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Abstract 
The onset of thermal convection, due to heating from below in a system con-
sisting of a fluid layer overlying a porous layer with anisotropic permeability 
and thermal diffusivity, is investigated analytically. The porous medium is 
both anisotropic in permeability whose principal axes are oriented in a direc-
tion that is oblique to the gravity vector and in thermal conductivity with 
principal directions coincident with the coordinate axes. The Beavers-Joseph 
condition is applied at the interface between the two layers. Based on parallel 
flow approximation theory, a linear stability analysis is conducted to study 
the geothermal river beds system and documented the effects of the physical 
parameters describing the problem. The critical Rayleigh numbers for both 
the fluid and porous layers corresponding, to the onset of convection arising 
from sudden heating and cooling at the boundaries are also predicted. The 
results obtained are in agreement with those found in the past for particular 
isotropic and anisotropic cases and for limiting cases concerning pure porous 
media and for pure fluid layer. It has demonstrated that the effects of aniso-
tropic parameters are highly significant. 
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1. Introduction 

Natural convection in composite fluid and porous layers heated from below can 
be encountered in many engineering and environmental problems. Applications 
include solidification of castings, aerosol production, groundwater pollution, 
thermal insulation, geophysical systems, etc. Therefore a considerable amount of 
investigations on this subject has been performed in the last decades [1]. 
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Most investigations of buoyancy-driven flows in two-dimensional fluid/porous 
systems are concerned with the case of a shallow rectangular cavity partially 
filled with a porous medium. The interaction that occurs at the interface be-
tween a fluid and a porous layer has been formulated in the past according to 
different approaches. Somerton and Catton [2] studied the stability of a system 
consisting of a volumetrically heated porous bed overlaid with a fluid layer, 
heated or cooled isothermally from below. The case of a rectangular cavity, di-
vided into fluid and porous regions, has been investigated numerically by Ni-
shimura et al. [3] using a Brinkman model. The boundary conditions at the in-
terface between fluid and porous medium were written explicitly in stream func-
tion-vorticity form. A good agreement was observed between their numerical 
results and experimental data. The case of a porous bed under a fluid, in a shal-
low cavity heated from the bottom by a constant heat flux, has been investigated 
analytically by Vasseur et al. [4]. Closed form solutions were obtained using Na-
vierStokes and Brinkmans equations in fluid and porous regions, respectively. 
Chen et al. [5] used the BJ condition to predict the onset of motion in a system 
consisting of a fluid layer overlying an anisotropic porous medium. The onset of 
surface-tension driven convection has been investigated by Shivakumara et al. [6] 
in a two layer-system. Both BeaversJoseph and the Jones conditions [7] were ap-
plied at the contact surface between the fluid saturated porous medium and the 
adjacent bulk fluid. A negligible difference in the critical Marangoni numbers 
was obtained whether BJ or Jones conditions are being used. A study of buoyan-
cy-driven flow in a confined fluid overlying a porous layer has been investigated 
by Valenca-Lopez and Ochoa-Tapia [8], using two different models. The first 
approach considered the NavierStokes equation and Darcys law coupled with 
the BJ interfacial boundary condition. The second approach used the Brinkman 
extended Darcys law together with the continuity of shear and velocity at the in-
terface. Significant differences between the overall Nusselt numbers were found 
when the Rayleigh and Darcy numbers were large enough. Five different types of 
interfacial conditions between a porous medium and a fluid layer have been 
analyzed by Alazmi and Vafai [9]. It was found that the variances within differ-
ent models, for most practical applications, have a negligible effect on the results. 
Recently, the influence of the interfacial jump boundary condition on the onset 
of the convection in superposed fluid and porous layers has been studied by Hi-
rata et al. [10] [11]. The effective jump coefficient was found to strongly influ-
ence the marginal stability curves. However the results indicate that the inclu-
sion of the Brinkman term, to model the porous medium, plays a secondary role 
on the stability results. More recently a linear stability analysis of the onset of 
thermosolutal convection in horizontal superposed fluid and porous layers was 
performed by Hirata et al. [12] using the one-domain approach. It was demon-
strated that for positive thermal Rayleigh numbers, the convective flow occurs 
both in the fluid and porous regions. However, for negative thermal Rayleigh 
numbers the onset of motion is characterized by a multi-cellular flow in the fluid 
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region. The same problem was reconsidered by Hirata et al. [13] by using both 
the one-domain approach and the two-domain formulation. A very good agree-
ment was obtained upon comparing the results predicted by the two models. An 
analytical study of natural convection in a horizontal shallow cavity filled with a 
fluid layer overlying a porous medium, saturated with the same fluid, has been 
investigated by Alloui et al. [14] using a Darcy model. The critical Rayleigh 
numbers for the onset of convection in a composite system are predicted expli-
citly, by the present model, in terms of the governing parameters of the problem. 
For finite-amplitude convection, useful expressions have been obtained for ve-
locity, and temperature distributions in the core of the enclosure. At the inter-
face between the fluid and the porous layers the effect of the slip coefficient is 
more pronounced on the velocity profiles in the fluid layer than on those in the 
porous layer. The influence of the governing parameter on the Nusselt numbers 
are predicted and discussed. Finally, it is noted that the scope of this study is li-
mited by the assumption of a parallel flow, and the model is thus valid in the 
limit of a shallow enclosure ( )1A . Despite this restriction, the analytical 
model provides useful results which can be taken as a starting point for more 
detailed numerical computations. 

