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Abstract 
The Unlink attack is a way of attacking the heap overflow vulnerability under 
the Linux platform. However, because the heap overflow data seldom directly 
leads to program control flow hijacking and related protection mechanism 
limitations, the existing detection technology is difficult to judge whether the 
program meets the heap overflow attack condition. There are certain inspec-
tion measures in the existing unlink mechanism, but with carefully con-
structing the contents of the heap, you can bypass the inspection measures. 
The unlink mechanism must be triggered with the free function, and this 
principle is similar to function-exit of stacks. The paper obtains the inspira-
tion through the canary protection mechanism in the stack, adds it to the 
chunk structure, encrypts the canary value, and defends the unlink attack 
from the fundamental structure. The experimental results show that this me-
thod can effectively prevent the occurrence of unlink attacks and has the abil-
ity to detect common heap overflows. 
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1. Introduction 

The heap can dynamically allocate memory, allowing programs to request 
memory of unknown size. The heap is a continuous linear area in memory, 
growing from a low address to a high address. Early heap allocation and recy-
cling in Linux were implemented by Doug Lea. After a series of development, 
the heap allocator, currently used in the Linux standard distribution heap allo-
cator in glibc is called ptmalloc 2 [1]. Ptmalloc 2 mainly allocates and frees 
memory blocks through the malloc/free function. The micro-structure of the 

How to cite this paper: Huo, Y.Z., Wang, 
G. and Yang, F.C. (2019) Unlink Attack 
Defense Method Based on New Chunk 
Structure. Journal of Information Security, 
10, 177-187. 
https://doi.org/10.4236/jis.2019.103010 
 
Received: May 7, 2019 
Accepted: July 16, 2019 
Published: July 19, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2019.103010
http://www.scirp.org
https://doi.org/10.4236/jis.2019.103010
http://creativecommons.org/licenses/by/4.0/


Y. Z. Huo et al. 
 

 

DOI: 10.4236/jis.2019.103010 178 Journal of Information Security 
 

heap structure is called chunk in memory. The user successfully allocates the 
heap memory through the malloc function and the system returns the heap 
pointer to the user. The user can read, write, and free the chunk through the 
heap pointer. In 1999, the Conover of the w00w00 security team introduced the 
principle and utilization of the heap overflow. Since then, the goal of exploiting 
has gradually expanded to the heap [2]. When the number of bytes written to a 
chunk data segment in the program exceeds the number of bytes that the chunk 
can use, it causes data overflow and leads to overwriting the next heap to the 
physically adjacent high address. And this problem is caused by the lack of strict 
boundary checking [3] [4]. Although there is no return address on the heap 
memory that can directly control the execution flow of the program, the attacker 
can still change the inherent execution flow of the program by overwriting the 
adjacent chunk [5], by calling the mechanism in the heap (such as unlink, etc.) 
to achieve arbitrary Address writing or controlling the contents of the chunk to 
control the execution flow of the program. In the source code implemented by 
the current glibc malloc, there are certain protection measures against attacks in 
the heap mechanism such as unlink, but the hacker can use the heap overflow to 
perform the forgery of the chunk and bypass the unlink protection mechanism 
to attack. The prerequisite for a successful attack is that it can successfully over-
flow to the next heap from the current heap, as long as the number of bytes that 
can be written to the heap is sufficient to cover the next physically adjacent heap 
block, there is no corresponding protection for this. 

In 2003, William Robertson and other scholars at the University of California 
added a magic field and a pad field as padding based on the existing chunk 
header structure [6]. The value of the Magic field contains the block header 
checksum generated by the random seed. The process is initialized with a ran-
dom value during startup. When free the chunk, the checksum is calculated 
again. If the stored value does not match the calculated value, the chunk struc-
ture is destroyed. At this point, the program will throw an exception and send an 
alert. However, the drawback of this method is that the magic field is written 
before the prev_size field, which reduces the chunk’s storage capability. The 
prev_size field cannot be used to store the data of the previous chunk. If the 
random seed is too simple, there is also a possibility of being brutally cracked. In 
2006, Qiang Zeng et al. proposed to add two canary values and encrypt the size 
field before the buffer available to the chunk user and the user buffer [7] to con-
fuse the size of the attacker’s user buffer and the address. 

