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Abstract 
The transformation of quantitative variables into categories is a common 
practice in both experimental and observational studies. The typical proce-
dure is to create groups by splitting the original variable distribution at some 
cut point on the scale of measurement (e.g. mean, median, mode). Allegedly, 
dichotomization improves causal inference by simplifying statistical analyses. 
In this article, we address some of the adverse consequences of recoding 
quantitative variables into categories. In particular, we provide evidence that 
categorization usually leads to inefficient and biased estimates. We believe 
that considerable progress in our understanding of data analysis can occur if 
scholars follow the recommendations presented in this article. The recodifi-
cation of quantitative variables as categorical is a poor methodological strate-
gy, and scientists must stay away from it. 
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1. Introduction 

Imagine a political scientist wants to estimate the effect of income, as measured 
by a continuous yearly revenue, on partisanship. Before performing data analys-
es, she decides to split income into three levels: low, medium, and high. Similar-
ly, suppose a physicist wants to examine the effect of age on the likelihood of 
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developing coronary heart diseases. Before running the model, she recodes age 
into four groups. In this article, we address some of the adverse consequences of 
dichotomizing quantitative variables. Technically, categorization always implies 
a loss of information, and it usually leads to misleading results [1] [2] [3] [4]. To 
make our case, we reproduce data from [5] and [6]. Besides, we employ basic 
simulation to show how dichotomization generates inefficiency and bias. To in-
crease transparency [7] [8] [9], we report all computational scripts used to gen-
erate statistical analyses. 

Our target audience is graduate students in the early stages of training and 
scholars with a minimum mathematical background. For this reason, we mini-
mized algebraic applications to facilitate the understanding of the original con-
tent. In particular, the paper fills a gap in the political methodology literature. 
We reviewed 24 articles on dichotomization published in 20 journals from 1983 
to 2017, and none of them was available in political science journals (see Ap-
pendix Table A1). As long as the categorization of quantitative variables is a 
common practice not only in the Social Sciences but also in the Health Sciences 
[10] [11], we believe that considerable progress in our understanding of data anal-
ysis can occur if scholars follow the recommendations presented in this article.  

The remainder of the paper is structured as follows. Following section reviews 
the literature on categorization. The second section replicates data from different 
studies to show how the transformation of quantitative variables into categories 
may lead to wrong conclusions. The third section uses basic simulation to high-
light the shortcomings of dichotomization, focusing on both bias and efficiency. 
The final section concludes. 

2. What Is the Problem? 

Information loss, Inefficiency, Bias, concisely, these are the main problems gen-
erated by the categorization of quantitative variables [12]. Despite its widespread 
use, the scholarly literature has accumulated systematic evidence on why scho-
lars should avoid dichotomization. The discretization reduces measurement ac-
curacy, underestimates the magnitude of the coefficients of bivariate relation-
ships, and lowers statistical power [2] [13]. Also, the artificial transformation of 
quantitative measures into groups may lead to biased coefficients and unreliable 
standard errors in multivariate models [13] [14]. 

Methodological pleas against dichotomization are not new. For example, [15] 
showed that dichotomizing one of the variables at it’s mean reduces the popula-
tion correlation coefficient by 20% on average. [16] estimated the effects of di-
chotomization in the context of analysis of variance (ANOVA). Similarly, [1] 
argues that dichotomization leads to a loss of one-fifth to two-thirds of the va-
riance that may be accounted for on the original variables. [17] showed that the 
transformation of quantitative measures into categories underestimates both ef-
fect sizes and statistical power. Table 1 summarizes scholarly work against di-
chotomization. 
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Table 1. Literature against dichotomization 

Author 
(year) 

Warning 

[16] “The use of the pseudo-orthogonal design biases the differences in means for the main 
effects relative to the differences in those means that would be obtained in a single-factor 
experiment” (p. 464). 

