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Abstract 

In the paper, a class of discrete evolutions of risk assets having the memory is 
considered. For such evolutions the description of all martingale measures is 
presented. It is proved that every martingale measure is an integral on the set 
of extreme points relative to some measure on it. For such a set of evolutions 
of risk assets, the contraction of the set of martingale measures on the filtra-
tion is described and the representation for it is found. The inequality for the 
integrals from a nonnegative random value relative to the contraction of the 
set of martingale measure on the filtration which is dominated by one is ob-
tained. Using these inequalities a new proof of the optional decomposition 
theorem for super-martingales is presented. The description of all local regu-
lar super-martingales relative to the regular set of measures is presented. The 
applications of the results obtained to mathematical finance are presented. In 
the case, as evolution of a risk asset is given by the discrete geometric Brow-
nian motion, the financial market is incomplete and a new formula for the 
fair price of super-hedge is founded. 
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1. Introduction 

In the paper, the notion of the regular super-martingale relative to the set of 
equivalent measures is introduced. The necessary and sufficient conditions of 
the regular super-martingale relative to the set of equivalent measures are found. 
The notion of the family of equivalent measures consistent with filtration is in-
troduced. Theorem giving the sufficient conditions of the existence of su-
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per-martingale and martingale relative to the set of equivalent measures consis-
tent with the filtration is proved. The sufficient conditions of the existence of the 
set of equivalent measures consistent with the filtration, satisfying the conditions: 
the mean value of the nonnegative random value relative to these set of measures 
equal one, are given. Further, we construct the set of equivalent measures con-
sistent with the filtration satisfying the above conditions. First, we give the com-
plete description of the set of equivalent measures satisfying the conditions: the 
mean value of the nonnegative random value relative to this set of measures 
equals one. Using the above result we construct the example of the set of equiva-
lent measures consistent with the filtration satisfying the condition: the mean 
value of the nonnegative random value relative to every measure of this set of 
measures equals one. The above method we use for the construction of evolution 
of risk assets and we describe completely the set of equivalent martingale 
measures for this evolution. We prove that every martingale measure is an 
integral on the set of extreme points of the convex set of martingale measures 
relative to some measure on it. To give a new proof of the optional decomposition 
for super-martingale we describe the contraction of every martingale measure on 
the filtration and find the closure of integrals from the integrable random values 
over all martingale measures. To do this we introduce the notion of the exhaus-
tive decomposition and prove that every separable metric space with the Borel 
σ-algebra has an exhaustive decomposition. For the integral from the nonnega-
tive random value relative to all martingale measures which is dominated by one, 
the inequalities for this random value are obtained. This fact gives us the possi-
bility to find a new proof of the optional decomposition for the nonnegative su-
per-martingale. This proof does not use the no-arbitrage arguments and the 
measurable choice [1] [2] [3] [4]. This paper is a generalization of the results of 
the paper [5]. 

First, the optional decomposition for diffusion processes super-martingale 
was opened by El Karoui N. and Quenez M. C. [6]. After that, Kramkov D. O. 
and Follmer H. [1] [2] proved the optional decomposition for the nonnegative 
bounded super-martingales. Folmer H. and Kabanov Yu. M. [3] [4] proved ana-
logous result for an arbitrary super-martingale. Recently, Bouchard B. and Nutz 
M. [7] considered a class of discrete models and proved the necessary and suffi-
cient conditions for the validity of the optional decomposition. 

The optional decomposition for super-martingales plays the fundamental role 
for the risk assessment in incomplete markets [1] [2] [6] [8] [9] [10] [11]. 

At last, we consider an application of the results obtained to find the new 
formula for the fair price of super-hedge in the case, as the risk asset evolves by 
the discrete geometric Brownian motion. 

2. Local Regular Super-Martingales Relative to a Set of 
Equivalent Measures 

We assume that on a measurable space { },Ω   a filtration 1 ,m m+⊂ ⊂  
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0,m = ∞ , and a set of equivalent measures M on   are given. Further, we 

assume that { }0 ,= ∅ Ω  and the σ-algebra 
1

σ
∞

=

 =  
 

 n
n
V  is a minimal 

σ-algebra generated by the algebra 
1

∞

=
n

n
V . A random process { } 0

ψ ψ ∞

=
= m m

is  

said to be adapted one relative to the filtration { } 0

∞

=
m m

, if ψ m  is a m  mea-
surable random value, 0,= ∞m . 

Definition 1. An adapted random process { } 0

∞

=
= m m

f f  is said to be a su-
per-martingale relative to the filtration , 0,= ∞m m , and the family of equiva-
lent measures M, if , 1, ,< ∞ = ∞ ∈P

mE f m P M , and the inequalities 

{ }| , 0 , 1, , ,≤ ≤ ≤ = ∞ ∈P
m k kE f f k m m P M          (1) 

are valid. 
Further, for an adapted process f we use both the denotation { } 0

, ∞

=
m m m

f  
and the denotation { } 0

∞

=m m
f . 

Definition 2. A super-martingale { } 0
, ∞

=
m m m

f  relative to a set of equivalent  
measures M is a local regular one, if sup , 1,P

m
P M

E f m
∈

< ∞ = ∞ , and there exists  

an adapted nonnegative increasing random process { } 00
, , 0∞

=
=m m m

g g ,  
sup , 1,P

m
P M

E g m
∈

< ∞ = ∞ , such that { } =0
, ∞+ m m m m

f g  is a martingale relative to  

every measure from M. 
The next elementary Theorem 1 will be very useful later. 
Theorem 1. Let a super-martingale { } 0

, ∞

=
m m m

f , relative to a set of equivalent 

measures M be such that sup , 1,
∈

< ∞ = ∞P
m

P M
E f m . The necessary and sufficient  

condition for it to be a local regular one is the existence of an adapted nonnegative 

random process { }0

0
,

∞

=
m m m

g , 0sup , 1,
∈

< ∞ = ∞P
m

P M
E g m , such that 

{ } { }0
1 1 1| | , 1, , .− − −− = = ∞ ∈ P P

m m m m mf E f E g m P M         (2) 

Proof. The necessity. If { } 0
, ∞

=
m m m

f  is a local regular super-martingale, then 
there exist a martingale { } 0

,
∞

=
m m m

M  and a non-decreasing nonnegative ran-
dom process { } 0

, ∞

=
m m m

g , 0 0=g , such that 

, 1, .= − = ∞m m mf M g m                     (3) 

From here, we obtain the equalities 

{ }
{ } { }

1 1

0
1 1 1

|

| | , 1, , ,
− −

− − −

−

= − = = ∞ ∈



 

P
m m m

P P
m m m m m

E f f

E g g E g m P M
       (4) 

where we introduced the denotation 0
1 0−= − ≥m m mg g g . It is evident that  

0
1sup sup −

∈ ∈
≤ + < ∞P P P

m m m
P M P M

E g E g E g . 

The sufficiency. Suppose that there exists an adapted nonnegative random 
process { }0 0 0

00
, 0

∞

=
= =m m

g g g , 0 , 1,< ∞ = ∞P
mE g m , such that the equalities (2) 
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hold. Let us consider the random process { } 0
,

∞

=
m m m

M , where 

0
0 0

1
, , 1, .

=

= = + = ∞∑
m

m m m
i

M f M f g m              (5) 

It is evident that < ∞P
mE M  and 

{ } { }0
1 1 1 1| | 0.− − − −− = − − = P P

m m m m m m mE M M E f f g          (6) 

Theorem 1 is proved.                                            □ 
Lemma 1. Any super-martingale { } 0

, ∞

=
m m m

f  relative to a family of meas-
ures M for which there hold equalities 0 , 1, ,= = ∞ ∈P

mE f f m P M , is a martin-
gale with respect to this family of measures and the filtration , 1,= ∞m m . 

Proof. The proof of Lemma 1 see [12].                               □ 
In the next Lemma, we present the formula for calculation of the conditional 

expectation relative to another measure from M. 
Lemma 2. On the measurable space { },Ω   with the filtration n  on it, let 

M be a set of equivalent measures and let ξ  be an integrable random value. 
Then, the following formulas 

{ } { }1 2 1| | , 1, ,ξ ξϕ= = ∞P P P
n n nE E F n                (7) 

are valid, where 

1 2

1

1 1
1 2

2 2

d d
| , , .

d d
ϕ

−
  

= ∈  
   

P P
n n

P PE P P M
P P

              (8) 

Proof. The proof of Lemma 2 is evident.                             □ 

3. Local Regular Super-Martingales Relative to a Set of 
Equivalent Measures Consistent with the Filtration 

Definition 3. On a measurable space { },Ω   with a filtration n  on it, a 
set of equivalent measures M we call consistent with the filtration n , if for 
every pair of measures ( ) 2

1 2, ∈Q Q M  the set of measures 

( )
1

1

2

1
1

2

1

d |
d

d , , , 0, ,
d |
d

Q
k

k
s

A Q
s

QE
Q

R A Q A k s n n
QE
Q

 
 
 = ∈ ≥ ≥ = ∞
 
 
 

∫





      (9) 

belongs to the set M, where 2M  is a direct product of the set M by itself. 
Lemma 3. On the measurable space { },Ω   with the filtration n  on it, 

the set of measures 

( ) ( ) ( ), d , , 1α ω
 

= = ∈ Ω = 
 

∫ 
A

M Q Q A P A Q           (10) 

is a consistent one with the filtration n , if P is a measure on { },Ω   and a 
random value ( )α ω  runs over all nonnegative random values, satisfying the 
condition ( ){ }( ), 0 1ω α ω > =P . 

Proof. Suppose that ( )1 2,Q Q  belongs to 2M . Then, 
( )
( )

22

1 1

d
d

α ω
α ω

=
Q
Q

 and 
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2

1

d
, 0 1
d

ω
  

> =     

QP
Q

, since the equalities ( ){ }( )1,0 1ω α ω< < ∞ =P ,  

( ){ }( )2,0 1ω α ω< < ∞ =P  are true. It is evident that 

( )

( )

1

1

1

1

2

1
1

2

1

2

1
1

2

1

d |
d

d
d |
d
d |
d

d , , , 0, .
d |
d

Q
k

k
s

A Q
s

Q
k

A Q
s

QE
Q

R A Q
QE
Q
QE
Q

P A k s n n
QE
Q

α ω

 
 
 =
 
 
 
 
 
 = ∈ ≥ ≥ = ∞
 
 
 

∫

∫










     (11) 

It is easy to see that 

( )
1

1

2

1
1

2

1

d |
d

, 0 1, ,
d |
d

ω α ω

   
   
    > = ≥           





Q
k

Q
s

QE
Q

P k s
QE
Q

            (12) 

since 

1 2

1

d
, | 0 1, ,

d
ω

    > = ≥         
Q

k
QP E k s
Q

             (13) 

1 2

1

d
,0 | 1, , 0, .

d
ω

    < < ∞ = ≥ = ∞         
Q

s
QP E s n n
Q

       (14) 

The last equality follows from the equivalence of the measures 1 2,Q Q  and P. 
Altogether, it means that the set of measures , , 0,≥ ≥ = ∞k

sR k s n n , belongs to 
the set M. The same is true for the pair ( ) 2

2 1, ∈Q Q M . Lemma 3 is proved.  □ 
Theorem 2. On the measurable space { },Ω   with the filtration n  on it, 

let the set of equivalent measures M be consistent with the filtration n . Then,  
for every nonnegative random value ξ  such that sup ξ

∈
< ∞P

P M
E , the random 

process { } 0
,n n n

f ∞

=
  is a super-martingale relative to the set of measures M, 

where { }ess sup | , 0,P
n n

P M
f E nξ

∈
= = ∞ . 