The aim of the present study is to study analytically natural convection in a 
cavity consisting of a fluid layer over a saturated porous layer anisotropic in 
permeability. The system is heated from the bottom by a constant heat flux. At 
the interface of the two layers the Beavers-Joseph boundary conditions are ap-
plied. In this investigation, we use the Navier-Stokes equations for the fluid layer 
and the Darcy law with the presence of gravitational field for the porous layer A 
parallel flow approximation is used, which enables the temperature and velocity 
fields in the core region of the system to be determined in closed form. The crit-
ical Rayleigh for both fluid layer and porous layer corresponding the onset of 
convection are predicted. 

2. Conceptual Model 

The physical model illustrating the problem under different considerations is 
shown in Figure 1. A porous layer of thickness ph  (zone 2) underlying a fluid 
layer of thickness fh  (zone 1) is considered. Between the first and the second 
zone, there is an interface (called the nominal surface). The layers are horizontal 
and extend infinitely in the horizontal direction. The top of the fluid layer is free 
and the bottom of the porous layer is bounded by rigid walls with uniform heat-
ing. It is assumed that the flow is laminar, incompressible, and two-dimensional. 
The physical properties of the fluid are assumed constant, except for the density 
in the buoyancy term in the momentum equations (Boussinesq approximation). 
The porous medium is considered homogeneous and anisotropic and saturated 
with a fluid which is in local thermodynamic equilibrium with the solid matrix. A 
Cartesian coordinate system is chosen with the origin at the interface between the 
porous and fluid layers, the y’-axis vertically upward, and the x’-axis horizontal.  

https://doi.org/10.4236/eng.2019.117026


G. Degan et al. 
 

 

DOI: 10.4236/eng.2019.117026 346 Engineering 
 

 
Figure 1. Schematic diagram of the physical model and coordinate system. 

 
The porous medium is anisotropic, the permeabilities along the two principal 
axes of the porous matrix are denoted by 1K  and 2K . The anisotropy of the 
porous layer is characterized by the permeability ratio *

1 2K K K=  and the 
orientation angle ϕ , defined as the angle between the horizontal direction and 
the principal axis with the permeability 2K  and the thermal diffusivity ratio 

Tε , defined as ratio of thermal diffusivity of the fluid layer fα  to the thermal 
diffusivity of the porous layer pα . 

3. Mathematical Formulation 

The equations governing the conservation of mass, momentum, energy and the 
Boussinesq approximation (see, Alloui et al. [14] Yovogan and Degan [15] Yo-
vogan et al. [16]) can be written in each Zone as follows: 
 Zone 1 (fluid layer): 

Equation governing the conservation of mass 
0,f′∇ ⋅ =V                            (1) 

Equation governing the conservation of momentum (Navier-Stokes model 
with the presence of gravitational field). 

( ) 2
0 ,f f f fP µ′ ′ ′ ′ ′⋅∇ = −∇ + ∇ +V V V g                 (2) 

Equation governing the conservation of energy 

( ) 2 ,f
p f ff

DT
C k T

Dt
′

′ ′= ∇
′

                    (3) 

Equation governing the Boussinesq approximation 

( )0 01 .fb T T ′ ′ ′= − −                      (4) 

 Zone 2 (porous layer): 
Equation governing the conservation of mass 

0,p′∇ ⋅ =V                        (5) 

Equation governing the conservation of momentum (Darcy law with the pres-
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ence of gravitational field). 

{ },p p
K P
m

′ ′ ′= −∇ +V  g                      (6) 

Equation governing the conservation of energy 

( ) ( ) ( ) 2 ,p
p p p p p pp f

T
c c T k T

t
′∂

′ ′ ′ ′ ′+ ∇ ⋅ = ∇
′∂

V                 (7) 

Equation governing the Boussinesq approximation 

( )0 01 .pT Tβ ′ ′ ′= − −                     (8) 

In these equations, ′V  denotes the velocity vector, p′  the pressure and T ′  
the temperature. The subscript f denotes the fluid layer, p the porous medium. 
Moreover, µ  the dynamic viscosity,   the density, β  the thermal-expansion 
coefficient, pc  the specific heat of the fluid, k the thermal conductivity, 

( )f p f
k cα =   the thermal diffusivity of the fluid layer and ( )p p p

k cα =   
the thermal diffusivity of the porous layer, where ( )pc  is the volumetric heat 
capacity of the fluid. In Equation (6), the symmetrical second-order permeability 
tensor K  is defined as 

( )
( )

2 2
1 2 2 1

2 2
2 1 2 1

sin cos sin cos
.

sin cos sin cos
K K K K

K
K K K K

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

 + −
=  

− +  
          (9) 

The appropriate boundary conditions prevailing on the the lower impermea-
ble boundary and the upper free surface of the channel are: 

: 0, 0, ,p
p p p

p

T qy h v u
y k
′∂ ′

′ ′ ′= − = = = −
′∂

                      (10) 

d
: 0, 0, ,

d
f f

f f
f

u T qy h v
y y k
′ ′∂ ′

′ ′= = = = −
′ ′∂

                    (11) 

At the interface of the two layers ( )0y′ = , the conventional no-slip velocity 
boundary condition can be assumed to be valid even at the impermeable walls. 
However, Beavers and Joseph [17] postulated the existence of a streamwise slip 
velocity at the permeable bounding surface. So the dynamic conditions and the 
continuity of temperature, of the heat flux on the nominal surface are formu-
lated as 

( )
1

0 : , ,f
p f f p

u
y v v u u

y K
β1′∂ ′

′ ′ ′ ′ ′= = = −
′∂

                   (12) 

0 0

0 : , .f p
p f f p

y y

T T
y T T k k

y y′ ′= =

′ ′∂ ∂
′ ′ ′= = =

′ ′∂ ∂
                    (13) 

According to Rudraiah and Veerabhadraiah [18] [19], the parameter 1β ′  
denotes a constant depending on the material property of the porous medium, 
which have can be determined only experimentally. 