[1] “Dichotomizing one variable at the mean results in the reduction in variance accounted 
for to 0.647 r2; and dichotomizing both at the mean, to 0.405 r2” (p. 249). 

[18] “Analyses with categorized continuous variables required greater than 40% more patients 
for the same power as that achieved using continuous variables” (p. 138). 

 
[5] 

“Dichotomizing a continuous predictor variable can be conceptualized as adding an error 
of measurement to the variable. As a result, the effects of dichotomization are similar to 
the effects of random error of measurement” (p. 186). 

[12] “Dichotomization of continuous data is unnecessary for statistical analysis and in 
particular should not be applied to explanatory variables in regression models” (abstract). 

[19] “Dichotomizing a continuous variable is known to result in the loss of information, lower 
statistical power, and lower reliability” (abstract). 

[11] (Dichotomization) “(…) is harmful from the viewpoint of statistical estimation and 
hypothesis testing” (abstract). 

[20] “Modern regression models do not require categorization. In general, continuous 
variables should remain continuous in regression models designed to study the effects of 
the variable on the outcome of interest” (p. 3). 

[4] “Undesirable effects occur from dichotomization of both independent and dependent 
variables. The problem gets worse when multiple independent variables are split; for example, 
residual confounding is introduced, and spurious interaction effects may be seen” (p. 225) 

[6] “Simply dichotomizing continuous variables without previously referring to the original 
distributions by plotting them and checking consequences of dichotomization is a bad 
idea and should be discouraged” (p. 78). 

Note: We reviewed 24 papers published in 20 journals from 1983 to 2017. 
 

Another criticism against dichotomization comes from measurement litera-
ture [1] [5]1. According to [1], “dichotomizing adds errors of discreteness. That 
is, the amount of unmeasured true scores variance for the cases at each of the 
points of the dichotomy is necessarily greater than it would be for cases at each 
of the multiple points in the original scale” (p. 249). Simirlaly, [5] argue that the 
categorization of quantitative variables into groups is equivalent to add mea-
surement error to the variable. Therefore, dichotomization increases the differ-
ence between true scores and measured values, which is likely to produce unre-
liable estimates. Figure 1 shows the relationship between dichotomization and 
measurement error2. 

 

 

1In this paper we adopt the definition of measurement proposed by [22]: “measurement consists of 
rules for assigning symbols to objects so as to (1) represent quantities of attributes numerically 
(scaling) or (2) define whether the objects fall in the same or different categories with respect with a 
given attribute (classification)” (p. 1). 
2Measurement error can be either random or systematic. Each type of error creates different prob-
lems. Measurement error also can plague the dependent, the independent, or both variables. In gen-
eral, the random error will lead to inefficiency, and systematic error will lead to biased estimates. 
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Note: image from [21]. Figure 1 exemplifies a typical problem in dichotomization. A horizontal line 
depicts variable X, which has a sufficient number of cases, the closer the cases are from one another, 
the more similar they are. Letters A, B, C, and D (shown inside a triangle) represent four different 
cases. Case A is distant to case B as well as C is to D. Both cases B and C are nearer to each other, 
meaning they are more similar (a). If some arbitrary cut point between B and C is chosen (b) to 
transform the continuous variable X into a dichotomized one (c), the similar cases B and C will end 
up in two separated groups while more different pairs will be on the same group. 

Figure 1. Measurement of individual differences before and after dichotomization. 
 

B and C have similar scores when X is measured continuously. However, the 
dichotomization leads to an inefficient aggregation of A and B vis-a-vis C and D. 
Comparatively, the least useless procedure is to split a normal variable at its 
mean, which reduces the variance of the original variables by a 20% on average. 
However, it is doubtful to find perfect normal distributions in practice. There-
fore, depending on the shape of the distribution, categorization will lead to more 
significant information loss [1] [19]. In short, the categorization of quantitative 
variables will always generate information loss, which in turn will reduce esti-
mates efficiency. In some cases, in addition to inefficiency, dichotomization can 
lead to biased estimates, as we will show in the next section. 

