph of ( )2,5 , 4H J  on these vertices: { }1 1 4 7 10, , ,D v v v v= ,  
{ }2 2 5 8 11, , ,D v v v v= , { }3 3 6 9 12, , ,D v v v v= , { }4 1 5 9 13, , ,D v v v v= . Since  

1 2 3 4, , ,D D D D  are adjacent and ( )1 2 3 4 2,6 D D D D V J=∪ ∪ ∪ , therefore  

( )2,6 1 4
2m
mJγ ∞  ≤ + =  

 which means ( )2,6 1 4
2m
mJγ ∞  = + =  

.   

Case 6. 7m = : We have 1 5
2
mk  = + =  

. Let’s form ( )2,7 ,5S J  to be the 
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induced subgraph of ( )2,7 ,5H J  on the following vertices: 

{ }1 1 4 7 10 13, , , ,D v v v v v= , { }2 2 5 8 11 14, , , ,D v v v v v= , { }3 1 3 6 9 12, , , ,D v v v v v= ,  

{ }4 1 3 9 13 15, , , ,D v v v v v= . Since 1 2 3 4, , ,D D D D  are adjacent and  

( )1 2 3 4 2,7 D D D D V J=∪ ∪ ∪ , therefore  

( )2,7   1 5
2m
mJγ ∞  ≤ + =  

 which means ( )2,7 1 5
2m
mJγ ∞  = + =  

.  

Case 7. 9m = : We have 1 6
2
mk  = + =  

. Let’s form ( )2,9 ,6S J  to be the  

induced subgraph of ( )2,9 ,6H J  on the vertices: { }1 1 4 7 10 13 16, , , , ,D v v v v v v= , 
{ }2 2 5 8 11 14 17, , , , ,D v v v v v v= , { }3 3 6 9 12 15 18, , , , ,D v v v v v v= ,  
{ }4 2 5 9 13 17 19, , , , ,D v v v v v v= . Since 1 2 3 4, , ,D D D D  are all adjacent and  

( )1 2 3 4 2,9 D D D D V J=∪ ∪ ∪ , therefore  

( )2,9   1 6
2m
mJγ ∞  ≤ + =  

 which means ( )2,9 1 6
2m
mJγ ∞  = + =  

.  

(See Figure 1 for 2,9J ).                                             ■  

Lemma 2.2: ( )2, 1
2m m
mJγ ∞  > +  

 for 8m ≥  and 9m ≠ . 

Proof: From the definition of eternal domination, we already know that  

( ) ( )m G Gγ γ∞ ≥ . By proposition 1.1, ( )2, 1
2m
mJγ  = +  

 for 4m ≥ . We just need 

to prove that ( )2, 1
2m m
mJγ ∞  ≠ +  

 for 8m ≥  and 9m ≠ . We consider both 

cases: 
Case 1: m is even for 8m ≥ . 
In this case the sets  

{ }0 1 5 2 3 2 1, , , ,m mS v v v v− += �  and { }0 3 7 2 1 2 1, , , ,m mB v v v v− += �   

are the only two minimum dominating sets (γ-dominating set) of 2,mJ  where 
both 0S  and 0B  are similar by symmetry. We study an arbitrary attack on a 
vertex iv  from a graph 2,mJ  protected by 0S  and we prove that 0S  fails to 
eternally protect 2,mJ . Let the attacked vertex iv  have an odd (index) label, 

{ }3 7 2 1, , ,i mv v v v −∈ � . The only guard protecting iv  in this case is the guard 
occupying the central vertex 2 1mv +  (which is adjacent to all the odd vertices of 

2mC ). This means the guard on 2 1mv +  has to move to iv  to defend the attack. 
However, that would leave the vertices: { }3 7 4 4 2 1, , , , , ,i i mv v v v v− + −� �  unpro-
tected. To try to avoid that we have two strategies: 

Strategy 1: We move another guard (occupying an odd vertex 0jv S∈ : j iv v≠ ) 
to 2 1mv +  to keep { }3 7 4 4 2 1, , , , , ,i i mv v v v v− + −� �  protected. However, that would 
leave at least one of the two vertices 1 1,j jv v− +  unprotected and this strategy fails, 
see Figure 2. 

Strategy 2: We don’t move any other guard to 2 1mv +  which would leave  

1
2
m  +  

 guards on the vertices of cycle 2mC  to protect 2,mJ . By Lemma 2.1  
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Figure 1. 2,9J . 