Proof. Let ∈Q M , then, due to Lemma 2, for every ∈P M  

{ }

d
d| | | .
d |
d

ξ ξ

 
 
 =  

      

 


P Q
n n

Q
n

P
QE E
PE
Q

              (15) 

If to put instead of the measure P the measure , ≥ ≥k
sR k s n , for the pair of 

measures ( ),Q P  we obtain 
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{ }

d
d| | |

d |
d

d |
d

| ,
d |
d

k
s

k
s

R Q
n nk

Q s
n

Q
k

Q
n

Q
s

R
QE F E

RE
Q

PE
Q

E
PE
Q

ξ ξ

ξ

 
 
 =  

      
  

  
  =  

      









             (16) 

where we took into account the equality 

d |
dd

| | 1, .
d d |

d

  
       = = ≥ ≥   
         


 



Q
kk

Q Qs
n n

Q
s

PE
QR

E E k s n
Q PE

Q

      (17) 

From the formula (16), it follows the equality 

{ } { }ess sup | ess sup | ,ξ ξ
∈ ∈

= 
n

P P
n n

P M T R
E E T           (18) 

where nR  is a set of martingales { } 0

∞

=
= m m

T T  relative to the measure Q such 

that 1,mT m n= ≤ , 

d |
d

, ,
d |
d

Q
m

m
Q

s

PE
Q

T m s n P M
PE
Q

 
 
 = ≥ ≥ ∈
 
 
 




. The definition of 

esssup  for the uncountable set of random values see [13]. It is evident that 

1−⊆n nT T . Let us consider 

{ }{ } { }

{ }{ } { }{ }
{ }{ } { }

{ } { }
1

1 1

1 111

1 11

1 1

ess sup | | ess sup | |

sup | | lim max | |

lim max | | lim |

ess sup | ess sup |

ess s

τ

ξ ξ

ξ ξ

ξ ξ

ξ ξ
−

− −
∈ ∈

− −→∞ ≤ ≤≥

− −→∞ →∞≤ ≤

− −
∈ ∈

 
=  

 

= =

= =

≤ ≤

=

   

   

  

 

n

k

n n

Q P Q P
n n n n

P M T R

Q P Q P
i n n i n nk i ki

Q P P
i n n nk ki k

Q Q
n n

T R T R

E E E E T

E E T E E T

E E T E T

E T E T

{ }1up | ,ξ −
∈

Q
n

P M
E

    (19) 

where 

1 1,τ =                         (20) 

{ } { }

{ } { }
1

1

1, | | ,
2, .

, | | ,

τ

τ

τ ξ ξ
τ

ξ ξ
−

−

−
 >= =

≤

 

 

i

i

P P
i n i n

i P P
n i n

E T E T
i k

i E T E T
       (21) 

Lemma 2 is proved.                                              □ 

Theorem 3. On the measurable space { },Ω  , 
1

σ
∞

=

 =  
 

 i
i
V , let M be a set  

of equivalent measures being consistent with the filtration n . If there exists a 
nonnegative random value 1ξ ≠  such that 1,ξ = ∈PE P M , then  
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{ }| ,ξ ∈P
nE P M , is a local regular martingale. 

Proof. Due to Lemma 2, the random process { } 0
, ∞

=
n n n

f , where 
{ }ess sup |ξ

∈
= P

n n
P M

f E , 0,= ∞n , is a super-martingale relative to the set of  

measures M, that is, 

{ }{ } { }1 1ess sup | | ess sup | , , 0, .ξ ξ− −
∈ ∈

≤ ∈ = ∞  Q P P
n n n

P M P M
E E E Q M n    (22) 

From the inequality (22), it follows the inequality 

{ }ess sup | 1, 0, .ξ
∈

≤ = ∞Q P
n

P M
E E n               (23) 

Since { } { }ess sup | | 1ξ ξ
∈

≥ = Q P Q Q
n n

P M
E E E E , we have 

{ }ess sup | 1, , 0, .ξ
∈

= ∈ = ∞Q P
n

P M
E E Q M n            (24) 

The inequalities (22) and the equalities (24) give the equalities 

{ }{ } { }1 1ess sup | | ess sup | , , 1, ,ξ ξ− −
∈ ∈

= ∈ = ∞  Q P P
n n n

P M P M
E E E Q M n   (25) 

which are true with the probability 1. The last means that { } 0
, ∞

=
n n n

f  is a mar-

tingale relative to the set of measures M, where { }ess sup | , 0,ξ
∈

= = ∞P
n n

P M
f E n . 

With the probability 1, { }lim ess sup |ξ ∞→∞ ∈
=P

nn P M
E f , where the random value 

∞f  is F measurable one. From the inequality (23) and Fatou Lemma [13] [14], 
we obtain 

1, .∞ ≤ ∈PE f P M                         (26) 

Prove that ξ∞ =f . Going to the limit in the inequality 

{ } { }1ess sup | | ,ξ ξ
∈

≥ PP
n n

P M
E E                  (27) 

as →∞n , we obtain the inequality 

.ξ∞ ≥f                           (28) 

From the inequality (26) and the inequality (28), we obtain the inequalities 
1 1ξ∞≥ ≥ =P PE f E . Or, 1∞ =PE f . The equalities 1, 1ξ∞ = =P PE f E  and the 
inequality (28) give the equality ξ∞ =f  with the probability 1. Lemma 3 is 
proved.                                                          □ 

Lemma 4. On the measurable space { },Ω   with the filtration n  on it, let 
there exist k equivalent measures 1, , , 1> kP P k , and a nonnegative random 
value 0 1ξ ≠  be such that 

{ } { }1
0 0 0| | , 1, 2, , 0, .ξ ξ ξ= = = = ∞ i iP PP

n nE E E i k n       (29) 

Then, there exists the set of equivalent measures M consistent with the filtra-
tion n , satisfying the condition 0 1,ξ = ∈PE P M . 

Proof. Let us consider the set of equivalent measures M, satisfying the condi-
tion 

{ } { }1
0 0| | , 0, , .ξ ξ= = ∞ ∈ PP

n nE E n P M            (30) 
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Such a set of measures is a nonempty one. Suppose that 1 2, ∈Q Q M , then 

{ } { }1 2
0 0| | , 0, .ξ ξ= = ∞ Q Q

n nE E n               (31) 

Let us prove that the formula 

{ }
1

1 1

1

2

1
0 0

2

1

d |
d

| | , , 0, ,
d |
d

ξ ξ

  
  

   = ≤ ≤ = ∞ 
      


 



Q
k

Q Q
n n

Q
s

QE
Q

E E n s k n
QE
Q

 (32) 

is valid. Let ≥s n . Then, from the equalities (31), we have 

{ }{ } { }1 2 1
0 0| | | .ξ ξ=  Q Q Q

s n nE E E  

Let ≥k s . Then, 

{ }{ }
{ }{ }{ }

{ }

{ }

1 2

1 2 2

1 1 2

1

1 2

1

0

0

2

1
0

2

1

2

1
0

2

1

| |

| | |

d
d

| | |
d |
d

d
d

| |
d |
d

ξ

ξ

ξ

ξ

=

  
  
   =    

           
 
 
 =  

      

 

  

  


 


Q Q
s n

Q Q Q
k s n

Q Q Q
k s n

Q
s

Q Q
k n

Q
s

E E

E E E

Q
QE E E
QE
Q

Q
QE E
QE
Q

 

{ }

{ }

1 1

1

1

1 1

1

1

1

1

2

1
0

2

1

2

1
0

2

1

2

1
0

2

1

d
d

| |
d |
d

d |
d

| |
d |
d

d |
d

| | .
d |
d

ξ

ξ

ξ

 
 
 =  

      
  

  
  =  

      
  

  
  =  

      

 



 








Q Q
k n

Q
s

Q
k

Q Q
k n

Q
s

Q
k

Q
n

Q
s

Q
QE E
QE
Q

QE
Q

E E
QE
Q

QE
Q

E
QE
Q

 

This proves the formula (32). To finish the proof of Lemma 4, it needs to 
prove that the set of measures 

( )
1

1

2

1
1

2

1

d |
d

d , , , 0, ,
d |
d

 
 
 = ∈ ≥ ≥ = ∞
 
 
 

∫





Q
k

k
s

A Q
s

QE
Q

R A Q A k s n n
QE
Q

     (33) 

belongs to the set M. Really, 
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{ }

{ }

1

1

1

1

1

1

1
0 0

1

2

1
0

2

1

0

d
d

| | |
d |
d

d |
d

|
d |
d

| ,

k
s

k
s

R Q
n nk

Q s
n

Q
k

Q
n

Q
s

Q
n

R
QE E
RE
Q

QE
Q

E
QE
Q

E

ξ ξ

ξ

ξ

 
 
 =  

      
  

  
  =  

      
=

 









           (34) 

where we took into account the equality 

1

1 1

1

2

1

1 2

1

d |
dd

| | 1, .
d d |

d

  
       = = ≥ ≥   
         


 



Q
kk

Q Qs
n n

Q
s

QE
QR

E E k s n
Q QE

Q

       (35) 

From this, it follows that the set of measures ∈k
sR M . This proves the con-

sistence with the filtration of the set of measures M. Lemma 4 is proved.     □ 
The next Lemma 5 is a key statement in the construction of the set of meas-

ures satisfying the conditions of Lemma 4. 
On a probability space { }, ,Ω  P , let ξ  be a random value, satisfying the 

conditions 

{ }( ) { }( )0 , 0 1, 0 , 0 .ω ξ ω ξ< > < < <P P               (36) 

Denote ( ){ } ( ){ }, 0 , , 0ω ξ ω ω ξ ω+ −Ω = > Ω = ≤  and let ,− +   be the re-
strictions of the σ-algebra   on the sets −Ω  and +Ω , correspondingly. 
Suppose that −P  and +P  are the contractions of the measure P on the 
σ-algebras ,− +  , correspondingly. Consider the measurable space with 
measure { }, ,µ− + − +Ω ×Ω ×  , which is a direct product of the measurable 
spaces with measures { }, ,− − −Ω  P  and { }, ,+ + +Ω  P , where µ − += ×P P . 
Introduce the denotations 

( )
( ) ( ){ }

( ){ }
, 0 ,

0, 0 ,

ξ ω ω ξ ω
ξ ω

ω ξ ω
+

 ∈ >= 
∈ ≤

                 (37) 

( )
( ) ( ){ }

( ){ }
, 0 ,

0, 0 .

ξ ω ω ξ ω
ξ ω

ω ξ ω
−

− ∈ ≤= 
∈ >

                (38) 

Then, ( ) ( ) ( )ξ ω ξ ω ξ ω+ −= − . 
On the measurable space { }, ,− + − + − +Ω ×Ω × ×  P P , we assume that the set 

of nonnegative measurable functions ( )1 2,α ω ω , satisfying the conditions 

( ) ( ){ }( ) ( ) ( )1 2 1 2, , , 0 ,µ ω ω α ω ω− + + −∈Ω ×Ω > = Ω ΩP P       (39) 

( ) ( ) ( )
( ) ( )

( )1 2
1 2 1 2

1 2

, d , ,
ξ ω ξ ω

α ω ω µ ω ω
ξ ω ξ ω− +

− +

− +
Ω Ω

< ∞
+∫ ∫           (40) 

( ) ( )1 2 1 2, d , 1,α ω ω µ ω ω
− +Ω Ω

=∫ ∫                 (41) 
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is a nonempty set. Such assumptions are true for the nonempty set of bounded 
random values ( )1 2,α ω ω , for example, if the random value ξ  is an integrable 
one relative to the measure P. 

Lemma 5. On the probability space { }, ,Ω  P , let a random value ξ  satisfy 
the conditions (36) and let a measure Q be equivalent to the measure P and such 
that 0ξ =QE . Then, for the measure Q the following representation 

( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

2
1 1 2 1 2

1 2

1
2 1 2 1 2

1 2

, d ,

, d , , ,

ξ ω
χ ω α ω ω µ ω ω

ξ ω ξ ω

ξ ω
χ ω α ω ω µ ω ω

ξ ω ξ ω

− +

− +

+

− +
Ω Ω

−

− +
Ω Ω

=
+

+ ∈
+

∫ ∫

∫ ∫ 

A

A

Q A

A
  (42) 

is valid for those random value ( )1 2,α ω ω  that satisfy the conditions (39)-(41). 
Every measure Q, given by the formula (42), with the random value 
( )1 2,α ω ω , satisfying the conditions (39)-(41) is equivalent to the measure P and 

is such that 0ξ =QE . For the measure Q, the canonical representation 

( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

2
1 1 1 2 1 2

1 2

1
2 1 1 2 1 2

1 2

, d ,

, d , , ,

A

A

Q A

A

ξ ω
χ ω α ω ω µ ω ω

ξ ω ξ ω

ξ ω
χ ω α ω ω µ ω ω

ξ ω ξ ω

− +

− +

+

− +
Ω Ω

−

− +
Ω Ω

=
+

+ ∈
+

∫ ∫

∫ ∫ 

   (43) 

is valid, where 

( )
( ) ( ) ( ) ( )

( )1 1 2 2 1 2
1 1 2 1 2, , , ,

ψ ω ψ ω ξ ω ξ ω
α ω ω ω ω

− +
− +

 + = ∈Ω ×Ω
d

  (44) 

( ) ( ) ( )
( ) ( )

( )2
1 1 1 2 2 1

1 2

, d , ,
ξ ω

ψ ω α ω ω ω ω
ξ ω ξ ω+

+
−

− +
Ω

= ∈Ω
+∫ P       (45) 

( ) ( ) ( )
( ) ( )

( )1
2 2 1 2 1 2

1 2

, d , ,
ξ ω

ψ ω α ω ω ω ω
ξ ω ξ ω−

−
+

− +
Ω

= ∈Ω
+∫ P       (46) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2d d .ξ ω ψ ω ω ξ ω ψ ω ω
− +

− +

Ω Ω

= =∫ ∫d P P       (47) 

Proof. From the Lemma 5 conditions, 

( ) ( ) ( ){ }( )d , , 0 1,ψ ω ω ψ ω= > =∫
A

Q A P P            (48) 

( ) ( ) ( )d 0.ψ ω ξ ω ω
Ω

=∫ P                  (49) 

The condition (49) means 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 1 1 1d d 0,ψ ω ξ ω ω ψ ω ξ ω ω
+ −

+ −

Ω Ω

= = >∫ ∫P P d      (50) 

where 

( ) ( )
1

, ,
0, ,
ψ ω ω

ψ ω
ω

−

+

 ∈Ω
= 

∈Ω
               (51) 
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( ) ( )
2

, ,
0, .
ψ ω ω

ψ ω
ω

+

−

 ∈Ω
= 

∈Ω
              (52) 

Let us put 

( )
( ) ( ) ( ) ( )

( )1 1 2 2 1 2
1 2 1 2, , , .