The Unlink attack utilizing the allocation, free, and merge operations of the 
chunk, tampers with the linked list pointer of the free chunk, causing the pro-
gram pointer variable to be overwritten, to hijack the program control flow. For 
the Unlink attack, the Linux system sets the heap free protection mechanisms 
such as detection, double-linked list conflict detection, and chunk size detection 
to prevent the program control flow from being hijacked. In recent years, the 
exploit practice has proved that the Unlink attack is still an effective heap over-
flow exploiting method under certain conditions. For the latest detection me-
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thod of unlink attacks, in 2018, Huang Ning et al. proposed a detection method 
based on symbolic execution. This method extracts the variation characteristics 
of the attack process by inputting the error of the heap overflow as the pollution 
source and designs an unlink attack model to filter out heap overflow vulnera-
bilities that may lead to unlink attacks. The downside of this approach is that a 
series of fuzzing tests are needed in advance to find malicious attack vectors that 
can trigger the unlink detection system, if the detection system is no attack vec-
tor that causes the program to crash, it may be missed [8] [9]. 

In [6], adding the magic field before the prev_size field of the chunk structure, 
this method makes the physical adjacent chunk unable to use the prev_size field 
of the next chunk to store information, and the encryption method is simple and 
easy to be brute force cracked. In [7], the double canary field is added to the 
chunk structure, which makes the chunk structure too complicated. The mod-
ification method of the chunk structure proposed in this paper takes into ac-
count the security and utilization efficiency. Only one canary field is added to 
the glibc 2 chunk header, and the md5 algorithm is used as the verification algo-
rithm, which is not easy to be cracked and can effectively defend against unlink 
attacks. 

The first part of this paper introduces the existing chunk structure and related 
knowledge. The second part introduces the improvement scheme proposed in 
this paper. Finally, the experiment proves that our method is effective. 

2. Related Knowledge 
2.1. Chunk Structure in Ptmalloc 2 

In the process of execution in the program, the memory requested by malloc is a 
chunk. This memory is represented by the malloc_chunk structure inside 
ptmalloc [10]. When the chunk requested by the program is free, it will be added 
to the corresponding idle management list. Regardless of the size of a chunk, 
whether it is in the allocation state or t free state, they all use red the same struc-
ture. Their representations will be different depending on whether they are free. 
The structure of the Chunk is shown in Figure 1. 

1) Prve_size. If the chunk of the current physical neighboring address (physi-
cal memory low address) of the current chunk is idle, the field records the size of 
the previous chunk (including the chunk header). If the previous chunk is al-
ready used, the fields can be used to store data from a physical chunk that is ad-
jacent to the previous chunk. 

2) Size. The size of the current chunk, the size must be an integer multiple of 
2*SIZE_SZ. If the requested memory size is not an integer multiple of 
2*SIZE_SZ, it will be converted into a multiple of the smallest 2*SIZE_SZ that 
satisfies the requested size. In a 32-bit system, SIZE_SZ is 4, and the SIZE_SZ in 
the 64-bit system is 8. And the low three bits in size field does not affect the 
chunk size. From high to low, it is represented as: NON_MAIN_ARENA, and 
records whether the current chunk belongs to the chunk of the main thread. 1  

https://doi.org/10.4236/jis.2019.103010


Y. Z. Huo et al. 
 

 

DOI: 10.4236/jis.2019.103010 180 Journal of Information Security 
 

 
Figure 1. Chunk structure. 

 
means not belonging to, and 0 means were belonging to. IS_MAPPED, record 
whether the current chunk is allocated by mmap. PREV_INUSE record whether 
the previous chunk is allocated. 

3) When fd, bk.chunk is in the allocation state, it is the user’s data from the fd 
field. When the chunk is free, it will be added to the corresponding idle man-
agement list. The meaning of the fields is as follows: fd points to the next 
(non-physical neighbor) free chunk, bk points to the previous (non-physical 
neighbor) free chunk. Through fd and bk, the free chunk can be added to the 
free chunk block list for unified management. 