 

 
Figure 2. Illustrating strategy 1 when m = 8. 
 
these guards can’t protect 2,mJ  if 6m >  therefore this strategy fails as well, see 
Figure 3.    

Since both of these strategies fail then ( )2, 1
2m m
mJγ ∞  > +  

 for 8m ≥  &  

( )0 mod 2m ≡ . Without loss of generality, the same argument can be followed to  

prove that 1
2
m  +  

 guards can’t eternally protect 2,mJ  in case the minimum 

dominating set is 0B . 

Case 2: m is odd for 9m > . 
In this case the minimum dominating sets (γ-dominating sets) of 2,mJ  are: 

{ }0 1 5 2 5 2 3 2 1, , , , , ,m m mU v v v v v− − += �  

{ }1 1 5 2 5 2 2 2 1, , , , , ,m m mU v v v v v− − += �  
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Figure 3. Illustrating strategy 2 when m = 8.  

 

{ }2 1 5 2 5 2 1 2 1, , , , , ,m m mU v v v v v− − += �  

{ }3 3 7 2 3 2 1 2 1, , , , , ,m m mU v v v v v− − += �  

{ }4 3 7 2 3 2 2 1, , , , , ,m m mU v v v v v− += �  

{ }5 1 5 2 5 2 2 1, , , , , .m m mU v v v v v− += �  

We study an arbitrary attack on a vertex iv  from three cases of 2,mJ  pro-
tected by 0 1 2, ,U U U  of 2,mJ  respectively. We prove that 0 1 2, ,U U U  fail to 
eternally protect these graphs. Let the attacked vertex iv  have an odd (index) 
label, { }3 7 2 5, , ,i mv v v v −∈ � . The only guard protecting iv  in this case is the 
guard occupying the central vertex 2 1mv +  (which is adjacent to all the odd ver-
tices of 2mC ). This means the guard on 2 1mv +  has to move to iv  to defend the 
attack. However, that would leave the vertices: { }3 7 4 4, , , , ,i iv v v v− +� �  unpro-
tected. To try to avoid that we have two strategies: 

Strategy 1: We move another guard (occupying an odd vertex 0jv S∈ ) to 
vertex 2 1mv +  to keep { }3 7 4 4, , , , ,i iv v v v− +� �  protected. However, that would 
leave at least one of the two neighboring vertices to jv  ( )1 1,j jv v− +  unprotected 
therefore this strategy fails, see Figure 4.  

Strategy 2: We don’t move any other guard to 2 1mv +  which would leave 

1
2
m  +  

 guards on the vertices of cycle 2mC  to protect 2,mJ . By Lemma 2.1 these 

guards can’t protect 2,mJ  if 9m > , therefore this strategy fails as well, see Figure 5. 

Since both strategies fail then ( )2, 1
2m m
mJγ ∞  > +  

 for m is odd and 9m > .  

Without loss of generality, the same argument can be followed to prove that  

1
2
m  +  

 guards cannot eternally protect 2,mJ  in case the minimum dominating 

set is 3 4,U U  or 5U . From cases 1 and 2 we conclude that: 

( )2, 1
2m m
mJγ ∞  ≠ +  

 for 8m ≥  and 9m ≠ .  

However, we know ( ) ( )2, 2, 1
2m m m
mJ Jγ γ∞  ≥ = +  

 for 4m ≥ , therefore: 

( )2, 1
2m m
mJγ ∞  > +  

 for 8m ≥  and 9m ≠ .              ■ 
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Figure 4. For Strategy 1 on 2,13J . 

 

 
Figure 5. For Strategy 2 on 2,13J .  

 

Theorem 2.2: ( )2, 2
2m m
mJγ ∞  = +  

 for 8m ≥  and 9m ≠ . 