ψ ω ψ ω ξ ω ξ ω
α ω ω ω ω

− +
− +

 + = ∈Ω ×Ω
d

  (53) 

Then, for such ( )1 2,α ω ω  the equality (39) is true. Moreover, 

( ) ( ) ( )
( ) ( )

( )1 2 2
1 2 1 2

1 2

, d , ,
ξ ω ξ ω

α ω ω µ ω ω
ξ ω ξ ω− +

− +

− +
Ω Ω

= < ∞
+∫ ∫ d        (54) 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 1 2 2 2, d , d d 1,α ω ω µ ω ω ψ ω ω ψ ω ω
− + − +Ω Ω Ω Ω

= + =∫ ∫ ∫ ∫P P   (55) 

( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

2
1 2 1 1 2

1 2

1
1 2 2 1 2

1 2

, d ,

, d , 0,

ξ ω
ξ α ω ω ξ ω µ ω ω

ξ ω ξ ω

ξ ω
α ω ω ξ ω µ ω ω

ξ ω ξ ω

− +

− +

+

− +
Ω Ω

−

− +
Ω Ω

=
+

+ =
+

∫ ∫

∫ ∫

QE

     (56) 

since ( ) ( ) ( ) ( )1 1 1 2 2 2, , ,ξ ω ξ ω ω ξ ω ξ ω ω− − + += − ∈Ω = ∈Ω . 
Let us prove the last statement of Lemma 5. Suppose that the representation 

(42) for the measure Q, satisfying the conditions (39)-(41), is valid. Taking into 
account the denotations (45)-(47), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2d d ,χ ω ψ ω ω χ ω ψ ω ω
− +Ω Ω

= +∫ ∫A AQ A P P      (57) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

0 d d

d d .

ξ ξ ω ψ ω ω ξ ω ψ ω ω

ξ ω ψ ω ω ξ ω ψ ω ω

− +

− +

Ω Ω

− +

Ω Ω

= = +

= − +

∫ ∫

∫ ∫

QE P P

P P
     (58) 

If to introduce the denotation 

( ) ( )
( )

1

2

, ,
, ,

ψ ω ω
ψ ω

ψ ω ω

−

+

 ∈Ω= 
∈Ω

                 (59) 

then we obtain the representation 

( ) ( ) ( )d ,ψ ω ω= ∫
A

Q A P                    (60) 

where ( )( ) ( ) ( )( ) ( )1 20 , 0ψ ω ψ ω− +> = Ω > = ΩP P P P . 
The last formula proves the equivalence of the measures Q and P. At last, to 

prove the canonical representation (43) it is sufficient to substitute the expres-
sion (44) for ( )1 1 2,α ω ω  into the expression (43) for ( )Q A . We obtain the ex-
pression (57) for ( )Q A . Then, if to substitute the expressions (45), (46) for 

( ) ( )1 1 2 2,ψ ω ψ ω  into the expression (57) for ( )Q A , we obtain that the canoni-
cal representation for ( )Q A  is true. This proves Lemma 5.           □ 

For further investigations, the next Theorem 4 is very important [5]. 
Theorem 4. The necessary and sufficient conditions of the local regularity of 
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the nonnegative super-martingale { } 0
, ∞

=
m m m

f  relative to a set of equivalent 
measures M are the existence of m -measurable random values  

0
0 , 1,ξ ∈ = ∞m A m , such that 

{ }0 0
1

1

, | 1, , 1, .ξ ξ −
−

≤ = ∈ = ∞Pm
m m m

m

f
E P M m

f
          (61) 

Proof. The necessity. Without loss of generality, we assume that ≥mf a  for a 
certain real number 0>a . Really, if it is not so, then we can come to the con-
sideration of the super-martingale { } 0

, ∞

=
+ m m m

f a . Thus, let { } 0
, ∞

=
m m m

f  be a 
nonnegative local regular super-martingale. Then, there exists a nonnegative  
adapted random process { } 00

, 0∞

=
=m m

g g , such that sup P
m

P M
E g

∈
< ∞ , 

{ } { }1 1 1| | , , 1, .− − −− = ∈ = ∞ P P
m m m m mf E f E g P M m         (62) 

Let us put 0

1

, 1,ξ
−

+
= = ∞m m

m
m

f g
m

f
. Then, 0

0ξ ∈m A  and from the equalities  

(62) we obtain { }0
1| 1, , 1,ξ − = ∈ = ∞P

m mE P M m . It is evident that the inequali-
ties (61) are valid. 

The sufficiency. Suppose that the conditions of Theorem 4 are valid. Then, 

( )0
1 1 1ξ− −≤ + −m m m mf f f . Introduce the denotation 0

1ξ−= − +m m m mg f f . Then,  
0≥mg , 1sup sup sup , 1,−

∈ ∈ ∈
≤ + < ∞ = ∞P P P

m m m
P M P M P M

E g E f E f m . The last equality and  

the inequalities give 

( )0
0 1

1 1
1 , 1, .ξ−

= =

= + − − = ∞∑ ∑
m m

m i i i
i i

f f f g m              (63) 

Let us consider the random process { } 0
, ∞

=
m m m

M , where  

( )0
0 1

1
1

m

m i i
i

M f f ξ−
=

= + −∑ . Then, { }1 1| , , 1,P
m m mE M M P M m− −= ∈ = ∞ . Theo-

rem 4 is proved.                                                   □ 

4. Construction of the Regular Set of Measures 

In the next two Lemmas, we investigate the closure of a convex set of equivalent 
measures presented in Lemma 5 by the formula (42). First, we consider the 
countable case. 

Suppose that 1Ω  contains the countable set of elementary events and let 1  
be a σ-algebra of all subsets of the set 1Ω . Let 1P  be a measure on the 
σ-algebra 1 . We assume that ( )1 0, 1,ω = > = ∞i iP p i . On the probability 
space { }1 1 1, ,Ω  P , let us consider a nonnegative random value 1ξ , satisfying 
the conditions 

( ){ }( ) ( ){ }( )1 1 1 1 1 10 , 0 1, 0 , 0 ,ω η ω ω η ω< ∈Ω < < < ∈Ω >P P  

( )1
1 ,η ω < ∞PE                           (64) 

where we introduced the denotation ( ) ( )1 1 1η ω ξ ω= − . On the measurable 
space { }1 1,Ω  , let us consider the set of measures 1M , which are equivalent to 
the measure 1P  and are given by the formula 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )

1 1 2 1

1 1 2 1

1 2
1 1 2 1 1 1 2

1 1 1 2

1 1
2 1 2 1 1 1 2 1

1 1 1 2

,

, , ,

ω ω

ω ω

η ω
χ ω α ω ω ω ω

η ω η ω

η ω
χ ω α ω ω ω ω

η ω η ω

− +

− +

+

− +
∈Ω ∈Ω

−

− +
∈Ω ∈Ω

=
+

+ ∈
+

∑ ∑

∑ ∑ 

A

A

Q A P P

P P A
  (65) 

where ( ) ( ) ( )1 1 1η ω η ω η ω+ −= − , ( ){ }1 1, 0ω η ω+Ω = > , ( ){ }1 1, 0ω η ω−Ω = ≤ . 
Introduce the denotations 1 1 1

+ += Ω   , 1 1 1
− −= Ω   . Let 1

−P  be a con-
traction of the measure 1P  on the σ-algebra 1

−  and let 1
+P  be a contraction 

of the measure 1P  on the σ-algebra 1
+ . On the probability space  

{ }1 1 1 1 1 1, ,− + − + − +Ω ×Ω × ×  P P , the set of random value ( )1 2,α ω ω  satisfies the 
conditions 

( ) ( ){ }( ) ( ) ( )1 1 1 2 1 1 1 2 1 1 1 1, , , 0 ,P P P Pω ω α ω ω− + − + + −× ∈Ω ×Ω > = Ω Ω      (66) 

( ) ( ) ( )
( ) ( )

( ) ( )
1 2

1 1 1 2
1 2 1 1 1 2

1 1 1 2

, ,
ω ω

η ω η ω
α ω ω ω ω

η ω η ω− +

− +

− +
∈Ω ∈Ω

< ∞
+∑ ∑ P P

       
(67)

 
( ) ( ) ( )

1 1 2 1

1 2 1 1 1 2, 1.
ω ω

α ω ω ω ω
− +∈Ω ∈Ω

=∑ ∑ P P              (68) 

On the probability space { }1 1 1 1 1 1, ,− + − + − +Ω ×Ω × ×  P P , all the bounded strict-
ly positive random values ( )1 2,α ω ω  the above conditions satisfy. Introduce 
into the set of all measures on { }1 1,Ω   the metrics 

( ) ( ) ( )1 2 1 2
1

, .ρ ω ω
∞

=

= −∑ i i
i

Q Q Q Q               (69) 

Lemma 6. The closure of the set of measures 1M  in metrics (69) contains the 
set of measures 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )1 2

1 2 1 1
, 1 2

1 1 1 2 1 1 1 2
ω ω

η ω η ω
ν χ ω χ ω

η ω η ω η ω η ω

+ −

− + − += +
+ +A AA     (70) 

for 1 1ω −∈Ω , 2 1ω +∈Ω , 1∈A . For every bounded random value ( )ωf , the 
closure of the set of points 1,QE f Q M∈ , in metrics ( ) 1, , ,ρ = − ∈x y x y x y R , 
contains the points ( ),1 2

1 2 1 1, ,ω ων ω ω − +∈Ω ×ΩE f . 
Proof. Let us choose the set of equivalent measures εQ  defined by 
( )1 2, ,0 1εα ω ω ε< < , and given by the law: 

( ) ( ) ( )
0 0 0 0
1 2 1 1 2 10 0

1 1 1 2

1, , , ,ε εα ω ω ω ω
ω ω

− +−
= ∈Ω ∈Ω

P P
 

( ) ( )
( ) ( ) ( ) ( ) ( )

0 0
1 1 2

1 2 0 1 2

0 0
0 1 2 1 2 1 2

1 2

, , ,
1, , , , ,

P P

ε ε

ε

ω ω ω ω

α ω ω εα ω ω

α ω ω ω ω ω ω
ω ω

≠ ≠

=

= ≠
∑ ∑

 

1 1 2 1, .ω ω− +∈Ω ∈Ω  

It is evident that ( ) ( )1 2 1 2 1 1, 0, ,εα ω ω ω ω − +> ∈Ω ×Ω , for every 1 0ε> > , and 
satisfy the equality 

( )
( ) ( ) ( )

1 2 1 1

1 2 1 1 1 2
,

, 1.ε

ω ω

α ω ω ω ω
− +∈Ω ×Ω

=∑ P P               (71) 
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Then, 

( ) ( ) ( )
( ) ( )

( ) ( )
2 1

1 20 0 0
1 1 2 1 1 1 20

1 1 1 2

, ,ε ε

ω

η ω
ω α ω ω ω ω

η ω η ω+

+

− +
∈Ω

=
+

∑Q P P      (72) 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 10 0 0
2 1 2 1 1 1 20

1 1 1 2

, .ε ε

ω

η ω
ω α ω ω ω ω

η ω η ω−

−

− +
∈Ω

=
+

∑Q P P       (73) 

( ) ( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )
0

2 1 2 2

0
1 20

1 0 0
1 1 1 2

0 01 2
0 1 2 1 1 1 20

, 1 1 1 2

1

( )
, ,

Q

P P

ε

ε

ω ω ω

η ω
ω ε

η ω η ω
η ω

ε α ω ω ω ω
η ω η ω+

+

− +

+

− +
∈Ω ≠

= −
+

+
+

∑
  (74) 

( ) ( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )

0
1 1 1 1

0
1 10

2 0 0
1 1 1 2

0 01 1
0 1 2 1 1 1 20

, 1 1 1 2

1

( )
, .