3. Replication 

In this section, we replicate two secondary datasets to show some of the adverse 
consequences of dichotomizing quantitative variables. The first example comes 
from [5]. They created a hypothetical example to represent the relationship between  
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Source: authors using data from [5]. 

Figure 2. Correlation among X1, X2, and Y. 
 

the number of errors made in a cognitive laboratory (X1), the speed of response 
during the task (X2), and the score on a standardized ability test (Y). Figure 2 
shows the Pearson correlation coefficient among those variables. 

To explore the impact of categorization, [5] dichotomized both independent 
variables at their respective medians (13). Then, they estimate a 2 × 2 ANOVA, 
which revealed an effect of X1 and X2 over the mean of Y. According to [5], “the 
bivariate dichotomization of X1, and X2 has led to a situation in which the esti-
mated effects of X1 and X2 on Y are biased” (p. 183). A simple linear regression 
on the effect of X2 on Y vanishes after we control for X1. In short, these results 
indicate that categorization may lead to misleading results. 

The second example comes from [6]. He simulated five different scatterplots 
that yield an identical fourfold table when X and Y are dichotomized at cut point 
0, misleadingly suggesting no association between the variables. Figure 3 repli-
cates data from [6]. 

Dichotomization leads us to overlook the true nature of the relationship be-
tween X and Y. According to [6], “simply dichotomizing continuous variables 
without previously referring to the original distributions by plotting them and 
checking consequences of dichotomization is a bad idea and should be discou-
raged” (p. 3). These two examples show how dichotomization can lead scholars 
to wrong inferences. 

4. Simulation 

To stress our distrust on dichotomization, we employ basic simulation to show 
how the transformation of quantitative variables into categories produces ineffi-
ciency. First, we generate two normal variables (X and Y) correlated at.6 for a 
sample size of 300 cases. Then, we recode X at its mean (0) into two groups: be-
low the average and above the average to produce a dummy variable (0 or 1). 
Figure 4 shows the distribution of X and its dichotomization cutpoint at 0. 
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Figure 5 shows the correlation between X and Y and X categorized and Y for 
all cases (n = 300) and for a small sample of observations (n = 30). 

The true correlation coefficient is 0.600. By dichotomizing X at its mean, we 
observe a linear association of 0.475, which represents a 20.83% difference from 
the known parameter. For a small sample size (n = 30), the Pearson correlation 
using the original variables is 0.465, which is closer to the true parameter value 
compared to the estimate from the dichotomized model. In short, regardless of the  

 

 
Source: authors using data from [6]. 

Figure 3. Different relationships but the same fourfold table when X and Y are dichotomized at 0. 
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Source: authors. 

Figure 4. X dichotomized at 0. 
 

 
Source: authors. 

Figure 5. Correlation between X and Y (n = 300) and (n = 30). (a) r = 0.600; (b) r = 0.475; (c) r = 0.465; (d) r = 0.357. 
 

sample size, dichotomization will lead to information loss, which decreases esti-
mates efficiency. Table 2 shows the estimates of two linear regression models. 

Considering all cases (n = 300), the standard error of the dichotomized model 
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is twice as large compared to the model using the original variables. For a biva-
riate linear regression, the coefficient of determination is calculated by the 
square of Pearson correlation coefficient (0.6), which is 36%. In the dichoto-
mized model, we observe an r2 close to 23%, which underestimate the goodness 
of fit of the model. For n equals to 30, the categorization of the independent va-
riable leads to the incorrect retention of the null hypothesis at 5% level (p-value 
= 0.052). Although our simulation deals with only two variables, the same rea-
soning applies to multiple linear regression, which is widely used in empirical 
research in both Human and Natural sciences [23]. 