Proof: From Lemma 2.2 It is enough to prove the existence of one eternal  

dominating family of the vertices of 2,mJ  with cardinality 2
2
m  +  

 in order to 
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prove that ( )2, 2
2m m
mJγ ∞  = +  

. We consider both cases:  

Case a. m is even: 
We start by forming the k-dominating graph denoted ( ),H G k  on 2,mJ  with  

2
2
mk  = +  

. { }0 1 5 2 3 2 1, , , ,m mS v v v v− += �  is a dominating set of 2,mJ . We form  

Y the family of dominating sets as follows { } { }{ }0j jD S v= =  :  

( )2, 0j mv V J S∈ − . Hence the cardinality of jD  is 2
2
m  +  

. Therefore each set 

of the family Y is a vertex of 2, , 2
2m
mH J   +    

. It is obvious that the union of 

these vertices is ( )2,mV J . We now need to prove that these vertices are all adja-

cent in 2, , 2
2m
mH J   +    

. There are two types of sets jD  depending on the 

label of the vertex jv :  

Type 1:  

{ } { }{ }0 3 7 2 1 2and is an odd v   : , , , ertex ofj j m j mO S v v M v v v v C−= ∈ = �∪ . 

Type 2:  

{ } { }{ }0 2 4 2 2an   : , , , d is an even vertex ofj j m j mQ S v v E v v v v C= ∈ = �∪ . 

When an arbitrary unoccupied vertex ( )2,i mv V J∈  is attacked we consider 
the following cases: 

Case a.1. { }3 7 2 1, , ,j mv M v v v −∈ = � : we consider the following cases: 
Case a.1.1. iv  is an unoccupied odd vertex { }( )3 7 2 1, , ,i mv M v v v −∈ = � : In 

this case the guard on the central vertex 2 1mv +  moves to iv  to defend the attack 
and the guard on jv M∈  moves to 2 1mv +  to protect the remaining odd vertices 
without disturbing the protection of the even vertices (which are protected by the  

guards on the vertices of 0S ) (see Figure 6), which means 2
2
m  +  

 guards are  

enough to protect 2,mJ  in this case. After defending the attack and since iv M∈  
the resulting dominating set iD O∈ . We will now use the same argument to prove 
the results for all cases of ,i jv v  when m is even, taking into consideration that the 
same path can be followed to prove all the possible cases of ,i jv v  when m is odd. 

Case a.1.2. iv  is an even vertex { }( )2 4 2, , ,i mv E v v v∈ = � : In this case the 
neighboring odd vertex has the only available guard to defend iv . So the guard 
on 1iv +  (or 1iv − ) moves to iv  to defend the attack leaving 2iv +  (or 2iv − ) re-
spectively unprotected, so the guard on 2 1mv +  moves to 1iv +  (or 1iv − ) respectively, 
and the guard on jv M∈  moves to 2 1mv +  to protect the remaining vertices of M. 
While the guards on the vertices of the set 0S  keep protecting those vertices 
and the even vertices of 2mC  leaving 2,mJ  protected, see Figure 7. 

After defending the attack and since iv E∈  the resulting dominating set 

iD Q∈ . 
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Figure 6. 2,8J . 

 

 
Figure 7. 2,8J .   

 
Case a.2: { }2 4 2, , ,j mv E v v v∈ = � , we consider the following cases:  
Case a.2.1: iv  is an unoccupied odd vertex { }( )3 7 2 1, , ,i mv M v v v −∈ = � . In 

this case the guard on 2 1mv +  moves to iv , either 1jv +  or 1 0jv S− ∈ . So the guard 
on 1jv +  (or 1jv − ) moves to 2 1mv +  and the guard on jv moves to 1jv +  (or 1jv − ) 
respectively, keeping the entire graph protected. After defending the attack and 
since iv M∈  the resulting dominating set iD O∈ . Figure 8, illustrates the  

process in which 2 6
2
m  + =  

 guards can successfully defend 2,8J  when the  

attacked vertex iv  has an odd index label ( 3v ) while the additional guard be-
sides 0S  has an even index label ( 10v ). 

Case a.2.2: iv  is an even index vertex { }( )2 4 2, , ,i mv E v v v∈ = � : In this case 
( )1 1 0ori iv v S+ − ∈ , so the guard on 1iv +  (or 1iv − ) moves to iv . The guard on 

2 1mv +  moves to 1iv +  (or 1iv − ) respectively. The guard on 1jv +  (or 1jv − ) moves to 

2 1mv +  and the guard on jv  moves to 1jv +  (or 1jv − ) respectively leaving the 
graph 2,mJ  fully protected, see Figure 9. 

After defending the attack and since iv E∈  the resulting dominating set 

iD Q∈ .  
After discussing all possible cases we find that for any ,i kD D Y∈ : ,i kD D  are  

adjacent in 2, , 2
2m
mH J   +    

 because the guards occupying iD  can move to 

occupy kD  in one move and vice versa. Therefore we form 2, , 2
2m
mS J   +    

 on  
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Figure 8. 2,8J . 