Q

P P

ε

ε

ω ω ω

η ω
ω ε

η ω η ω

η ω
ε α ω ω ω ω

η ω η ω−

−

− +

−

− +
∈Ω ≠

= −
+

+
+

∑
   (75) 

If 0 0
1 1 2 2,ω ω ω ω≠ ≠ , then 

( ) ( ) ( )
( ) ( )

( ) ( )
2 1

1 2
1 0 1 2 1 1 1 20

1 1 1 2

, ,ε ε

ω

η ω
ω ε α ω ω ω ω

η ω η ω+

+

− +
∈Ω

=
+

∑Q P P      (76) 

( ) ( ) ( )
( ) ( )

( ) ( )
1 1

1 1
2 0 1 2 1 1 1 2

1 1 1 2

, .ε ε

ω

η ω
ω ε α ω ω ω ω

η ω η ω−

−

− +
∈Ω

=
+

∑Q P P      (77) 

The distance between the measures εQ  and 0 0
1 2,ω ω

ν  is given by the formula 

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

0 0
1 2

0
2 1 2 2

0
1 1 1 1

0
1 1 1 1 2 1

0
2 1 2 2 1 1

,

1 20 0
0 1 2 1 1 1 20

, 1 1 1 2

1 10 0
0 1 2 1 1 1 20

, 1 1 1 2

1 2
0 1 2 1 1 1 20

, 1 1 1 2

0 1
,

,

,

,

,

ε
ω ω

ε

ω ω ω

ε

ω ω ω

ε

ω ω ω ω

ε

ω ω ω ω

ρ ν

η ω
ε ε α ω ω ω ω

η ω η ω

η ω
ε α ω ω ω ω

η ω η ω

η ω
ε α ω ω ω ω

η ω η ω

ε α ω

+

−

− +

+ −

+

− +
∈Ω ≠

−

− +
∈Ω ≠

+

− +
∈Ω ≠ ∈Ω

∈Ω ≠ ∈Ω

= +
+

+
+

+
+

+

∑

∑

∑ ∑

∑ ∑

Q

P P

P P

P P

( )
( ) ( )

( ) ( )1 1
2 1 1 1 2

1 1 1 2

( )
, .

η ω
ω ω ω

η ω η ω

−

− ++
P P

     (78) 

Since 

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

0
2 1 2 2

0
1 1 1 1

1 20 0
0 1 2 1 1 1 20

, 1 1 1 2

1 10 0
0 1 2 1 1 1 20

, 1 1 1 2

,

, 1,

ε

ω ω ω

ε

ω ω ω

η ω
α ω ω ω ω

η ω η ω

η ω
α ω ω ω ω

η ω η ω

+

−

+

− +
∈Ω ≠

−

− +
∈Ω ≠

+

+ ≤
+

∑

∑

P P

P P

 

( ) ( )
( ) ( )

( ) ( )
0

1 1 1 1 2 1

1 2
0 1 2 1 1 1 20

, 1 1 1 2

, 1,ε

ω ω ω ω

η ω
α ω ω ω ω

η ω η ω− +

+

− +
∈Ω ≠ ∈Ω

≤
+

∑ ∑ P P  
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( ) ( )
( ) ( )

( ) ( )
0

2 1 2 2 1 1

1 1
0 1 2 1 1 1 2

, 1 1 1 2

, 1,ε

ω ω ω ω

η ω
α ω ω ω ω

η ω η ω+ −

−

− +
∈Ω ≠ ∈Ω

≤
+

∑ ∑ P P  

we obtain 

( )0 0
1 2,

, 4 .ε
ω ω

ρ ν ε≤Q  

Let us prove the second part of Lemma 6. It is evident that the inequality 

( )
0 0,1 2

1

4 sup
ε ω ω

ν

ω
ε ω

∈Ω
− ≤QE f E f f              (79) 

is true. Due to arbitrariness of the small ε , Lemma 6 is proved.            □ 
Definition 4. Let { }1 1,Ω   be a measurable space. The decomposition 

, , , 1,= ∞n kA n k , of the space 1Ω  we call exhaustive one if the following condi-
tions are valid: 

1) , 1 , , , 1
1

, , , , 1,
∞

=

∈ = ∅ ≠ = Ω = ∞



n k n k n s n k
k

A A A k s A n ; 

2) the ( )1+n -th decomposition is a sub-decomposition of the n-th one, that 
is, for every j, 1, ,+ ⊆n j n kA A  for a certain ( )=k k j ; 

3) the minimal σ-algebra containing all , , , 1,= ∞n kA n k , coincides with 1 . 
The next Remark 1 is important for the construction of the filtration having 

the exhaustive decomposition. 
Remark 1. Suppose that the measurable spaces { }1 1,Ω   and { }2 2,Ω   

have the exhaustive decompositions 1
, , , 1,= ∞n kA n k  and 2

, , , 1,= ∞m sA m s , re-
spectively, then the measurable space { }1 2 1 2,Ω ×Ω ×   also have the exhaus-
tive decomposition , , 1, , , 1,= ∞ = ∞n ksB n k s , 

1 2
, , , , , 1, , 1,= × = ∞ = ∞n ks n k n sB A A k s n . Really, 
1) ( ) ( )1 2 1 2 1 2

, , 1 2 , , , ,, , , ,n k n s n k n s n t n rA A A A A A k s t r× ∈ × × × = ∅ ≠  , 

, 1 2
, 1

, 1,n ks
k s

B n
∞

=

= Ω ×Ω = ∞


; 

2) the ( )1+n -th decomposition is a sub-decomposition of the n-th one, that 
is, for every ,k s  1, ,+ ⊆n ks n ijB B  for a certain ( ) ( ),= =i i k j j s ; 

3) the minimal σ-algebra containing all , , , , 1,= ∞n ksB n k s , coincides with 

1 2×F F . 
In the next Lemma we give the sufficient condition of the existence of exhaus-

tive decomposition. 
Lemma 7. Let { }1 1,Ω   be a measurable space with a complete separable 

metric space 1Ω  and Borel σ-algebra 1  on it. Then { }1 1,Ω   has an ex-
haustive decomposition. 

Proof. If { }1, , ,ω ω n  is a countable dense set in 1Ω , then we denote 

( ) ( )1, { , , }, , 1, ,ω ε ω ρ ω ω ε= ∈Ω < = ∞n m n mB n m          (80) 

the countable set of open balls as εm  runs all positive rational numbers, where 
( )1 2 1 2 1, , ,ρ ω ω ω ω ∈Ω  is a metric in 1Ω . Prove that  

( )( )1 , , , 1,σ ω ε= = ∞ n mB n m , where ( )( ), , , 1,σ ω ε = ∞n mB n m  is a minimal 
σ-algebra generated by the sets (80). For this purpose let us prove that for every 
open set 1∈ΩA  the representation 
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( )
1

1 ,

,ω ε
+∈ ∈

=
 k s

k s

n m
n N m Q

A B                   (81) 

is true, where 1N  is a subset of positive integers, and 1
+Q  is a subset of positive 

rational numbers. Let us denote { } { }1 1, , , , , ,ω ω ω ω=    

A A
n nA . Suppose 

that 0ω ∈ A , then ( )0\inf , 0ω ρ ω ω∈= >A Ad , where A  is a closure of the set A. 

Let the point 
0

ω A
k  belong to the ball ( )0 1 0, , ,

8 8
ω ω ρ ω ω   = ∈Ω <  
   

d dC  and  

let us consider the ball 

( ) ( ) ( )0 0 0 00 1 0, , , , ,
8 8

ω ρ ω ω ω ρ ω ω ρ ω ω   + = ∈Ω < +  
   

A A
k k k k

d dC . The point 0ω  

belongs to this ball and for every ( )0 00, ,
8

ω ω ρ ω ω ∈ + 
 

A
k k

dC  the inequality 

( ) ( ) ( ) ( )0 0 00 0 0
3, , , 2 ,

8 8
ρ ω ω ρ ω ω ρ ω ω ρ ω ω≤ + < + <A A A

k k k
d d       (82) 

is true. Therefore ( )0 00 0
3, , ,

8 8
ω ρ ω ω ω   + ⊂   
   

A
k k

d dC C . Let the rational num-

ber 
0

ε k  satisfies the inequalities 

( )0 00
32 , ,

8 8
ρ ω ω ε+ < <A

k k
d d                  (83) 

then ( )0 0 0, ,
2

ω ε ω ⊆  
 

A
k k

dC C , since for every ( )0 0
,ω ω ε∈ A

k kC ,  

( ) ( ) ( )0 0 00 0, , ,
8 2

ρ ω ω ρ ω ω ρ ω ω ε≤ + < + <k k k
d d . So, for 0ω ∈ A  we found  

{ }
0 1, , ,ω ω ω∈  k n  and the rational number 

0
ε k  such that  

( )0 00 0, ,
2

ω ω ε ω ∈ ⊂ ⊂ 
 

A
k k

dC C A . The last prove the needed statement. To 

complete the proof of Lemma 7 let us construct the exhaustive decomposition. 
Let us renumber the sets ( ),ω εn mB  putting by ( )1 1 1,ω ε=D B ,  

( )2 1 2,ω ε=D B , ( )3 2 1,ω ε=D B , and so on. We put that { }1 1

∞

=k k
A  consists of 

two sets 1D  and 1 1 1\= ΩD D . If the set { } 1

∞

=nk k
A  is constructed, then the set 

{ }1 1

∞
+ =n k k

A  we construct from the various set of the kind 1 1,+ + nk n nk nA D A D . 
By construction the minimal σ-algebra  

{ } ( ){ }, , 1, , , , 1,σ σ ω ε= ∞ = = ∞nk n mA n k B n m . Taking into account the previous 

part of the proof we have { } 1, , 1,nkA n kσ = ∞ =  . Lemma 7 is proved.      □ 

Lemma 8. Let a measurable space { },Ω   have an exhaustive decomposition 
and let ξ  be an integrable random value relative to the measure P, satisfying 
the conditions (36). Then, the closure of the set of measure Q, given by the for-
mula (42), relative to the pointwise convergence of measures contains the set of 
measures 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

1 2

2
, 1

1 2

1
2 1 2

1 2

, , , ,

A

A

A

A

ω ω

ξ ω
ν χ ω

ξ ω ξ ω
ξ ω

χ ω ω ω
ξ ω ξ ω

+

− +

−
− +

− +

=
+

+ ∈ ∈Ω ×Ω
+


   (84) 
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for those ( )1 2,ω ω − +∈Ω ×Ω  which have the full measure µ − += ×P P  For 
every integrable finite valued random value ( )ωf  relative to all measures Q, 
the closure in metrics ( )1 2 1 2,ρ = −x x x x , 1

1 2, ∈x x R , of the set of real num-
bers 

( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

2
1 1 2 1 2

1 2

1
2 1 2 1 2

1 2

, d ,

, d , ,

ξ ω
ω α ω ω µ ω ω

ξ ω ξ ω

ξ ω
ω α ω ω µ ω ω

ξ ω ξ ω

− +

− +

+

− +
Ω Ω

−

− +
Ω Ω

=
+

+
+

∫ ∫

∫ ∫

QE f f

f
      (85) 

when ( )1 2,α ω ω  runs over all random values satisfying the conditions (39), 
(41), contains the set of numbers 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )2 1
1 2 1 2

1 2 1 2

, , .
ξ ω ξ ω

ω ω ω ω
ξ ω ξ ω ξ ω ξ ω

+ −
− +

− + − ++ ∈Ω ×Ω
+ +

f f  (86) 

Proof. On a probability space { }, ,Ω  P , let ξ  be an integrable random 
value, satisfying the conditions (36). As before, let ( ){ }, 0ω ξ ω+Ω = > , 