To render the equations non-dimensional, the characteristic length is chosen 
to be the total height, p fh h h= + , of the fluid and porous layers and the chara-
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cristic velocity to be hα . Different scales for temperature are used; they are 
( )0fT T T− ∆  and ( )0pT T T− ∆ , for the fluid and porous layers, respectively. 
Then, the dimensionless formulation ( ),Tψ  of governing equations become: 
 (for the fluid layer): 

( )2 4, ,f
f f f

T
J PrRa Pr

x
ψ ψ ψ

∂
− ∇ = − + ∇

∂
             (14) 

( ) 2, .f f fJ T Tψ− = ∇                      (15) 

 (and for the porous layer): 
2 2 2

2 2 2 ,p p p pT
a b c R

x y xx y
ψ ψ ψ     ∂ ∂ ∂ ∂

− + ⋅ = −          ∂ ∂ ∂∂ ∂     
           (16) 

( ) 2, .p p T pJ y T Tε− = ∇                     (17) 

where pPr C kµ=  is the Prandtl number, µ  the dynamic viscosity of the 
fluid. ( ), x y y xJ f g f g f g= ⋅ − ⋅  the usual Jacobian operator,  

( )3
1 pRa g T h Kβ να= ∆  the Rayleigh number in the fluid layer,  

( )1 pR g T hK Da Raβ να= ∆ = ⋅  the Rayleigh number in the porous layer, 
* 2  Da K h=  the Darcy number and ψ  is the usual stream function defined as: 

, .u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

                             (18) 

such that the mass conservation is satisfied. the constants a, b, and c are defined 
as. 

( )

* 2 2

2 * 2

*

sin cos ,

sin cos ,

1 sin cos .

a K
b K

c K

ϕ ϕ

ϕ ϕ

ϕ ϕ

 = +
 = +
 = −  

                   (19) 

The dimensionless boundary conditions on the lower impermeable boundary 
of the porous medium and on the upper free surface of the fluid layer are 

: 0, 1 ,p
p T

T
y

y
η ψ ε

∂
= − = = −

∂
                (20) 

2

2

d
: 0, 1.

d
f f

f

T
y

yy
ψ

η ψ
∂

= = = = −
∂

              (21) 

At the interface of the two layers (at 0y = ), we have: 
,p fT T=                          (22) 

2
1

2

d d d
  ,

d dd
f f p

y yy Da

ψ ψ ψβ  
= − 

 
                (23) 

0 0

.f p
T

y y

T T
y y

= =

∂ ∂
=

∂ ∂
                    (24) 

4. Parallel Flow Hypothesis 

Assuming that when the flow is fully developed in the system, the axial (x-direction) 
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velocity depends on the transverse coordinate y (i.e. ( )f fu u y=  for the fluid 
layer and ( )p pu u y=  for the porous layer), and then from the continuity equ-
ation, the transverse velocity component must be zero (i.e. 0v =  and 0pv = ). 
The temperature field, in the central part, can be divided into the sum of a linear 
dependence on x and an unknown function of y. Thus, it is assumed that 

( ) ( ) ( ) ( ), ,f f p py R C H y y R C H yψ ψ= × × = × ×          (25) 

( ) ( ) ( ) ( ), , , .f f p pT x y C x y T x y C x yθ θ= × + = × +          (26) 

where C is the dimensionless horizontal temperature gradient in the horizontal 
direction. C is the same in the two layers. Similar approximations have been 
used in the past by Cormack et al. [20], Sparrow et al. [21], Vasseur et al. [22], 
Sen et al. [23] [24] and Bahloul et al. [25], among others. 

Substituting Equations (25)-(26) into Equations (14)-(17), the governing equ-
ations for the fluid layer can be reduced to the following ordinary differential 
equations: 

4

4

d
,

d
f Ra C

y
ψ

= ×                          (27) 

2

2

d d
.

dd
f fC

yy
θ ψ

=                         (28) 

while for the porous layer, the ordinary differential equations obtained are given 
by 

2

2

d
,

d
pb R C

y
ψ

= − ×                        (29) 

2

2

d d
.

dd
p p

T

C
yy

θ ψ
ε

=                        (30) 

5. Analytical Solution 
5.1. Velocity and Temperature Distrubution 

Equations (27)-(30) can be solved, sobjected to boundary conditions, Equations. 
(20)-(24). The resulting expressions for the velocity, stream function and tem-
perature fields for the fluid layer are given by 

( ) 3 2
0 1 2 3

1 1 ,
6 2fu y y A y A y Aψ  = + + + 

 
                (31) 

( ) 4 3 2
0 1 2 3 4

1 1 1 ,
24 6 2f y y A y A y A y Aψ ψ  = + + + + 

 
            (32) 

( ) 5 4 3 2
0 1 2 3 4 5

1 1 1 1, .
120 24 6 2fT x y Cx C y A y A y A y A y A yψ  = + + + + + + 
 

  (33) 

while those in the porous layer are given by 

( ) ( )0 1 ,pu y y Bγψ= − +                        (34) 
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( ) 2
0 1 2

1 ,
2p y y B y Bψ γψ  = − + + 

 
                     (35) 

( ) 3 20
1 2 3

1 1, .
6 2p

T

Cy
T x y Cx y B y B y B y

γ
ε

−  = + + + + 
 

         (36) 

where 

,Da bγ =                            (37) 

( ) ( ) ( )4 * 3 2

1 3 * 2

5 24 2 2
,

3

Da
A

Da

η η γη

η η γ

+ −
=

− − −
               (38) 

( ) ( ) ( )5 3

2 3 * 2

24 2 2
,

3
A

Da

η γη γηη

η η γ

− + +
=

− − −
               (39) 

( ) ( ) ( ) ( )2* 5 4 *

3 3 * 2

24 5 24 2 2
,

3

Da Da
A

Da

η γη ηη γη

η η γ

− − + +
=

− − −
       (40) 

( ) ( ) ( ) ( ) ( )* 2 3

4 3 * 2

2 4 2 12 24
.