 

 
Figure 9. 2,8J .   

 
the vertices { } { }{ }{ }0j jD S v= ∪ , therefore these vertices are adjacent in the 
induced subgraph ( )2, ,mS J k . It is obvious that ( ) ( )2,j mj

D V J=∪ , therefore  

( )2, 2
2m m
mJγ ∞  ≤ +  

 for m is even and 8m ≥ . However, from Lemma 2.2 

( )2, 1
2m m
mJγ ∞  > +  

. Therefore ( )2, 2
2m m
mJγ ∞  = +  

 for m is even and 8m ≥ . 

Case b. m is odd and 9m > :  
We begin by forming the k-dominating graph ( ),H G k  on 2,mJ  with  

2
2
mk  = +  

. { }0 1 5 2 5 2 3 2 1, , , , ,m m mU v v v v v− − += �  is a dominating set of 2,mJ . We  

form Y the family of dominating sets { } { }{ }0j jY D U v= = ∪ : ( )2, 0j mv V J U∈ − .  

Hence the cardinality of jD  is 2
2
m  +  

. Therefore each set of the family Y is a 

vertex of 2, , 2
2m
mH J   +    

. It is obvious that the union of these vertices is  

( )2,mV J . We now need to prove that these vertices are all adjacent in  

2, , 2
2m
mH J   +    

. 

There are two types of jD  dependeng on the label of the vertex jv : 
Type 1: O = { { }0 jU v∪  where { }3 7 2 7 2 1, , , ,j m mv M v v v v− −∈ = �  and jv  is 

an unoccupied odd vertex of 2mC }. 
Type 2: Q = { { }0 jU v∪  where { }2 4 2, , ,j mv E v v v∈ = �  and jv  is an even 
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vertex of 2mC }. 
By following the same argument that we followed in case a, we conclude that: 

( )2, 2
2m m
mJγ ∞  = +  

 for m is odd and 9m > . 

From case a and case b we conclude that:  

( )2, 2
2m m
mJγ ∞  = +  

 for   8m≥  and 9m ≠ .              ■ 

3. Domination and Eternal Domination Numbers of mJ3,  

In this section we consider the graph 3,mJ . So, we found the exact domination 
and eternal domination numbers of 3,mJ .   

Theorem 3.1: ( )3,mJ mγ =  for 2m ≥  and the γ-dominating set is unique. 
Proof: For 3,mJ , let { } { }1 3 1 4 3 2: 0,1, , 1 , , ,i mR v i m v v v+ −= = − =� � . Since 
( )3 3mV C m=  it is easy to verify that the set of vertices { }0 1 4 3 2, , , mS v v v −= �  is 

a dominating set of cardinality m for 3,mJ . Therefore ( )3,mJ mγ ≤  for 2m ≥ . 
Let ( )0 3,mD V J⊂  such that 0 1D m= −  and 0D  is a dominating set of 3,mJ . 
We consider the following cases:  

Case a: Let 3 1 0mv D+ ∈  then the vertex 3 1mv +  clearly dominates m vertices of 
the cycle 3mC , which leaves the remaining 2m −  guards in the set { }0 3 1mD v +−  
to dominate the remaining 2m vertices of cycle 3mC . 

{ } { } { }1 2 3 2 5 6 3 1 3, , , , , ,m m mT v v T v v T v v−= = =�  

are m subsets of cardinality 2, each consists of two non-dominated vertices of 

3mC . In order to dominate each of these subsets we need a vertex 0x D∈ , which 
means we need at least m vertices to dominate these remaining vertices. There-
fore since 0 1D m= − , there are at least four vertices of ( )3,mV J  that no ver-
tices of 0D  can dominate which is a contradiction.  

Case b: 3 1 0mv D+ ∉ . In this case 0D  is a dominating set of 1m −  vertices that  

dominates a cycle 3mC  which creates a contradiction since ( )3
3
3m
mC mγ  = =  

.  