( ){ }, 0ω ξ ω−Ω = ≤  and let ,− +   be the restrictions of the σ-algebra   
on the sets −Ω  and +Ω , correspondingly. Suppose that −P  and +P  are the 
contractions of the measure P on the σ-algebras ,− +  , correspondingly. 
Consider the probability space { }, ,− + − + − +Ω ×Ω × ×  P P  which is a direct 
product of the probability spaces { }, ,− − −Ω  P  and { }, ,+ + +Ω  P . Due to 
Lemma 8 conditions and Remark 1, the measurable space { },− + − +Ω ×Ω ×   
has the exhaustive decomposition , , , 1, , 1,= ∞ = ∞n ksB k s n . Denote n  the mi-
nimal σ-algebra generated by decomposition , , , 1,= ∞n ksB k s . It is evident  

that 1+⊂ n n . Moreover, 
1

σ
∞

− +

=

  = × 
 
  n

n
V . On the probability space  

{ }, ,− + − + − +Ω ×Ω × ×  P P , for every integrable finite valued random value 
( )1 2,ω ωf  the sequence ( ){ }1 2, |µ ω ω nE f  converges to ( )1 2,ω ωf  with 

probability one, as →∞n , since it is a regular martingale. It is evident that for 
those ,n ksB  for which ( ), 0µ ≠n ksB  

( ){ }
( )

( ) ( ),

1 2

1 2 1 2 ,
,

, d

, | , , .µ

ω ω µ

ω ω ω ω
µ

= ∈
∫

 n ksB
n n ks

n ks

f

E f B
B

       (87) 

Denote 
( ),

0 ,
, , , 0µ =

=


n ks

n ks
n k s B

D B . It is evident that ( )0 0µ =D . For every 

( )1 2 0, \ω ω − +∈Ω ×Ω D , the formula (87) is well defined and is finite. Let 1D  be 
the subset of the set 0\− +Ω ×Ω D , where the limit of the left hand side of the 
formula (87) does not exist. Then, ( )1 0µ =D . For every  
( ) ( )1 2 0 1, \ω ω − +∈Ω ×Ω D D , the right hand side of the formula (87) converges 
to ( )1 2,ω ωf . For ( ) ( )1 2 0 1, \ω ω − +∈Ω ×Ω D D , denote ( )1 2,ω ω=n nA A  
those set ,n ksB  for which ( )1 2 ,,ω ω ∈ n ksB  for a certain ,k s . Then, for every in-
tegrable finite valued ( )1 2,ω ωf  
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( )

( ) ( )
1 2

1 2

, d
lim , .nA

n
n

f
f

A

ω ω µ
ω ω

µ→∞
=

∫
                 (88) 

Let us consider the sequence 

( ) ( )
( )
( )

( )
( )

1 21 2 \
1 2

,,
, 1 ,

\
n nn A A

n n n
n nA A

ε
χ ω ωχ ω ω

α ω ω ε ε
µ µ

− +Ω ×Ω

− +
= − +

Ω ×Ω
      (89) 

where 0 1nε< < , lim 0nn
ε

→∞
= . Such a sequence ( )1 2,n

n
εα ω ω  satisfies the condi-

tions (39)-(41) and 

( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

( )
( ) ( )

( ) ( ) ( )

( )

( )
( ) ( )

( ) ( ) ( )

( )

2
1 1 2 1 2

1 2

1
2 1 2 1 2

1 2

2
1 1 2

1 2

1
2 1 2

1 2

, d ,

               , d ,

d ,
            1

d ,
               1

n n

n

n

n

n A n

A n

A
A

n
n

A
A

n
n

Q A

A

A

ε ε

ε

ξ ω
χ ω α ω ω µ ω ω

ξ ω ξ ω
ξ ω

χ ω α ω ω µ ω ω
ξ ω ξ ω

ξ ω
χ ω µ ω ω

ξ ω ξ ω
ε

µ
ξ ω

χ ω µ ω ω
ξ ω ξ ω

ε
µ

− +

− +

+

− +
Ω Ω

−

− +
Ω Ω

+

− +

−

− +

=
+

+
+

+
= −

+
+ −

∫ ∫

∫ ∫

∫

∫

 

( ) ( )
( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )

( )

2
1 1 2

1 2\

1
2 1 2

1 2\

d ,

\

d ,

.
\

n

n

A
A

n
n

A
A

n
n

A

A

ξ ω
χ ω µ ω ω

ξ ω ξ ω
ε

µ

ξ ω
χ ω µ ω ω

ξ ω ξ ω
ε

µ

− +

− +

+

− +
Ω ×Ω

− +

−

− +
Ω ×Ω

− +

+
+

Ω ×Ω

+
+

Ω ×Ω

∫

∫
           (90) 

From the formula (90), we obtain 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 1
1 2

1 2 1 2

1 2 0 1

lim ,

, , \ .

n
n A An

Q A

A D D

ε ξ ω ξ ω
χ ω χ ω

ξ ω ξ ω ξ ω ξ ω

ω ω

+ −

− + − +→∞

− +

= +
+ +

∈ ∈Ω ×Ω 

   (91) 

Further, 

( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

( )
( ) ( )

( ) ( ) ( )

( )

( )
( ) ( )

( ) ( )

2
1 1 2 1 2

1 2

1
2 1 2 1 2

1 2

2
1 1 2

1 2

1
2

1 2

, d ,

                    , d ,

d ,
               1

d
                   1

nn n

n

n

n

Q
n

n

A
n

n

A
n

E f f

f

f

A

f

ε ε

ε

ξ ω
ω ω α ω ω µ ω ω

ξ ω ξ ω

ξ ω
ω α ω ω µ ω ω

ξ ω ξ ω

ξ ω
ω µ ω ω

ξ ω ξ ω
ε

µ

ξ ω
ω µ ω

ξ ω ξ ω
ε

− +

− +

+

− +
Ω Ω

−

− +
Ω Ω

+

− +

−

− +

=
+

+
+

+
= −

+
+ −

∫ ∫

∫ ∫

∫

∫ ( )

( )

1 2,

nA

ω

µ
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( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )

2
1 1 2

1 2\

1
2 1 2

1 2\

d ,

\

d ,

.
\

n

n

A
n

n

A
n

n

f

A

f

A

ξ ω
ω µ ω ω

ξ ω ξ ω
ε

µ

ξ ω
ω µ ω ω

ξ ω ξ ω
ε

µ

− +

− +

+

− +
Ω ×Ω

− +

−

− +
Ω ×Ω

− +

+
+

Ω ×Ω

+
+

Ω ×Ω

∫

∫
       (92) 

From the formula (92), we obtain 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 1
1 2

1 2 1 2

1 2 0 1

lim ,

, \ .

nnQ

n
E f f f

D D

ε ξ ω ξ ω
ω ω ω

ξ ω ξ ω ξ ω ξ ω

ω ω

+ −

− + − +→∞

− +

= +
+ +

∈Ω ×Ω 

  (93) 

Lemma 8 is proved.                                              □ 
The next Theorem 5 is a consequence of Lemma 5. 
Theorem 5. On the probability space { }, , PΩ  , for the nonnegative random 

value 1ξ ≠  the set of measures 0M  on the measurable space { },Ω  , being 
equivalent to the measure P, satisfies the condition 

01, ,QE Q Mξ = ∈                        (94) 

if and only if as for 0Q M∈  the representation 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2
1 1 2 1 2

1 2

1
2 1 2 1 2

1 2

1
, d ,

1 1

1
, d , , ,

1 1

A

A

Q A

A

ξ ω
χ ω α ω ω µ ω ω

ξ ω ξ ω

ξ ω
χ ω α ω ω µ ω ω

ξ ω ξ ω

− +

− +

+

− +
Ω Ω

−

− +
Ω Ω

−
=

− + −

−
+ ∈

− + −

∫ ∫

∫ ∫ 

  (95) 

is true, where on the measurable space { }, , P P− + − + − +Ω ×Ω × ×  , the ran-
dom value ( )1 2,α ω ω  satisfies the conditions 

( ) ( ){ }( ) ( ) ( )1 2 1 2, , , 0 ,P Pµ ω ω α ω ω− + + −∈Ω ×Ω > = Ω Ω         (96) 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

( )1 2
1 2 1 2

1 2

1 1
, d , ,

1 1

ξ ω ξ ω
α ω ω µ ω ω

ξ ω ξ ω− +

− +

− +
Ω Ω

− −
< ∞

− + −
∫ ∫         (97) 

( ) ( )1 2 1 2, d , 1.α ω ω µ ω ω
− +Ω Ω

=∫ ∫                     (98) 

We introduced above the following denotations: P Pµ − += × , P−  is a con-
traction of the measure P on the set { }, 1 0ω ξ−Ω = ∈Ω − ≤ , P+  is a contrac-
tion of the measure P on the set { }, 1 0ω ξ+Ω = ∈Ω − > , − −= Ω   , 

+ += Ω   . 
It is evident that the set of measure 0M  is a nonempty one, since it contains 

those measures Q, for which the random value ( )1 2,α ω ω  is bounded, since 
1QE ξ − < ∞ . The set of measure 0M  is consistent with the filtration { }0 ,   

on the measurable space { },Ω  , where { }0 ,= ∅ Ω . 
Theorem 6. On the probability space { }, , PΩ   with the filtration n  on it, 

the set of measures 0M , given by the formula (95), is consistent with the filtra-
tion n , if and only if, as { } 0| ,Q

nE Q Mξ ∈ , is a local regular martingale. 
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Proof. The necessity. Let the set of measures 0M  be consistent with the fil-
tration. Then, due to Theorem 3, { } 0| ,Q

nE Q Mξ ∈ , is a local regular martin-
gale. 

The sufficiency. Suppose that { } 0| ,Q
nE Q Mξ ∈ , is a local regular martin-

gale. Let us prove that, if 1 2 0,Q Q M∈ , then the set of measures 

( )
2

2

1

2
2

1

2

d |
d

d , , , 0, ,
d |
d

Q
k

k
s

A Q
s

QE
Q

R A Q A k s n n
QE
Q

 
 
 = ∈ ≥ ≥ = ∞
 
 
 

∫





       (99) 

belongs to the set 0M . For this, it is to prove that ( )1 0
k
sRE ξ − = , or 1

k
sRE ξ = . 

Really, if 1 21, 1Q QE Eξ ξ= = , then 

{ }

{ }

{ }{ } { }{ }
{ } { }

2

2 2 2

2 2

2 2 2

2

2 1 2 2 1 1

2 1 2 2 2

1 1

2 2

1 1

2 2

1

2

1

2

d d|
d d

|
d d| |
d d

d
d

| |
d |
d

| | | |

| | 1.

k
s

Q
k

R Q Q Q
k

Q Q
s s

Q Q Q
k s

Q
s

Q Q Q Q Q Q
k s k s

Q Q Q Q Q
s s

Q QE
Q QE E E E
Q QE E
Q Q

Q
QE E E
QE
Q

E E E E E E

E E E E E

ξ ξ ξ

ξ

ξ ξ

ξ ξ ξ

 
 
 = =
   
   
   

 
 
 =  

      
= =

= = = =




 

 


   

 

     (100) 

Theorem 6 is proved.                                            □ 
Theorem 7. On the probability space { }, , PΩ   with the filtration n  on it, 

the set of measures 0M , given by the formula (95), is consistent with the filtra-
tion n , if and only if there exists not depending on ( )1 2,ω ω − +∈Ω ×Ω  the 
random process { } 0

,n n n
m ∞

=
  such that 

{ },1 2 | , 1, ,n nE m nω ων ξ = = ∞                   (101) 

for those ( )1 2,ω ω − +∈Ω ×Ω  that have the full measure P Pµ − += × , where 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

1 2

2
, 1

1 2

1
2 1 2

1 2

1

1 1

1
, , , .

1 1

A

A

A

A

ω ω

ξ ω
ν χ ω

ξ ω ξ ω

ξ ω
χ ω ω ω

ξ ω ξ ω

+

− +

−
− +

− +

−
=

− + −

−
+ ∈ ∈Ω ×Ω

− + −


   (102) 

Proof. The necessity. Suppose that the set of measures 0M , given by the for-
mula (95), is consistent with the filtration n . Due to Theorem 6, 

{ } 0| ,Q
nE Q Mξ ∈ , is a local regular martingale. Then, { }|Q

n nE mξ = . Using 
Lemma 8, we obtain { },1 2 | n nE mω ων ξ =  for those ( )1 2,ω ω − +∈Ω ×Ω  that 
have the full measure µ . 

The sufficiency. If the formula (101) is true, then { } 0| ,Q
n nE m Q Mξ = ∈ . 

From this, it follows that { } 0| ,Q
nE Q Mξ ∈ , is a local regular martingale. 