3

Da
A

Da

γ ηη ηη γη η η η ηη

η η γ

2 2 3 4 − − − + + =
− − −

 (41) 

5

1 1
2

2 1

3

*

1

0

1,
,

2,
1 ,

,

.

T

A
B A

B A

B

DaDa

Ra C

η η

ε

β
ψ

= −
 =
 = −

 = −


 =

 = ×

  
  

  

                         (42) 

5.2. Critical Rayleigh Number (Onset of Motion in the System) 

The parallel flow approximation is only applicable in the core of the layers. 
Flows in the end regions are much more complicated and cannot be approx-
imated in such a simple manner. For this reason, the thermal boundary condi-
tion in the x-direction cannot be reproduced exactly with this approximation. 
We can, however, impose an equivalent energy flux condition in that direction 
by writing as follows 

0

0
0 0

d d
 d   d 0.

d d
p p f f

p f
x x

T T
T y T y

y x y x
η

η

ψ ψ
−

= =

∂ ∂   
− + − =   ∂ ∂   

∫ ∫             (43) 

The integrands are a sum of convective heat fluxes in the fluid and porous 
medium, respectively. This is derived from the condition of uniform heat flux at 
the boundaries. Substituting Equations (32)-(33) and (35)-(36) into Equation (43) 
and integrating yields, after some straightforward but laborious algebra, an ex-
pression of the form: 

[ ] ( ) ( )2 3
1 3 2 4 0.TE E Ra C E E Ra Cε η η+ + + − + =              (44) 

where 
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( )

8 29 7 6
31 1 2 1 2

1

2 5 4
1 3 4 2 1 4

2 3

3
2 2 2
3 2 4 3 4 4

5184 576 36 24 7 6 12 6

3 12 4 5 3 4

,
3

AA A A A AE

A A A A A A A A

A A A A A A

ηη η η

η η

η η η

   = + + + + +   
  

   + + + + +   
  

+ + + +

        (45) 

24 35
31 2

2 4 ,
120 24 6 2

AA AE A
ηη ηη η= + + + +                (46) 

( )
42 5 3

2 2 21
3 1 2 1 2 2 ,

20 4 3T

BE B B B B Bηγ η η η η
ε

 
= − + + − + 

 
         (47) 

23
1

4 2 .
6 2T

BE Bηγ η η
ε

 
= − + − 

 
                 (48) 

From Equation (44) it is seen that, apart of the trivial case C = 0 correspond-
ing to the rest state, the value of C for finite amplitude convection is given by 

( ) ( )
[ ]

2 4
2

1 3

.TE E Ra
C

E E Ra
ε η η+ − +

= ±
+

                (49) 

Equation (49) indicates that when ( ) ( )2 4TRa E Eε η η= + + , C = 0 is the real 
value of C and there is no convection. On the other hand, when  

( ) ( )2 4TRa E Eε η η> + +  a convective cell rotating clockwise ( )0C <  or 
counter-clockwise ( )0C > , bifurcates from the rest state. Physically, this fol-
lows from the fact that the convective cells resulting from the onset of Ray-
leigh-Benard convection, can rotate indifferently in a direction or in the other. 
The velocity, the stream function and temperature distributions can then be 
evaluated from Equations (31)-(36), once the value of C has been evaluated from 
Equation (49). 

The critical Rayleigh number, cRa , for the onset of convection, is obtained 
from Equation (49), for the condition C = 0, as: 

2 4

.T
cRa

E E
ε η η+

=
+

                         (50) 

5.3. Comparison with the Results Predicted in the Past 

The marginal stability of the composite system (anisotropic river beds) consi-
dered in this investigation is given by Equation (50). We can check this formula 
against known results for the following limiting cases. 

5.3.1. Case of a Pure Anisotropic Porous Layer ( 1η = ) 

Letting 1η =  and 1Tε = , it is readily found from Equation (50) that 
12 ,c cR Da Ra b= ⋅ =                     (51) 

were the letter b takes into account the parameters of anisotropy, *K  and ϕ . 
This result (Equation (51)) is in agreement the with the result predicted in the 
past by Nield [26], P. Vasseur et al. [22], Degan et al. [27], on the basis of the li-
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near stability theory for the case of a horizontal Darcy porous layer heated from 
the bottom by a constant heat flux. 

5.3.2. Case of a Pure Isotropic Porous Layer 
When the permeability is the same in all directions (i.e. for an isotropic porous 
layer), we have: 1 2K K=  and ( ) ( )* 2 2cos sin 1b K ϕ ϕ= + = . Furthermore, it is 
easily found that, Equation (51) yields 

12,c cR Da Ra= ⋅ =                       (52) 

which is reported in the past by Alloui et al. [14] on the basis of the linear stabil-
ity theory for the case of a horizontal Darcy porous layer heated from the bottom 
by a constant heat flux. 

5.3.3. Case of a Horizontal Fluid Layer ( 0η = ) 

For the case 0η = , corresponding to a layer of fluid with an upper solid boun-
dary and a lower porous lining, it is found from the present theory that we 
have 

( )*

*

72000 1 3 3
.