Now let’s consider a slightly more complicated case. We simulate the follow-
ing model: 

1 2100 0.20 0.40Y X X ε= + ∗ − ∗ +                  (1) 

where X1 follows a normal distribution (0, 1), X2 follows an exponential distribu-
tion (λ = 2) and ε has average value equals to zero and standard deviation equals 
to 1 for a population of 100 observations. Table 3 compares the results of a li-
near regression using original variables to a model when both independent va-
riables are dichotomized at their means. 

The dichotomized model displays a lower r2 and F statistic, suggesting poor  
 

Table 2. How dichotomization leads to inefficiency. 

 
Sample size 

300 30 

Level of measurement of X 
Βeta 

(Std. Error) 
t r2 

Βeta 
(Std. Error) 

t r2 

Original 
0.600 

(0.046) 
12.95 0.360 

0.437 
(0.157) 

2.78 0.216 

Dichotomized 
0.948 

(0.102) 
9.31 0.225 

0.609 
(0.300) 

2.03 0.128 

Note: we estimated two linear regression models. The first one was estimated with both variables at their 
original level of measurement (continuous). The second model used X dichotomized at its mean (0). 

 
Table 3. Linear regression (original x dichotomized variables). 

Measurement Model β Std. Error p-value Lower Upper 

Original 

α 100.12 0.148 0.000 99.83 100.41 

X1 0.400 0.100 0.000 0.202 0.598 

X2 −0.527 0.191 0.000 −0.907 −0.147 

 F = 11.465; r2 = 0.191 

Dichotomized 

α 99.71 0.182 0.000 99.352 100.07 

X1 0.543 0.224 0.017 0.098 0.988 

X2 −0.230 0.233 0.325 −0.693 0.232 

 F = 3.924; r2 = 0.075 

Source: authors. 
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Source: authors. 

Figure 6. Residual diagnostics. 
 

goodness of fit. When variables are used at their original level of measurement, 
regression coefficients are unbiased estimates of the population parameters. 
However, when both variables are dichotomized at their means, X2 is no longer 
statistically significant which will lead us to retain the null hypothesis of no ef-
fect incorrectly. For public policy, the conclusion would be to cut resources. In 
medical research, the inference would be that the treatment has no impact on 
health. Figure 6 depicts the residual diagnostics from the dichotomized model. 

5. Conclusions 

Despite criticisms from the scholarly community, dichotomization still is a 
common practice in empirical research. Unfortunately, many researchers cate-
gorize quantitative variables before running data analyses. This is true from Bi-
ology to Psychology, from Medical research to Sociology. Before statistical soft-
ware and computers development, categorization played an essential role in 
science by simplifying mathematical modeling. It is not the case anymore. Since 
we have more appropriate tools to deal with reality, there is no reason to trans-
form quantitative measures into categories. More than 30 years ago, [24] argued 
that “scientific questions are better decided by empirical evidence than by me-
thodological default” (p. 833). 

Categorization usually leads to misleading results. It can deceive us by in-
creasing inefficiency and affecting the probability of type I and type II errors. 
Dichotomization also generates biased coefficients since it can hide the correct 
functional form of the observed relationship. In some cases, when two or more 
independent variables are dichotomized, a truly null effect will likely reach sta-
tistical significance. The artificial transformation of quantitative variables into 
groups reduces the power of statistical tests and increase errors of discreteness. 
What will happen if both independent and dependent variables are categorized? 
Double dichotomization using the mean as cutpoint is equivalent to lose almost 
1/2 of the sample cases [1]. In short, dichotomization leads to a systematic loss 
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of information which has detrimental effects on the reliability of statistical esti-
mates. 

In sum, the recodification of quantitative variables as categorical is a poor 
methodological strategy, and scholars must stay away from it. Dichotomization 
undoubtedly simplifies data analysis, but the costs are too higher to bear. Today, 
categorization is neither appropriate nor justifiable. Continuous variables are as 
good as they are. Let’s be cool about it and leave quantitative variables alone. 
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