Theorem 7 is proved.                                              □ 
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Definition 5. On the probability space { }, , PΩ   with the filtration n  on 
it, the consistent with the filtration n  subset of the measures M of the set of 
the measures 0M  generating by the nonnegative random value 1ξ ≠ , 

01,QE Q Mξ = ∈ , we call the regular set of measures. 
Let { }, , PΩ   be a probability space. On the measurable space { },Ω   with 

the filtration n  on it, let 0M M⊆  be a set of regular measures, where the set 

0M  is generated by the nonnegative random value 1ξ ≠ . Denote by 
{ } 0

,n n n
m ∞

=
  the regular martingale, where { }| , , 1,Q

n nm E Q M nξ= ∈ = ∞ . 
Assume that nM  is a contraction of the set of regular measures M onto the 
σ-algebra n . Every n

nQ M∈  is equivalent to nP , where nP  is a contraction 
of the measure P on the σ-algebra n . For every n

nQ M∈ , we have 
[ ]1 0

nQ
n nE m m −− = . Therefore, for the measure n

nQ M∈  the representation 

( ) ( ) ( )[ ] ( )
[ ] ( ) [ ] ( )

( )

( ) ( )[ ] ( )
[ ] ( ) [ ] ( )

( )

1 2 1 2
1 1 2

1 1 1 2

1 2 1 1
2 1 2

1 1 1 2

,
d ,

,
d , , ,

n n

n n

n n nn
A n

n n n n

n n n
A n n

n n n n

m m
Q A

m m m m

m m
A

m m m m

α ω ω ω
χ ω µ ω ω

ω ω

α ω ω ω
χ ω µ ω ω

ω ω

− +

− +

+
−

− +
Ω ×Ω − −

−
−

− +
Ω ×Ω − −

−
=

− + −

−
+ ∈

− + −

∫

∫ 

 (103) 

[ ]( ){ }1 1 1, 0 ,n n nm mω ω−
−Ω = ∈Ω − ≤  

[ ]( ){ }2 1 2, 0 ,n n nm mω ω+
−Ω = ∈Ω − >  

is true, where, on the measurable space { },n n n n
− + − +Ω ×Ω ×  , the random value 

( )1 2,nα ω ω  satisfies the conditions 

( ) ( ){ }( ) ( ) ( )1 2 1 2, , , 0 ,n n n n n nP Pµ ω ω α ω ω− + + −∈Ω ×Ω > = Ω Ω       (104) 

( ) [ ] ( )[ ] ( )
[ ] ( ) [ ] ( )

( )1 1 1 2
1 2 1 2

1 1 1 2

, d , ,
n n

n n n n
n n

n n n n

m m m m

m m m m

ω ω
α ω ω µ ω ω

ω ω− +

− +
− −
− +

Ω Ω − −

− −
< ∞

− + −
∫ ∫    (105) 

( ) ( )1 2 1 2, d , 1.
n n

n nα ω ω µ ω ω
− +Ω Ω

=∫ ∫                  (106) 

Here, the measure n n nP Pµ − += ×  is given on the measurable space 

{ },n n n n
− + − +Ω ×Ω ×   and it is a direct product of the measures nP−  and nP+ , 

where the measure nP+  is a contraction of the measure nP  on the σ-algebra 

n n n
+ += Ω    and nP−  is a contraction of the measure nP  on the σ-algebra 

n n n
− −= Ω   . It is evident that the regular set of measures M is a convex set of 

measure. 
Definition 6. On the probability space { }, , PΩ   with the filtration n  on 

it, denote by 0A  the set of all nonnegative integrable random values ζ  rela-
tive to the set of regular measures M, satisfying the conditions: 

1, .PE P Mζ = ∈                         (107) 

Due to Theorem 3, { }{ }
0

| ,P
n n n

E ζ
∞

=
   is a regular martingale relative to the 

set of measures M. 
It is evident that the set 0A  is a nonempty one, since it contains the random 

value 1ζ = . The more interesting case is as 0A  contains more than one ele-
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ment. So, further we consider the regular set of measure M with the set 0A , 
containing more than one element. 

In the next Lemma 9, using Lemma 5, we construct a set of measures consis-
tent with the filtration. On the probability space { }0 0 0

1 1 1, , PΩ  , let us consider a 
nonnegative random value 1ξ , satisfying the conditions 

( ){ }( )0 0
1 1 1 1 10 , 0 1,P ω η ω< ∈Ω < <  

( ){ }( )0 0
1 1 1 1 10 , 0 ,P ω η ω< ∈Ω >                 (108) 

where we introduced the denotation ( ) ( )1 1 1 1 1η ω ξ ω= − . Described in Lemma 5 
the set of equivalent measures to the measure 0

1P  and such that ( )1 1 0QE η ω = , 
we denote by 1M . Let us construct the infinite direct product of the measurable  

spaces { }0 0, , 1,i i iΩ = ∞ , where 0 0 0 0
1 1,i iΩ = Ω =  . Denote 0

1
i

i

∞

=

Ω = Ω∏ . On  

the space Ω , under the σ-algebra   we understand the minimal σ-algebra,  

generated by the sets 0

1
,i i i

i
G G F

∞

=

∈∏ , where in the last product only the finite set  

of iG  do not equal 0
iΩ . On the measurable space { },Ω  , under the filtration  

n  we understand the minimal σ-algebra generated by the sets 0

1
,i i i

i
G G

∞

=

∈∏  ,  

where 0
i iG = Ω  for i n> . We consider the probability space { }, , PΩ  , where  
0 0 0

1
1

, , 1,i i
i

P P P P i
∞

=

= = = ∞∏ . 

On the measurable space { },Ω  , we introduce into consideration the set of  

measures M, where Q belongs to M, if 1
1

,i i
i

Q Q Q M
∞

=

= ∈∏ . We denote by 0QM  

a subset of the set M of those measures 1
1

,i i
i

Q Q Q M
∞

=

= ∈∏ , for which only the  

finite set of iQ  does not coincide with the measure 0 1Q M∈ . 
Lemma 9. On the measurable space { },Ω   with the filtration n  on it, 

there exists consistent with the filtration n  the set of measures 0M  and the 
nonnegative random variable 0ξ  such that 0 01,QE Q Mξ = ∈ , if the random 
value 1ξ , satisfying the conditions (108), is bounded. 

Proof. To prove Lemma 9, we need to construct a nonnegative bounded ran-
dom value 0ξ  on the measurable space { },Ω   and a set of equivalent meas-
ures 0M  on it, such that 0 01,QE Q Mξ = ∈ , and to prove that the set of meas-
ures 0M  is consistent with the filtration n . From the Lemma 9 conditions, 
the random value ( ) ( )1 1 1 1 1η ω ξ ω= −  is also bounded. Let us put 

( ) ( )0 1 1
1

1 , , ,i i i i
i

aξ ω ω η ω
∞

−
=

 = + ∏                    (109) 

where the random values ( )1 1, ,i ia ω ω −  are 1i− -measurable, 1,i = ∞ , they 
satisfy the conditions ( )1 10 , , 1i i ia bω ω −< ≤ < . The constants ib  are such  

that 
1

i
i

b
∞

=

< ∞∑ , the random value ( )i iη ω  is given on { }0 0 0, ,i i iPΩ   and is  
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distributed as ( )1 1η ω  on { }0 0 0
1 1 1, , PΩ  . From this, it follows that the random  

value 0ξ  is bounded by the constant [ ]
1

1 i
i

Cb
∞

=

+∏ , where 0C >  and it is such  

that ( ) , 1,i i C iη ω < = ∞ . It is evident that 0
0 1, QQE Q Mξ = ∈ . Really, 

( ) ( )

( ) ( )

( ) ( )

1
0

1 1
1

1

1 1
1

1 1 1

1 , ,

1 , ,

1 , , ,

n

n

n
Q

i i i i
i

n
Q

i i i i
i

Q
n i n n

E a

E a

E a

ω ω η ω

ω ω η ω

ω ω η ω

−

−
=

−

−
=

− −

 + 

 = + 

 × + 

∏

∏







            (110) 

where 
1

1
0

1 1
,

n
n

i i
i i

Q Q Q Q
∞ −

−

= =

= =∏ ∏ , 

( ) ( )
( ) ( )

1 1 1

1 1 1

1 , ,

1 , , 1.

n

n

Q
n n i n

Q
n n n n

E a

a E

ω ω η ω

ω ω η ω

− −

− −

 + 
 = + = 





           (111) 

From the last equality, we have 

( ) ( )1 1
1

1 , , 1.
n

Q
i i i i

i
E a ω ω η ω−

=

 + = ∏              (112) 

Since ( ) ( )0 1 1
1

lim 1 , ,
n

i i i in i
aξ ω ω η ω−→∞ =

 = + ∏  , from the equality (112) and the  

possibility to go to the limit under the mathematical expectation, we prove the 
needed statement. Let us prove the existence of the set of measures 0M  consis-
tent with the filtration n . If 0QQ M∈ , then 

{ } ( ) ( ) 0
0 1 1

1
| 1 , , , .

n
QQ

n i i i i
i

E a Q Mξ ω ω η ω−
=

 = + ∈ ∏      (113) 

Due to Lemma 4, there exists a set of measures 0M  such that it is consistent 
with the filtration and 0

0
QM M⊇ , 0 01,QE Q Mξ = ∈ . The set 0M  is a linear 

convex span of the set 0QM . It means that the set of measures 0M  is consis-
tent with the filtration. Lemma 9 is proved.                             □ 

Remark 2 The boundedness of the random value 1ξ  is not essential. For the 
applications, the case, as ( )1 1, , 0, 1i ia i nω ω − = ≥ + , is very important (see Sec-
tion 8). In this case, Lemma 9 is true as the random value 1η  is an integrable 
one. The random value 0ξ  is also integrable one relative to every measures 
from the set 0M  and it is n -measurable one. 

Below, we describe one class of evolutions of risk assets satisfying no arbitrage 
condition [15]-[20] and give the complete description of the set of equivalent 
martingale measures. 

On the introduced measurable space { }, , PΩ   we consider the evolution of 
the risk asset given by the law 

( )( ) ( )1 1 11 , , , 1, ,n n n n n nS S a n Nω ω η ω− −= + =
          (114) 

where the random values ( )1 1, ,i ia ω ω −  are 1i− -measurable, 1,i N= , they 
satisfy the conditions ( )1 10 , , 1i ia ω ω −< ≤ , ( ) ( )1 1 1 1 1η ω ξ ω= − , the random 
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value ( )i iη ω  is given on { }0 0 0, ,i i iPΩ   and is distributed as ( )1 1η ω  on 

{ }0 0 0
1 1 1, , PΩ  . The main aim is to describe the set of martingale measures for the 

evolution of risk asset given by the formula (114). This problem we solve in 
Theorem 8. 

Below, we describe completely the regular set of measures in the case as  

( ) ( )0 1 1
1

1 , , ,
N

i i i i
i

a Nξ ω ω η ω−
=

 = + < ∞ ∏  , ( )1 10 , , 1, 1,i ia i Nω ω −< ≤ = , and  

the random value 1ξ  is an integrable one relative to the measure 0
1P . For this 

purpose, we introduce the denotations: ( ){ }0
1 1 1 1 1, 0ω η ω−Ω = ∈Ω ≤ , 

( ){ }0
1 1 1 1 1, 0ω η ω+Ω = ∈Ω > , 1P−  is a contraction of the measure 0

1P  on the 
σ-algebra 1

− , 1P+  is a contraction of the measure 0
1P  on the σ-algebra 1

+ , 
0

1 1 1
− −= Ω   , 0

1 1 1
+ += Ω   . 