100 675 1800c

Da Da
Ra

Da Da

+ +
=

+ +
                  (53) 

The above result, in the limit 0Da → , reduces to 

720.cRa =                            (54) 

which corresponds to the critical Rayleigh number for a layer of fluid bounded 
by two solid walls as predicted by Alloui et al. [14] and Sparrow et al. [21]. Fur-
thermore, it is easily found that, when 1 0β → , Equation (52) yields 

320.cRa =                           (55) 

which is also a value reported in the past by Alloui et al. [14] and Sparrow et al. 
[21] in the case of a fluid layer with a solid horizontal lower boundary and a free 
upper surface. 

Finally, in the limit of a high Darcy number Da →∞ , it is found from Equa-
tion (52) that 

120.cRa =                          (56) 

Which is in agreement the with the result predicted in the past by Alloui et al. 
[14] and Sparrow et al. [21]. 

5.3.4. Case of a Liquid Layer Topping a Solid Slab 
In the limit 0Da → , it can be demonstrated from Equation (50) that the criti-
cal Rayleigh number is given by the following simplified expression: 

( )5

1
320 .

1
T

cRa ηε η
η

 + −
 =
 − 

                   (57) 

which yields the marginal stability condition for a system consisting of a liquid 
layer over a solid slab. 
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5.4. Nusselt Number (Heat Transfer Rate) 

Since the temperature of each thermally active wall varies linearly in the x-direction, 
the heat transfer rate can be expressed in terms of Nusselt number at the 0x =  
section, defined as 

1 .Nu
T

=
∆

                          (58) 

where the temperature difference across the section is given by  
( ) ( )0, 0,p fT T Tη η∆ = − −  the Nusselt number, Equation (57), after normalized 

with ( )T Tε ε η η+  (such that Nu = 1 in pure conduction), give us 

.T

T

Nu
T

ε η η
ε
+

=
∆ ⋅

                        (59) 

Thus, upon substituting Equations (33) and (36) into Equation (58) it is found 
that 

12
6T T

T

RaC A
Nu

ε η η ε
ε η η

−
 + +

=  
+ 

                 (60) 

where 
22 4 33 5

31 1 2
6 2 4 .

6 2 120 24 6 2T

AB A AA B A
ηη η ηγ η ηη η

ε
  

= − + − + + + +  
   

   (61) 

The Nusselt number derived in the present study, Equation (59), can be sim-
plified upon considering the following limiting cases. 

5.4.1. Case of Pure Anisotropic Porous Layer: ( 1η = ) 

In the limit of a pure porous layer the Nusselt number, as predicted by Equation 
(59), can be reduced to the form: 

11 10 .
6

bNu
DaRa

−⋅ = + 
 

                      (62) 

5.4.2. Case of Pure Isotropic Porous Layer: ( 1η = ) 

When the permeability is the same in all directions (i.e. for an isotropic porous 
layer), we have: 1 2K K=  and ( ) ( )* 2 2cos sin 1b K ϕ ϕ= + =  and taking, 
DaRa R= , we obtain 

11 10 .
6

Nu
R

−
 = + 
 

                        (63) 

Which is in agreement the with the result predicted in the past by Alloui et al. 
[14] and Vasseur et al. [22]. 

5.4.3. Case of Pure Fluid Layer ( 0η = ): 

The limit of a pure fluid layer is also predicted by Equation (59). 

( )
( )

12 *

*

100 675 1800
1 .

72000 1 3 3

RaC Da Da
Nu

Da Da

−
 + +
 = −
 + + 

            (64) 
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6. Results and Discussion 

The effect of varying of 1β , the slip parameter, of *K , the permeaility ratio and 
of η , the dimensionless position of the interface on the critical Rayleigh num-
ber cRa  is illustraded in Figure 2 for 310Da −= , 1Tε =  and 0ϕ =  . It ob-
serves that when the slip parameter increases, the critical Rayleigh number for 
the onset of convection increases too. For 0η =  (corresponding to a single 
layer of fluid), the curve evolutes smoothly between the limit 320cRa =  (cor-
responding to the critical Rayleigh number for a fluid layer with a solid horizon-
tal lower boundary and a free upper surface), when 1β  is small towards the 
limit 720cRa =  (corresponding to the critical Rayleigh number for a fluid layer 
bounded by two solid horizontal walls), for large values of 1β . These values are 
identical to the results reported in the past, by authors as Vasseur et al. [4], De-
gan et al. [14], Alloui et al. [27] The limit 1η =  (not presented in Figure 2), 
corresponds to the case of a horizontal porous layer for which the critical Ray-
leigh number for the apparition of the convection is given by 12cRa b Da=  
(Equation (51)). When the dimensionless position of the inteface, η , is in-
creased from 0η =  to 1η = , it is observed that the influence of 1β  becomes 
less and less important. In the limiting case 1η = , corresponding to a pure 
porous layer of Darcy, the slip parameter 1β  doesn’t have any effect. Figure 2 
also shows that the anisotropiy ratio *K  has a great influence on the critical 
Rayleigh number. Indeed, the anisotropiy ratio *K  increases with an increase 
of the position, η  of the interface. Thus, upon increasing η , the effect of ani-
sotropy becomes more and more important. Moreover, compared to isotroic 
situation ( 1η =  the critical Rayleigh number for the onset of convection is en-
hanced when * 1K > , and decreased when * 1K < . To this effect, we read in 
Figure 2 that when 0.8η =  and 1 100β = , the critical Rayleigh number is 

3915cRa =  for * 0.8K = , 4688cRa =  for * 1K =  and becomes 5453cRa =  
for * 1.2K = . It results then, when the principal axes of anisotropy are oriented  
 

 
Figure 2. Effect of the slip parameter, β1, of the permeability ratio, K*, 
and of the dimensionless position of the interface, η, on the critical 
Rayleigh number Rac for Da = 10−3, εt = 1 and φ = 0˚. 
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in a direction coinciding with the coordinate axes (i.e. 0ϕ =  ), the critical Ray-
leigh number increases (or decreases) when the permeability in the vertical di-
rection ( 1K ) is higher (or smaller) than the permeability in the horizontal direc-
tion ( 2K ). 