4) Fd_nextsize, bk_nextsize, is only used when the chunk is free, but it is used 
for larger chunks (large chunk). fd\_nextsize points to the previous free chunk 
that is different from the current chunk size, and does not contain the header of 
the bin. The pointer bk_nextsize points to the next free block that is different 
from the current chunk size, and does not contain the header pointer of the bin. 

2.2. Canary 

Canary is protection against stack overflow. This technology has existed as the 
first line of defense for system security until now [11]. Canary is very simple and 
efficient in terms of implementation and design and is prone to overflow in the 
stack. The tail of the high-risk area is inserted with a value. When the function 
returns, it is detected whether the value of canary has been changed to determine 
whether the overflow occurs. The structure of Canary in the stack is shown in 
Figure 2. 

When writing data to a local variable, if you want to overflow the overlay ebp 
or even return the address, the value of canary will be changed. If the canary has 
been illegally modified, the program will execute into __stack_chk_fail, which 
will fail the overflow. 

prev_size

size

fd

bk

fd_nextsize

bk_nextsize
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Figure 2. Chunk stack layout. 

2.3. Unlink Mechanism and Attack Principle 

Unlink takes a free block from a doubly linked list and merges it with the physi-
cally adjacent free chunk when chunk free, and unlink performs a series of 
checks before the free chunk is merged. The first check: 

if (__builtin_expect (chunksize(P)! = prev_size (next_chunk(P)), 0)) 

malloc_printerr (“corrupted size vs. prev_size”); 

Unlink first checks whether the size of the chunk in the free list is consistent. 
There are two places in the chunk structure that record the size of the current 
chunk, one is the current size field, and the prev_size of the chunk of the high 
address of the current chunk physical neighbor. If the values of the two fields are 
equal, the unlink mechanism considers that the heap block does not have an ex-
ception and will successfully pass the first check. 

if (__builtin_expect (FD->bk != P||BK->fd! = P, 0)) 

malloc_printerr (check_action, “corrupted double-linked list”, P, AV) 

The second check to see if the current chunk’s previous free chunk in the free 
list points to the current chunk [10], and whether the next chunk’s previous one 
points to the current chunk. As shown in Figure 3. 

In the free list, the fd field of the current chunk points to the next free chunk 
(non-physical neighbor) in the linked list, and the bk field points to the previous 
free chunk. When the program overflows, free the overflowed chunk and mod-
ified the flag can reach the pointer data and hijack the program flow smoothly. 
Unlink’s existing inspection mechanism can be bypassed smoothly. 

3. New Chunk Structure 

The primary cause of the Unlink attack can be successfully used because the 
header content of the next chunk can be modified by overflow, to deceive the 
unlink check mechanism, and then successfully execute the unlink. To funda-
mentally defend the unlink, it is necessary to directly prevent the overflow to the 
next one. From the perspective, a new type of chunk structure is proposed, as 
shown in Figure 4. 

Based on the original chunk header structure, a canary protection mechanism 
similar to that in the stack is added between the prev_size field and the size field.  

local variable

canary

ebp

return address
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Figure 3. Free double link list. 
 

 
Figure 4. New chunk structure. 

 
When the program uses malloc to apply for memory [12], the system firstly uses 
the size of the requested byte in the heap to open a memory space. The size of 
this memory space contains at least the size of the chunk header. At this time, 
the system will generate a random seed between 1 and 100,000 and generate a 
good random seed as an offset. The value is added to the first address of the bss 
segment of the program to get a new address. The bss segment is the memory 
area used by the program to store uninitialized global variables and static va-
riables. It features readable and writable. Since the bss segment address space is 
very large, it can be used to store additional data. The new address generated by 
adding the random seed to the first address of the bss segment is used as the 
storage address for storing the canary value. This address is the real address for 
storing the canary value. It is added to the chunk header. The new field is just 
the address of the bss segment where the canary is stored. 

The canary protection mechanism in the stack is to prevent stack overflow by 
obtaining the value of a certain position in the fs register and inserting it before 
the return address. The canary generated by this mechanism can be guessed by 
brute force cracking. Especially in many server programs, such as the famous 
Apache program, the fork function is used [13]. The fork function will copy the 
canary set in the parent process to the child process, so the canary values in the 
parent and child processes are the same so that will face a byte-for-byte attack 
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vulnerability. It can detect whether it is the correct value by one byte and one 
byte guess. To prevent the canary value in the chunk header from being violently 
guessed, the canary value will be encrypted. Here, MD5 is chosen as the encryp-
tion algorithm for canary. 