Denote 1 1 1U − += Ω ×Ω  and introduce the measure 1 1 1P Pµ − += ×  on the 
σ-algebra 1 1 1G − += ×  . Let us introduce the measurable space { }, ,µ  ,  

where 1
1

, , 1,
N

i i
i

U U U i N
=

= = =∏ , is a direct product of the spaces  

i i iU − += Ω ×Ω , 1i
− −Ω = Ω , 1i

+ +Ω = Ω , 
1

N

i
i

G
=

=∏  is a direct product of the 

σ-algebras 1, 1,iG G i N= = . At last, let 
1

N

i
i

µ µ
=

=∏  be a direct product of the 

measures 1, 1,i i Nµ µ= = , and let ( ) ( ){ }1 2
1 2 1 2
1 1,

1
, , , , ,

i i

N

v N N
i

v
ω ω

ν ν ω ω ω ω
=

= =∏  ,  

be a direct product of the measures 1 2,
, 1,

i i
i N

ω ω
ν = , which is a countable additive 

function on the σ-algebra N  for every v∈ , where 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )1 2

2 1
1 2

, 1 2 1 2i ii i

i i i i
i A i A i

i i i i i i i i

A
ω ω

η ω η ω
ν χ ω χ ω

η ω η ω η ω η ω

+ −

− + − +
= +

+ +
  (115) 

for 1 2 0, ,i i i i i iAω ω− +∈Ω ∈Ω ∈ . 
In the next Theorem 8, we assume that the random value ( )1 1η ω  is an in-

tegrable one. 
Theorem 8. On the measurable space { },Ω   with the filtration n  on it, 

every measure Q of the regular set of measures M for the random value  

( ) ( )0 1 1
1

1 , , ,
N

i i i i
i

a Nξ ω ω η ω−
=

 = + < ∞ ∏  , ( )1 10 , , 1, 1,i ia i Nω ω −< ≤ = , has  

the representation 

( ) ( ) ( ) ( )d ,v
V

Q A v A vα ν µ= ∫                   (116) 

where the random value ( )vα  satisfies the conditions 

( ){ }( ) ( ) ( )0 0
1 1 1 1, 0 ,

N
v v P Pµ α − + ∈ > = Ω Ω             (117) 

( )
( ) ( )
( ) ( ) ( )

1 2

1 2
=1

d ,
N i i i i

i i i i i

v v
η ω η ω

α µ
η ω η ω

− +

− +
< ∞

+
∏∫



             (118) 

( ) ( )d 1.v vα µ =∫


                     (119) 
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Proof. To prove Theorem, it needs to prove that the countable additive meas-
ure ( )v Aν  at every fixed v∈  is a measurable map from the measurable 
space { },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B  for every fixed  

NA∈ . For 0

1
,

N

i i i
i

A A A
=

= ∈∏  , ( )v Aν  is a measurable map from the mea-

surable space { },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B . The family of 

sets of the kind i
i I

E
∈


, 0

1
,

N
i i

i s s s
s

E A A F
=

= ∈∏ , where i jE E = ∅ , the set I is an  

arbitrary finite set, forms the algebra of the sets that we denote by 0U . From the  

countable additivity of ( )v Aν , ( )v i v i
i Ii I

E Eν ν
∈∈

 
= 

 
∑

 is a measurable map  

from the measurable space { },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B . 
Let T be a class of the sets from the minimal σ-algebra Σ  generated by 0U  for 
every subset E of that ( )v Eν  is a measurable map from the measurable space  

{ },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B . Let us prove that T is a 

monotonic class. Suppose that 1, 1, ,i i iE E i E T+⊂ = ∞ ∈ . Then, 

( ) ( )1v i v iE Eν ν +≤ . From this, it follows that ( )lim v ii
Eν

→∞
 is a measurable map 

from the measurable space { },   into the measurable space [ ] [ ]( ){ }0,1 , 0,1B . 
But, ( ) ( ) ( )1 1\v i i v i v iE E E Eν ν ν+ += −  is a measurable map from { },   into 
[ ] [ ]( ){ }0,1 , 0,1B . From this equality, it follows that the set 1 \i iE E+  belongs to  

the class T. Since [ ]1 1
1 1

\i i i
i i

E E E E
∞ ∞

+
= =

= 

 

, we have 

( ) ( ) ( )

( ) ( )

[ ]

1 1
1

1 1
1

1 1
1 1

lim lim \

\

\ .

n

v n v v i in n i

v v i i
i

v i i v i
i i

E E E E

E E E

E E E E

ν ν ν

ν ν

ν ν

+→∞ →∞ =

∞

+
=

∞ ∞

+
= =

= +

= +

   
= =   

   

∑

∑



 

           (120) 

The equalities (120) mean that 
1

i
i

E
∞

=


 belongs to T, since 
1

v i
i

Eν
∞

=

 
 
 


 is a  

measurable map of { },   into [ ] [ ]( ){ }0,1 , 0,1B . Suppose that 

1, , 1,i i iE E E T i+⊃ ∈ = ∞ . Then, this case is reduced to the previous one by the  

note that the sequence 0

1
\ , 1,

N

i i i
i

E E i
=

= Ω = ∞∏  is monotonically increasing. 

From this, it follows that 
1

i
i

E E T
∞

=

= ∈


. Therefore, 0

11 1
\

N

i i i
ii i

E E T
∞ ∞

== =

= Ω ∈∏ 

.  

Thus, T is a monotone class. But, 0U T⊂ . Hence, T contains the minimal mo-
notone class generated by the algebra 0U , that is, ( )0m U = Σ , therefore, 

TΣ ⊂ . Thus, ( )v Eν  is a measurable map of { },   into [ ] [ ]( ){ }0,1 , 0,1B  
for A∈Σ . The fact that the random value ( )vα  satisfies the conditions 
(117)-(119) means that Q, given by the formula (116), is a countable additive 
function of sets and 0

QE ξ < ∞ . Moreover, 0 1QE ξ = . It is evident that 
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{ } ( ) ( )0 1 1
1

| 1 , , ,
n

Q
n i i i i

i
E a Q Mξ ω ω η ω−

=

 = + ∈ ∏  . Due to Lemma 4, this 

proves that the set M is a regular set of measure. Theorem 8 is proved.      □ 
Remark 3. The representation (116) for the regular set of measures M means 

that M is a convex set of equivalent measures. Since the random value ( )vα  
runs all bounded random values, satisfying the conditions (117 - 119), it is easy 
to show that the set of measures ( ) , ,v NA v Aν ∈ ∈  , is the set of extreme 
points for the set M. 

Let us introduce the denotations 

{ }( ) ( ) ( )1 1
1

1 , , , 1 ,
n

n i i i i
i

m a n Nω ω ω η ω−
=

 = + ≤ ≤ < ∞ ∏       (121) 

( )1 10 , , 1, 1, .i ia i Nω ω −< ≤ =  

{ } { } { } { } 0
1 1

1
, , , , , , 1, 2, , 1, ,

n
i i i

N N n i
i

i n Nω ω ω ω ω ω
=

= = = Ω = Ω =∏   

{ } { } { } { }1 1 1
1 1, , , , , , 1, 2,i i i

n nn n iω ω ω ω ω ω= = =   

0

1
, 1, 1,

N

N n i
i n

n N−
= +

Ω = Ω = −∏  

{ } [ ] { }( ){ }
( ){ }

1

0
1

, 0

, 0 ,

n n n nn n

n n n n n

m mω ω

ω η ω

−
−

−

Ω = ∈Ω − ≤

= Ω × ∈Ω ≤
 

{ } [ ] { }( ){ }
( ){ }

1

0
1

, 0

, 0 ,

n n n nn n

n n n n n

m mω ω

ω η ω

+
−

−

Ω = ∈Ω − >

= Ω × ∈Ω >
 

{ } [ ] { }( ){ }
( ){ }

1

0
1

, 0

, 0 ,

n N n n

n n n n n N n

m mω ω

ω η ω

−
−

− −

Ω = ∈Ω − ≤

= Ω × ∈Ω ≤ ×Ω
 

{ } [ ] { }( ){ }
( ){ }

1

0
1

, 0

, 0 .

n N n n

n n n n n N n

m mω ω

ω η ω

+
−

− −

Ω = ∈Ω − >

= Ω × ∈Ω > ×Ω
            (122) 

Note that the σ-algebra n  is generated by sets of the kind 
1

N

i
i

G G
=

=∏ , where 

0 0, 1, , , 1,i i i iG i n G i n N∈ = = Ω = + . Denote 0

1

n

n i
i

P P
=

=∏  the contraction of the 

measure 0

1

N

N i
i

P P
=

=∏  onto the σ-algebra n . Further we use the denotations  

nP−  and nP+  which are the contractions the measure nP  onto the σ-algebras 

n n
−Ω  and n n

+Ω , correspondingly. If the measure Q belongs to the set of 
martingale measures (116), then { }1 1|Q

n n nE m m− −= , or [ ]1 0Q
n nE m m −− = . 

From this, for the measure Q the representation 
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( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( ) [ ] { }( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( ) [ ] { }( )

1

1

1 1 2 2
1

1 1 2
1 1

2 1 2 1
1

11 2
1 1

;
d

;
d , ,

n n

n n

A n n

N N

n n n n

A n n

N N n

n n n n

m m
Q A P P

m m m m

m m
P P A

m m m m

χ ω α ω ω ω

ω ω

χ ω α ω ω ω

ω ω

− +

− +

+
− − +

− +
Ω ×Ω − −

−
− − +

− +
Ω ×Ω − −

−
 = × 

− + −

−
 + × ∈ 

− + −

∫

∫ 

(123) 

is true if the random value { } { }( )1 2; 0α ω ω >  satisfies the condition 

{ } { }( )1 2; d 1.
n n

N NP Pα ω ω
− +

− +

Ω ×Ω

 × = ∫               (124) 

Since for the set 1A  the representation 0
1

1

N

i
i n

A A
= +

= × Ω∏ , is true, where 

0

1

n

n i
i

A
=

∈ =∏  , then for the contraction nQ  of the measure Q onto the 

σ-algebra n  the representation 

( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( ) [ ] { }( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( ) [ ] { }( )

1 1 2 21
1

1 2
1 1

2 1 2 11
1

1 2
1 1

;
d

;
d , ,

n n

n n

A n n nn n n n
n n n

n n n nn n

A n n nn n n n
n n n

n n n nn n

m m
Q A P P

m m m m

m m
P P A

m m m m

χ ω α ω ω ω

ω ω

χ ω α ω ω ω

ω ω

− +

− +

+
− − +

− +
Ω ×Ω − −

−
− − +

− +
Ω ×Ω − −

−
 = × 

− + −

−
 + × ∈ 

− + −

∫

∫ 

 (125) 

is true, where we introduced the denotations nP−  and nP+  which are the con-
tractions of the measure nP  onto the σ-algebras n n

−Ω  and n n
+Ω , cor-

respondingly, 

{ } { }( ) { } { }( ) [ ]1 2 1 21 ; ; d ,
N n N n

n N n N nn n P Pα ω ω α ω ω
− −

− −
Ω ×Ω

= ×∫  

{ } { }( )1 20 1

1
, ; d 1.

n n

N

N n i n n nn n
i n

P P P Pα ω ω
− +

− +
−

= + Ω ×Ω

 = × = ∏ ∫         (126) 

In the set n n
− +Ω ×Ω  let us introduce the transformation 

{ } { }( ) { }( ) { }( )( )1 2 1 21 2; ; ,n n nn n n nT T Tω ω ω ω=  

{ }( ) { }{ } { }( ) { }{ }1 2 2 11 1 2 2
1 1, , , , 1, .n n n nn n n nT T n Nω ω ω ω ω ω
− −

= = =    (127) 

By the definition we put that for 1n =  the transformation 1T  is identical 
one. Introduce the denotations 

{ } { }( ) [ ] { }( )
{ } { }( )

2
11 21
1 2

; ,
;

n n n
n n n

n n n

m m ω
ν ω ω

ϕ ω ω

+
−−

=              (128) 

{ } { }( ) [ ] { }( )
{ } { }( )

1
11 22
1 2

; .
;

n n n
n n n

n n n

m m ω
ν ω ω

ϕ ω ω

−
−−

=              (129) 

{ } { }( ) [ ] { }( ) [ ] { }( )1 2 1 21
1 1; ,n n n n nn n n nm m m mϕ ω ω ω ω− +
− −= − + −      (130) 
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{ } { }( ) { } { }( ) { } { }( )( )1 2 1 2 1 21 1; ; ; .n n n nn n n n n nTϕ ω ω ϕ ω ω ϕ ω ω= +       (131) 

Theorem 9. Let 0
1Ω  be a complete separable metric space and 0

1  be a Bo-
rel σ-algebra on it. If the condition 

{ }( )d ,
n

nnf Pω
Ω

< ∞∫                      (132) 

is true for n -measurable nonnegative random value { }( )nf ω , then the clo-
sure of the set of points { }( ) ,nQ

n nnE f Q Mω ∈ , in metrics ( ),x y x yρ = −  on 
the real line contains the set of points 

{ }( ) { } { }( ) { }( ) { } { }( )
{ }( )( ) { } { }( )( )
{ }( )( ) { } { }( )( )

1 1 2 2 1 21 2

1 1 21 1

2 1 22 2

; ;

;

; , 1, .

n nn n n n n n

n n nn n n

n n nn n n

f f

f T T

f T T n N

ω ν ω ω ω ν ω ω

ω ν ω ω

ω ν ω ω

+

+

+ =

         (133) 