The effect of the anisotropic angle ϕ  and of the anisotropic permeability ra-
tio *

1 2K K K=  on the onset of convection ( cRa ) is illustrated in Figure 3 
when 410Da −= , 1 1β = , 0.3η =  and 0.01Tε = . It is seen that for a given 
value of the anisotropy ratio *K , the critical Rayleigh number increases with an 
increase of the anisotropic angle ϕ  when the permeability ratio is made smaller 
than 1 (i.e. * 1K < ). It explains by the fact that, because of the dependence of the 
critical Rayleigh number with the anisotropic parameter  

( ) ( )* 2 2cos sinb K ϕ ϕ= +  and of the fixation of the position of the interface 
between the two layers, for * 1K < , b becomes ( ) ( )* 2 2cos sin 1 0K ϕ ϕ+ = > , 
independently of the anisotropic angle, ϕ . Consequently, when ϕ  varies from 

0ϕ =   to 90ϕ =  , the influence of the permeability ratio *K  becomes less 
and less important, and thus the onset of convection is made progressively en-
hanced. For the limiting case corresponding to 90ϕ =   which means that the 
principal axis with permeability ( 2K ) is oriented parrallel to the gravity, (i.e., 

2 1K K> ), the permeability ratio *K  doesn’t have any effect. This is explained 
by the fact that, for 90ϕ =   we have *b K=  independently of ϕ  and cRa . 
For 90ϕ =  , the critical Rayleigh number is maximal and minimal when 

0ϕ =  . It is evident from the analysis of this result that the characteristic para-
meter of the onset of convection is maximal (or minimal) when the main axis 
having the most elevated permeability of the porous layer is parallel (or perpen-
dicular) to the gravity. 

The effect of the conductivity thermal ratio, Tε , and the permeability ratio, 
*K , on the critical Rayleigh number, cRa , for 0.5η = , 1 0.1β =  and 10ϕ =   

and for different values of the Darcy number , Da, is illustrated in Figure 4. It is 
clear that, independently of the Darcy number, a growth of the conductivity 
thermal ratio Tε  also corresponds to a linear growth of the critical Rayleigh 
number, cRa . It results by the fact that the growth of Tε  implies a reduction 
of the thermal conductivity ratio in the fluid layer situated above the porous 
layer. This effect stabilizes the systme, and require a more elevated value of the 
critical Rayleigh number consequently for onset of movements convection in all 
the cavity. These results are in agreement with those gotten in the past by Alloui 
et al. [14]. By somewhere else, the gotten results (Figure 4) show a great influ-
ence of the permeability ratio, *K , on the onset of convection. Thus, for a value 
given of the thermal conductivity, Tε , and of the Darcy number Da, the critical 
Rayleigh number is maximal when the permeability ratio, *K , is superior to the 
unity (i.e. * 1K > ) and is minimal when *K  is lower to the unity (i.e. * 1K < ). 
For 910Da −= , the effect of the anisotropy disappears. The Darcy number, be-
ing a parameter that measures the permeability of the porous layer, then it is 
normal that when the Darcy number, Da, stretches toward zero, the phenomenon 
of convection disappears and makes room to the phenomenon of conduction.  
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Figure 3. Effect of the anisotropic angle φ and of the anisotropic 
permeability ratio K*=K1/K2 on the criteria of onset of convection 
Rac when Da = 10−4, β1= 1, η = 0.3 and εT = 0.01. 

 

 
Figure 4. Effect of the conductivity thermal ratio, εT, and the per-
meability ratio, K*, on the critical Rayleigh number, Rac , for η = 0.5, 
β1 = 0.1 , φ = 10˚ and for different values of the Darcy number , Da. 

 
In this case (that means 0Da → ) we cannot speak anymore of anisotropy. 

The effect of Rayleigh number, Ra, on the Nusselt number, Nu, is presented in 
Figure 5 for different values of the position of the interface, η , when 

610Da −= , 1 1β = , 1Tε = , * 0.01K =  and 0ϕ =  . The results show that for a 
given value of η , there is a critical Rayleigh number cRa , Equation (49), below 
which convection does not occur. When the Rayleigh number is above this crit-
ical value, there is onset of convection and the heat transfer increases conse-
quently. So for 0η = , the heat transfer begin only from 320cRa Ra= =  which 
corresponds to the critical Rayleigh number for a fluid layer with a solid  
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Figure 5. Effect of Rayleigh number, Ra, on the Nusselt number, Nu, for dif-
ferent values of the position of the interface for Da = 10−6, β1= 1, εT = 1, K* = 

0.01 and φ = 0˚. 
 
horizontal lower boundary and a free upper surface. these results are in agree-
ment with those gotten in the past by Alloui et al. [14]. However, Figure 5 clear-
ly illustrates the fact that Nu does not increase monotonically, as expected in 
general, but tends asymptotically toward a constant value that depends upon η , 
when Da, 1β , Tε , *K  and ϕ  are fixed. Thus, from Equation (58), the limit 

3.9Nu =  is gotten for 0η = , 2.3Nu =  for 0.2η = , 1.6Nu =  for 0.3η =  
and 6Nu =  for 1η = . 