MD5 is a widely used cryptographic hash function that produces a 128-bit 
hash value [14], which is 16 bytes. Due to the nature of MD5 itself, when the en-
crypted plaintext has minor changes, it is The MD5 value generated by encryp-
tion will change very much, so it is very suitable for verifying whether the in-
formation has been tampered with. When generating a new bss address, the 
heap manager determines whether the previous chunk is being used, that is, 
reading lowest bit in the size field. If the previous chunk is being used, the size 
field and the first address of the chunk header are used as plaintext. Otherwise, 
the value of the prev_size field, the value of the size field, and the first address of 
the chunk header are used as plaintext for the MD5 algorithm. Because the pre-
vious chunk of the physical neighbor is being used, then the current chunk’s 
prev_szie can be used to store the contents of the previous chunk, which will in-
terfere with the value generated by the MD5 algorithm. To enhance the security 
of the MD5 algorithm, last 8 bytes of generated. MD5 value will be are stored in 
the bss segment address, and then the bss segment address is inserted into the 
chunk header. The entire application process is shown in Figure 5. 

When using the free function to free the chunk being used back to the heap 
manager, read whether the state of the previous chunk is being used, and if it is 
being used, perform the MD5 operation on the first address of the chunk header 
and the size field, and take the first 8 bytes of the result. Read the canary address 
in the chunk header, and take the value of the last 8 bytes of the MD5 result in 
the process of requesting memory from the stored bss segment address, and 
connect it with the first 8 bytes of the current calculation result. And compare it 
with the currently calculated MD5 value to see if it is equal. If not equal, the 
chunk must be overflowed, and the heap manager will terminate the current free 
process and throw an exception. 

After the free function is successfully executed, the lowest bit of the size field 
of the physically adjacent high address is modified to identify that the previous 
chunk state has been changed. When the size field flag of the next chunk is mod-
ified, the above is performed again. MD5 judges the verification process, and re-
calculates the MD5 value of the new chunk header after the flag bit is successful-
ly modified. The free verification process of the free function is shown in Figure 6. 

Due to the existence of the bin mechanism in the ptmalloc 2 heap manager, 
the free chunk will be added to the bin list. When the next chunk of the same 
size is applied, the chunk will be taken out from the bin list for reuse. The chunk 
process also needs to recalculate the MD5 checksum to ensure security. 

4. Experimental Results and Analysis 

The new chunk structure designed in this paper is based on Ubuntu 16.04 64-bit 
system, simulating the definition of chunk structure in glibc library function,  
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Figure 5. Canary generation process. 

 

 
Figure 6. Free function release process. 

 
and a series of operations, such as allocate, free, etc. Other mechanisms in heap 
memory stay the same. The experiment will be carried out in two cases. One is 
the defense effect against the ordinary heap overflow, and the other is the de-
fense effect against the unlink attack. 

Firstly, the structure defined by the malloc function in the existing glibc 
source code is analyzed, and the chunk structure is improved on the basis of this, 
and the address field of the canary is added. The core code of the improved 
chunk structure is shown in Figure 7. 
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Figure 7. New chunk structure code. 

 
Insert the canary_address between the prev_size and size fields. The size of the 

chunk header changes from 16 bytes to 24 bytes. The minimum chunk size is al-
so changed at the time of application. 

Use the new chunk structure to apply for two chunks in a heap, one larger and 
one smaller. The second one must be slightly larger when applying. If it is too 
small, the chunk will be in the range of fastbin size, even adjacent idle chunks 
will not trigger unlink. Experimental data and results are shown in Table 1, Ta-
ble 2. 