Therefore, ( )3,mJ mγ = . Finally, by case a and case b we conclude that 0S  is 
the unique dominating set of cardinality m for 3,mJ .                      ■   

Lemma 3.2: ( )3,  m mJ mγ ∞ >  for 2m ≥ . 
Proof: In Theorem 3.1, we found that ( )3,mJ mγ = . Since ( ) ( )m G Gγ γ∞ ≥ , 

we conclude that ( )3,m mJ mγ ∞ ≥ . Let { }0 1 4 3 2, , , mS v v v −= �  be the m-dominating 
set of 3,mJ  and let’s assume that each vertex of 0S  is occupied by a guard. 
When an unoccupied vertex ( )3, 0mv V J S∈ −  is attacked we consider the fol-
lowing cases:   

Case a. The attacked vertex ( )3 0i mv V C S∈ − : In this case the only guard that 
can move to iv  to defend the attack is 1iv +  or 1iv −  because 3 1 0mv S+ ∉ .  

Case a.1: If the guard is situated on 1iv +  then it moves to iv  to defend the 
attack. Therefore all the guards of the exterior cycle 3mC  should move one edge 
(counter clockwise) to keep the cycle protected making the new dominating set 
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{ }2 3 6 3 3 3, , , ,m mS v v v v−= � . However, according to Theorem 3.1 the vertex 3 1mv +  
won’t be protected anymore, see Figure 10.   

Case a.2: If the guard is situated on 1iv −  then it moves to iv  and all the 
guards on the vertices of 3mC  should move one edge clockwise to keep the 
cycle 3mC  protected making the new dominating set { }1 2 5 3 1, , , mS v v v −= � . 
However, according to Theorem 3.1 the vertex 3 1mv +  won’t be protected any-
more, see Figure 11. 

Case b: The attacked vertex iv  is 3 1mv + . In this case, there are m guards on 
the vertices of { }0 1 4 3 2, , , mS v v v −= �  each one qualifies to move to 3 1mv + . Let 

0jv S∈  have the guard that moves to 3 1mv + . This leaves the two vertices 1 1,j jv v− +  
unprotected and there are no available guards on the cycle 3mC  to protect them 
without leaving gaps of unprotected vertices. From cases a and b we conclude 
that ( )3,m mJ mγ ∞ > . Hence ( )3, 1m mJ mγ ∞ ≥ + .                           ■ 

Theorem 3.3: ( )3, 1m mJ mγ ∞ = +  for 2m ≥ . 
Proof: We form the ( )3, ,mH J k  (k-dominating Graph) on 3,mJ  with  

1k m= + . Let the dominating sets { }1 2 3, ,D D D  be defined as follows:  

{ } { }1 0 3 1 1 4 3 2 3 1, , , , ,m m mD S v v v v v+ − += =∪ �  

{ } { }2 1 3 1 2 5 3 1 3 1, , , , ,m m mD S v v v v v+ − += =∪ �  

{ } { }3 2 3 1 3 6 3 3 1, , , , .m m mD S v v v v v+ += = �∪  

Each of 1 2 3, ,D D D  is a dominating set of the cardinality 1m +  for 3,mJ  
therefore they are vertices of ( )3, , 1mH J m +  and they are all adjacent in 

( )3, , 1mH J m +  because they are reachable from each other in one step only. 
With the guard on the central vertex 3 1mv +  staying in place, the dominating sets 

1 2 3, ,D D D  can result from each other as follows:  
clockwise clockwise clockwise

1 2 2 3 3 1, , ,D D D D D D⇒ ⇒ ⇒  
counter-clockwise counter-clockwise counter-clockwise

1 3 2 1 3 2, ,D D D D D D⇒ ⇒ ⇒  

We form ( )3, , 1mS J m +  the induced subgraph from ( )3, , 1mH J m +  on the 
previous vertices 1 2 3, ,D D D . Since ( )1 2 3 3,  mD D D V J=∪ ∪  then  

( )3, 1m mJ k mγ ∞ ≤ = + .   
Now, by last results together with Lemma 3.2 that ( )3,1 1m mm J mγ ∞+ ≤ ≤ + . 

Therefore ( )3, 1m mJ mγ ∞ = + . See Figure 12.                             ■    
 

 

Figure 10. ( )3,4 4m Jγ ∞ > .  
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Figure 11. ( )3,4 4m Jγ ∞ > . 

 

 

Figure 12. ( )3,4 5m Jγ ∞ = . 

4. Conclusion 

In this paper, we studied the eternal domination number of Jahangir graph ,s mJ  
for =2, 3 and arbitrary m. We also find the domination number for 3,mJ . By 
using the same approach, we will work to find the eternal domination number of 
Jahangir graph ,s mJ  for arbitraries s and m. 
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