The effect of the permeability ratio, *K , and of Rayleigh number Ra on the 
Nusselt number is presented in Figure 6 for 310Da −= , 1 1β = , 1Tε = , and 

40ϕ =  . These results show that in pure porous layer (i.e. 1η = ), when the 
Rayleigh number is lower the critical Rayleigh number given by 12cRa b Da= , 
there is no heat transfer. On the other hand, for a value superior to cRa  there is 
heat transfer and the Nusselt number increases when Ra increases from cRa  
and tends toward the limit where 6Nu = . Results show that the infuence of 

*K  is very significant because of the fact that, for a value given of Ra the rate of 
heat transfer becomes more and more important when *K  becomes more and 
more small that the unity. Besides, the rate of heat becomes more and more 
small when *K  becomes more and more raised in relation to the unity. 

The evolution of the Nusselt number according to the position of the interface 
between the fluid layer and the porous layer, for 210Da −= , 610Ra = , 

* 0.1K = , 1 1β = , 1Tε = , and 25ϕ =  , is illustrated in Figure 7. The variation 
of the position of the interface, η , do 0 to 1 entail a variation of the Nusselt 
number respectively of 5Nu =  (for a pure fluid layer corresponding to 0η = ) 
to 6Nu =  (for a porous layer corresponding to 1η = ). However, the curve in-
dicates that the transition between these two limits is not uniform. Thus, for 

0η = , point (1), the intensity of the speed in the fluid layer varies from the value  
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Figure 6. Effect of the permeability ratio, K*, and of Rayleigh number Ra on 
the Nusselt number for Da = 10−3; β1= 1, εT = 1, and φ = 40˚. 

 

 
Figure 7. Evolution of the Nussselt number according to the position of the 
interface between the fluid layer and the porous layer when Da = 10−2; Ra = 106; 
β1= 1, εT = 1, and φ = 25˚. 

 
33.72u =  to the value 25.77u = . This speed of slip is owed to the condition of 

Joseph-Beavers applied to the interface. When the position of the interface, η , 
increases, the Nusselt number decreases first and reaches the minimal value in 
conduction, for which 1.00Nu =  at 0.1η = ; it is materialized by the point (2), 
for which the profile of speed indicates a weak discontinuity to the interface. 
Above this value of η , the Nusselt number increases to reach the value 

1.4Nu =  at the position 0.3η = ; it is materialized by the point (3), for which 
the profile of speed indicate a weak discontinuity also to the interface. Then, the 
heat transfer decreases constantly while passing by the point (4) to the minimal 
value 1Nu =  characteristic of the thermal conduction for 0.8η = ; it is 
represented by the point (5), for which the profile of speed indicates a relatively 
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important discontinuity to the interface. Finally for 1η = , the point (7) indi-
cates that the linear speed profile is typical and is in agreement with the results 
gotten in the past by Alloui et al. [14] for the case of a porous layer. For this last 
situation the heat transfer reaches his maximum. This behavior of the Nusselt 
number and the profile of speed is like the results gotten in the past by Alloui et 
al. [14]. The difference between results gotten by these last and the present re-
sults are that the pofile of speed, whatever the position of the interface, start with 
a nill value ( 0u = ) at the impermeable upper surface for their study while for 
the present results the prfile of speed takes his maximal value to the free surface. 
This behavior of the speed profile to the free surface is explain by the fact that 
the free surface positioned to y η=  of the origine, O, of axis of coordinates, is 
permeable and that tension owed to the shearing is null, i.e., ( )d d 0fu yτ µ= = ; 
the speed is then maximal. It results some therefore that to the upper free surface, 
the speed is constant and normal to this surface. 

The evolution of the Nussselt number accordng to the position of the interface 
between the fluid layer and the porous layer and for different values of *K  
when 210Da −= , 610Ra = , 1 1β = , 1Tε = , and 25ϕ =  , is illustrated in 
Figure 8. The results show that for 0η =  (which corresponds to a pure fluid 
layer where the anisotropy is out subject), the curves leave from only one point 

5Nu =  and when η  begins by increasing, the effect of anisotropy becomes 
more pronounced until every curve reaches for 1η =  a value that depends on 

*K . Variations of the Nusselt number are identical to tose described previously 
for a value given of *K  ( * 0.1K = ). For a small value of the anisotropic per-
meability ratio *K , in relation to the unity, results show that curves tends towar 
the limit where 6Nu = . It explains by the fact that for a raised values of the 
Rayleigh number ( 610Ra = ) and for 1η = , the Nusslt number tends toward the 
value 6Nu = . 

Figure 9(a), Figure 9(b) and Figure 10(a), Figure 10(b) represent, respec-
tively, the horizontal speed and the temperature distribution on all the width of 
the conduct, when 1 10β = , 1Tε = , 0.5η = , 525 10Da −= × , 0ϕ =   and dif-
ferent values of *K  and of Da. Speeds in the fluid layer and in porous layer are 
normalized like follows: ( )* 3

0 10f fu u ψ= ×  and ( )* 3
0 10p pu u ψ= × . Alike, 

temperature distributions in fluid layer and in porous layer are ormaliwed like 
follows: ( ) ( )( )* 3

0 10f f y Cθ θ ψ= + ×  and ( ) ( )( )* 3
0 10p T p y Cθ ε θ ψ= + × . For 

every value of *K , Figure 9(a), Figure 9(b) indicates that the speed to the up-
per free surface is constant and normal to this surface, and that the constraint of 
shearing to this surface is equal to zero. We note that the slip parameter, 1β , 
and the Darcy number measuring the permeability of the porous layer, have a 
strong influence on fields of speed and temperature. Thus, for 52.5 10Da −= ×  
(correspondent to a porous layer very little permeable), Figure 9(a) indicates 
that the intensity of flow inside the system is relatively weak. In fact, the major 
part of the flow is confined in the fluid layer ( 0 0.5y≤ ≤ ) where we note a light 
effect of the anisotropy, while in the porous layer the flui is nearly to rest. The 
transfer of the heat in the porous layer is mainly a conduction. Besides, we  
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Figure 8. Evolution of the Nussselt number according to the position 
of the interface between the fluid layer and the porous layer and for 
different values of K* when Da = 10−2; Ra = 106; β1= 1, εT = 1, and φ = 25˚. 