The experimental overflow data is divided into two categories: garbage data 
and carefully constructed data. The first row in the table uses the garbage data to 
fill the first chunk and then continue to overflow to the second chunk, and uses 
the garbage data to cover header of the chunk. When using the free function for 
release, it will be addressed from the chunk header canary_address. Since the 
canary_address has been overwritten by the garbage data, the address is an illeg-
al address, and the program throws an exception and terminates the release. The 
second row of data is only displayed to overwrite the prev_size field of the 
second chunk. The canary_address address is normal when released, and 8 bytes 
after the MD5 check value of the bss segment is successfully acquired at the time 
of application. However, since the prev_size field is overwritten, the checksum is 
calculated. The first 8 bytes and the bss segment value are compared with the 
currently calculated MD5 value, which are not equal. The verification failure 
throws an exception and terminates the release. The third row of data shows the 
prev_size and Canary_address of the second chunk field are overwritten. Since 
the canary_address field is overwritten, the result is consistent with the experi-
mental data of the first line. 

The fourth line of data is the classic unlink attack mode. First, the fake chunk 
is constructed in the first chunk and the prev_size field of the second chunk is 
modified to the size of the first chunk. The canary_address field remains un-
changed, and the lowest position of the size field is 0 to forge the idle chunk flag 
for merging. After all the construction is completed, use the free function to start 
the attack. Since the unlink will manually apply for two new chunks, then the 
second chunk identifies the first chunk is being used, so the calculated checksum  

struct malloc_chunk{

INTERNAL_SIZE_T      prev_size;  
INTERNAL_SIZE_T      canary_address;  
INTERNAL_SIZE_T      size;  

struct malloc_chunk* fd;  
struct malloc_chunk* bk;

struct malloc_chunk* fd_nextsize;
struct malloc_chunk* bk_nextsize;
}
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Table 1. Experimental result description. 

Overflow Data Override Field Experimental Results 

junk data (AAAA) override chunk header Canary address is overwritten and addressed abnormally 

junk data (AAAA) override prev_size 
Canary addressing is normal 
MD5 checksum verification failed 

junk data (AAAA) override prev_size & canary address Canary address is overwritten and addressed abnormally 

create fake chunk and modify chunk size The chunk header is completely covered 
Canary addressing is normal 
MD5 checksum verification failed 

normal write no coverage 
Canary addressing normal 
MD5 checksum is normal 

 
Table 2. Experimental result data. 

Chunk Start Address Random Number Bss Start Address Canary Address Prev_size Size MD5 Value 

0x663028 0x5c04 0x601060 
AAAA 
AAAA 

AAAA 
AAAA 

AAAA 
AAAA 

72d4a6274faff6d3453fc4
1de00b999b 

0x663028 0x14106 0x601060 0x615166 
AAAA 
AAAA 

0x48 
27fb59194aafe9554e0b0b

c4099ff4db 

0x663028 0x14fcb 0x601060 
AAAA 
AAAA 

AAAA 
AAAA 

0x48 
27fb59194aafe9554e0b0b

c4099ff4db 

0x663028 0x8cca 0x601060 0x609d2a 0x30 0x90 
0eb7c0e623557c5b371a7

5f6056abf05 

0x663028 0x6de3 0x601060 0x607e43 used 0x49 
5d15b747f6d4cd992e23f

4343c1c26ee 

 
is not using the prev_size field. After the size field is modified by overflow, the 
lowest bit of the size field is set to 0. The free process calculates the prev_size 
field together when calculating the MD5 checksum, and the calculated checksum 
is not equal to the first calculation. It must not be equal to the first calculation, 
which makes the verification failed. Although the layout required for the unlink 
attack is successfully performed in the heap, the unlink attack is successfully de-
fended because the free function cannot be triggered. 

It can be seen from the experimental results that the new chunk structure 
highly enhances the defense against heap overflow, and defends the unlink from 
the trigger condition of the unlink attack, which is an enhancement to the exist-
ing security mechanism. The verification mechanism implemented in this paper 
not only needs to know the used verification algorithm, but also needs to modify 
the value stored in the bss segment address of each random change and check 
which fields are used as plaintext. This attack has a limited possibility of suc-
ceeding. 

5. Conclusion 

Based on the chunk structure in ptmalloc 2 used in existing Linux, this paper 
absorbs the research experience of the predecessors and proposes a new type of 
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chunk structure. It defends the unlink attack from the structure and has a good 
detection effect on common heap overflow. It is also a good complement to heap 
security. However, the content proposed in this program still has the possibility 
of being cracked. How to improve and enhance is the research emphasis and 
development direction in the future 
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