 

 
(a)                                      (b) 

Figure 9. (a) Horizontal speed distribution on all the width of the condut, when β1= 10, εT 
= 1, η = 0.5, Da = 2.5 × 10−5, φ = 0˚ and for different values of K*; (b) Horizontal speed distribu-
tion on all the width of the condut, when β1= 10, εT = 1, η = 0.5, Da = 10−4, φ = 0˚ and for dif-
ferent values of K*. 

 

 
(a)                                      (b) 

Figure 10. (a) Horizontal temperature distribution on all the width of the condut, when 
β1= 10, εT = 1, η = 0.5, Da = 2.5× 10−5, φ = 0˚ and for different values of K*; (b) Horizontal tem-
perature distribution on all the width of the condut, when β1= 10, εT = 1, η = 0.5, Da = 10−34, 
φ = 0˚ and for different values of K*. 
 
observe that, when Da is very small, the effect of the anisotropic permeaility ra-
tio *K  is nearly negligible as indicate in Figure 9(a) and Figure 10(a). When 
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the Darcy number increases ( 410Da −= ), the flow of the fluid intensifies slightly 
in the two layers (fluid and porous) and depends considerably on the permeabil-
ity ratio, *K . Thus, to the free surface of the fluid, according to the curve Fig-
ure 9(a): * 2.82fu =  for * 0.5K = , * 2.72fu =  for * 1.0K =  and * 2.63fu =  
for * 10.0K = . For the curve Figure 10(b), we have to the free surface of the 
fluid: * 0.35fθ =  for * 0.5K = , * 0.28fθ =  for * 1.0K =  and * 0.22fθ =  for 

* 5.0K = . These results show that the effect of anisotropy becomes important 
when the Darcy number measuring the permeability of the porous layer be-
comes more and more elevated. Otherwise, the profile of speed in the fluid layer 
(Figure 9(a)), for every value of *K , reaches his maximum in a point situated 
on a parallel line out of place downwards in relation to the central axis of the 
fluid layer ( 0.1234y = ) and decreases drastic way toward the interface letting 
appear a dynamic limits layer. This shift is due to the presence of the nominal 
surface where the speed should change profile, since changing of middle. These 
results are compliant those gotten by Alloui et al. [14] who studied the effect of 
Darcy and the slip parameter to the interface. 

In Figure 11(a), Figure 11(e) and Figure 12(a), Figure 12(e) are drawn pro-
files of temperature and speed so much in fluid layer that in porous layer ac-
cording to the coordinate y and for different values of the permeability ratio *K  
and of the position of the interface, η , when 110Da −= , 1 1β = , 1Tε = , and 

0ϕ =  . When 0η = , Figure 11(a) and Figure 12(a) show only one curve for 
profiles of speed and temperature. It justifies by the fact that in pure fluid layer 
the anisotropy is out subject. When η  becomes more and more raised, the 
corresponding curves (Figure 11(b), Figure 11(e) and Figure 12(b), Figure 
12(e)) show that the effect of anisotropy on the flow becomes accentuated more 
and more. The same interpretations are made on curves representing fonctions 
of current (Figure 13(a), Figure 13(e)) when 310Da −= , * 0.5K = , 1 10β =  
and 1Tε = . 

7. Conclusions 

In this investigation, an analytical study of heat transfer is conducted in a system 
consisting of a horizontal fluid layer over a saturated porous bed. Our research 
concerns the influence of hydrodynamic anisotropy on stability geothermal 
streams. The fluid layer superposed on the porous layer is heated from below. 
Using the Navier-Stokes model for the fluid layer and the Darcy model for the 
porous layer, an exact solution is found for a fully developed system of forced 
convective flow through the superposed layers. The Beavers-Joseph condition is 
applied at the interface between the two layers. The main conclusions of the 
present study are: 

It appears that when the principal axes of anisotropy are oriented parallel to 
the coordinate axis ( 0ϕ =  ), the characteristic parameter of the criterion of on-
set of convection, Rac, increases (or decreases) when the permeability in the ver-
tical direction ( 1K ) is greater (or smaller) than the permeability in the horizon-
tal direction ( 2K ). 
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Figure 11. Profiles of temperature so much in fluid layer that in porous layer according 
to the coordinate y and for different values of the permeability ratio K* and of the posi-
tion of the interface, η, when Da = 0.1, φ = 0˚ β1= 1, and εT = 1. 

 

 
Figure 12. Profiles of speed so much in fluid layer that in porous layer according to the 
coordinate y and for different values of the permeability ratio K* and of the position of 
the interface, η, when Da = 0.1, φ = 0˚, β1= 1, and εT = 1. 

 
When the permeability *K  increases, the critical Rayleigh number increases. 
The characteristic parameter of the criterion of occurrence of convection Rac 

is maximum (or minimum) when the orientation of the main axis of the high 
permeability of the anisotropic porous layer is parallel (or perpendicular) to the 
gravity. 
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Figure 13. Profiles of fonctions of current so much in fluid layer that in porous layer ac-
cording to the coordinate y and for different values of φ and of the position of the inter-
face, η, when Da = 0.001, β1 = 10, K* = 0.5 and εT = 1. 

 
For a given value of Ra, the rate of heat transfer becomes increasingly impor-

tant when *K  is more than unity. In addition, the heat transferred becomes 
smaller when *K  is increasingly large compared to unity. 
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