Proof. Let us find the conditions for the measurable functions  
{ } { }( )1 21 ;n n nα ω ω  under which { }1 1|nQ

n n nE m m− −= . Introduce the denotation 

{ } { }( ) { } { }( )
[ ] { }( ) [ ] { }( )

1 21
1 20

1 2
1 1

;
; .

n n n
n n n

n n n nn nm m m m

α ω ω
α ω ω

ω ω− +
− −

=
− + −

    (134) 

Let the set B belongs to 1n− , then 

{ }( )[ ] { }( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( )
{ }( ) { } { }( )[ ] { }( )

[ ] { }( )

11

1 1 2 10
11

2
1

2 1 2 20
11

1
1

;

d

;

d .

n

n n

n n

Q
B n nn n

B n n nn n n n

n n n nn

B n n nn n n n

n n n nn

E m m

m m

m m P P

m m

m m P P

χ ω ω

χ ω α ω ω ω

ω

χ ω α ω ω ω

ω

− +

− +

−−

−−
Ω ×Ω

+ − +
−

−−
Ω ×Ω

− − +
−

−

= −

 × − × 

+ −

 × − × 

∫

∫

       (135) 

If to take into account the relations 

[ ] { }( ) { }( ) { }( ) ( )1 1 1 1 ,n n n n n nn n nm m m aω ω ω η ω− − − −
− =  

[ ] { }( ) { }( ) { }( ) ( )1 1 1 1 ,n n n n n nn n nm m m aω ω ω η ω+ +
− − − −

− =  

[ ] { }( ) { }( ) { }( ) ( )1 1 1 1 ,n n n n n nn n nm m m aω ω ω η ω− −
− − − −

− =        (136) 

and introduce the denotations 

{ } { }( )
{ }( ) { }( ) { }( ) { }( ) { } { }( )

1 2
1

1 1 2 2 1 20
1 11 1 1 1

;

; ,

n n

n n n n nn n n n n nm a m a

θ ω ω

ω ω ω ω α ω ω− −− − − −
= ×

  (137) 

{ } { }( )
{ }( ) { }( ) { }( ) { }( ) { } { }( )

1 2
2

1 1 2 2 1 20
1 11 1 1 1

;

; ,

n n

n n n n nn n n n n nm a m a

θ ω ω

ω ω ω ω α ω ω− −− − − −
= ×

  (138) 

we obtain 
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{ }( )[ ] { }( )
{ }( ) { } { }( ) ( ) ( )

{ }( ) { } { }( ) ( ) ( )

11

1 1 2 1 2
11

2 1 2 1 2
21

; d

; d

n

n n

n n

Q
B n nn n

B n n n n n nn n n

B n n n n n nn n n

E m m

P P

P P

χ ω ω

χ ω θ ω ω η ω η ω

χ ω θ ω ω η ω η ω

− +

− +

−−

− + − +
−

Ω ×Ω

− + − +
−

Ω ×Ω

−

 = − × 

 + × 

∫

∫

 

( ){ } ( ){ }
( ) ( ) ( ) ( )

{ }( ) { } { }( ) { } { }( )
{ }( ) { }( )

1 2

1 1

1 2 1 2
1 1

0 0

1 1 2 2 11 2
1 11 1 1

1 2
1 11 1

d

; , ; ,

d .

n n n n

n n

n n n n n n

B n nn n n n n

n nn n

P P

P P

η ω η ω

ω ω η ω η ω

χ ω θ ω ω θ ω ω ω ω

ω ω
− −

− +

≤ × >

− − −
Ω ×Ω

− −− −

 = × 

 × −  

 × ×  

∫

∫  (139) 

It is evident that the expression (139) equals zero for every 1nB −∈  if and 
only if as 

{ } { }( ) { } { }( )1 2 2 11 2
1 1 1 1; , ; , 0.n nn n n nθ ω ω θ ω ω ω ω

− −
− =           (140) 

The last equality (140) is valid if the equality 

{ } { }( ) { } { }( )1 2 2 10 1 2 0 1 2
1 1 1 1, ; , , ; ,n n n n n nn n n nα ω ω ω ω α ω ω ω ω
− − − −

=        (141) 

is true. 
Now if for { } { }( )1 22 ; 0n n nα ω ω >  satisfying the condition 

{ } { }( )1 22 ; d 1
n n

n n nn n P Pα ω ω
− +

− +

Ω ×Ω

 × = ∫               (142) 

to put 

{ } { }( )
{ } { }( ) { } { }( )( )

{ } { }( )
1 2 1 22 2

1 20
1 2

; ;
; ,

;

n n nn n n n
n n n

n n n

Tα ω ω α ω ω
α ω ω

ϕ ω ω

+
=      (143) 

then 

( ) { }( ) { } { }( )[ ] { }( )
{ }( ) { } { }( )[ ] { }( )

1 1 2 20
1

2 1 2 10
1

; d

; d
n n

n n

n A n n n n nn n n n

A n n n n nn n n n

Q A m m P P

m m P P

χ ω α ω ω ω

χ ω α ω ω ω

− +

− +

+ − +
−

Ω ×Ω

− − +
−

Ω ×Ω

 = − × 

 + − × 

∫

∫
(144) 

is a probability measure on the σ-algebra n . 
Taking into account the denotation (134) and the formula (143) we obtain 

that the measure 

( ) { }( ) { } { }( ) [ ] { }( )
{ } { }( )

{ }( ) { } { }( ) [ ] { }( )
{ } { }( )

2
11 1 21
1 21

1
12 1 21
1 21

; d
;

; d
;

n n

n n

n n n
n A n n nn n n

n n n

n n n
A n n nn n n

n n n

m m
Q A P P

m m
P P

ω
χ ω α ω ω

ϕ ω ω

ω
χ ω α ω ω

ϕ ω ω

− +

− +

+
− − +

Ω ×Ω

−
− − +

Ω ×Ω

−
 = × 

−
 + × 

∫

∫

 (145) 
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is a probability measure on the σ-algebra n , where 

{ } { }( ) { } { }( ) { } { }( )1 2 1 2 1 21 0 1; ; ; .n n nn n n n n nα ω ω α ω ω ϕ ω ω=          (146) 

satisfy the condition 

{ } { }( )1 21 ; d 1,
n n

n n nn n P Pα ω ω
− +

− +

Ω ×Ω

 × = ∫                (147) 

due to the condition 

{ } { }( )1 22 ; d 1.
n n

n n nn n P Pα ω ω
− +

− +

Ω ×Ω

 × = ∫               (148) 

So, we described the contraction of the martingale measure Q on the σ-algebra 

n  for which { }1 1|nQ
n n nE m m− −= . It has the representation (145) with the 

strictly positive random values { } { }( ) { } { }( )1 2 1 21 2; , ;n nn n n nα ω ω α ω ω  satisfying 
conditions (147), (148). 

Since 0
1Ω  is a separable metric space, then it has an exhaustive decomposi-

tion. This is true for nΩ  which is also separable metric space for every 
2,n N= . On the probability space { }, ,n n n n n nP P− + − + − +Ω ×Ω × ×  , for every  

integrable finite valued random value { } { }( )1 2;n nf ω ω  the sequence  

{ } { }( ){ }1 2; |n
mn nE fµ ω ω   converges to { } { }( )1 2;n nf ω ω  with probability one, 

as m →∞ , since it is a regular martingale. It is evident that for those ,m ksB  for 
which ( ), 0,n m ks n n nB P Pµ µ − +≠ = × , 

{ } { }( ){ }
{ } { }( )

( ) { } { }( ),

1 2

1 2

1 2
,

,

, |

; d

, ; .

n

m ks

mn n

nn n
B

m ksn n
n m ks

E f

f

B
B

µ ω ω

ω ω µ

ω ω
µ

= ∈
∫



         (149) 

Denote 
( ),

0 ,
, , , 0m ks

m ks
m k s B

D B
µ =

=


. It is evident that ( )0 0n Dµ = . For every  

{ } { }( )1 2
0; \n nn n Dω ω − +∈Ω ×Ω , the formula (149) is well defined and is finite. Let 

1D  be the subset of the set 0\n n D− +Ω ×Ω , where the limit of the left hand side 
of the formula (149) does not exists. Then, ( )1 0n Dµ = . For every  
{ } { }( ) ( )1 2

0 1; \n nn n D Dω ω − +∈Ω ×Ω  , the right hand side of the formula (149) 
converges to { } { }( )1 2;n nf ω ω . For { } { }( ) ( )1 2

0 1; \n nn n D Dω ω − +∈Ω ×Ω  , denote 
{ } { }( )1 2;m m n nA A ω ω=  those set ,m ksB  for which { } { }( )1 2

,; m ksn n Bω ω ∈  for a 
certain ,k s . Then, for every integrable finite valued { } { }( )1 2;n nf ω ω  

{ } { }( )
( ) { } { }( )

1 2

1 2

; d
lim ; .m

nn n
A

n nm
n m

f
f

A

ω ω µ
ω ω

µ→∞
=

∫
         (150) 

Choose the sequence 
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{ } { }( )

( )
{ } { }( )
( )

{ } { }( )
( )

1 22,

1 2 1 2

\

;

; ;
1 ,

\

m

m n n m

n n n

A n n n nA
m m

n m n n n mA A

εα ω ω

χ ω ω χ ω ω
ε ε

µ µ

− +Ω ×Ω

− +
= − +

Ω ×Ω

      (151) 

where 0 1, lim 0m mm
ε ε

→∞
< < = . Then the sequence { } { }( )1 22, ;m

n n n
εα ω ω  satisfy the 

condition (148). Let us consider the sequence 

{ } { }( )

{ } { }( ) ( )
{ } { }( )
( )

{ } { }( )
( )

{ } { }( ) ( )
{ } { }( )( )
( )

{ } { }( )( )
( )

1 20,

1 2

1 2

1 2

\

1 2

1 2

1 2

\

;

;1 1
;

;

\

;1 1
;

;
.

\

m

m

n n m

m

n n m

n n n

A n n
m

n mn n n

n nA
m

n n n m

A n n n
m

n mn n n

n n nA
m

n n n m

A

A

T

A

T

A

εα ω ω

χ ω ω
ε

µϕ ω ω

χ ω ω
ε

µ

χ ω ω
ε

µϕ ω ω

χ ω ω
ε

µ

− +

− +

Ω ×Ω

− +

Ω ×Ω

− +


= −



+ Ω ×Ω 


+ −



+ Ω ×Ω 

        (152) 

Then the contraction of the sequence of martingale measures m

nQ
ε

 generated 
by sequence (152) on the σ-algebra n  is given by the formula 

( )

{ }( ) { } { }( )[ ] { }( )

{ }( ) { } { }( )[ ] { }( )

1 1 2 20,
1

2 1 2 10,
1

; d

; d

mn

m

n n

m

n n

Q

n n n nn n n n

n n n nn n n n

E f

f m m

f m m

ε

ε

ε

ω

ω α ω ω ω µ

ω α ω ω ω µ

− +

− +

+
−

Ω Ω

−
−

Ω Ω

= −

+ −

∫ ∫

∫ ∫

 

( )
{ }( ) { } { }( )

( )

( )
{ }( ) { } { }( )

( )

{ }( ) { } { }( )
( )

{ }( ) { } { }( )
( )

1 1 21

2 1 22

1 1 21

\

2 1 22

\

; d
1

; d
1

; d

\

; d

\

m

m

n n m

n n m

n nn n n
A

m
n m

n nn n n
A

m
n m

n nn n n
A

m
n n n m

n nn n n
A

m
n n n m

f

A

f

A

f

A

f

A

ω ν ω ω µ

ε
µ

ω ν ω ω µ

ε
µ

ω ν ω ω µ

ε
µ

ω ν ω ω µ

ε
µ

− +

− +

Ω ×Ω

− +

Ω ×Ω

− +

= −

+ −

+
Ω ×Ω

+
Ω ×Ω

∫

∫

∫

∫
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( )
{ } { }( )( ) { }( ) { } { }( )

( )

( )
{ } { }( )( ) { }( ) { } { }( )

( )

{ } { }( )( ) { }( ) { } { }( )
( )

{ } { }( )( ) { }( ) { } { }( )

1 2 1 1 21

1 2 2 1 22

1 2 1 1 21
\

1 2 2 1 22
\

; ; d

1

; ; d

1

; ; d

\

; ; d

m

n n

m

n n

n n m
n n

n n m
n n

A n n nn n n n n

m
n m

A n n nn n n n n

m
n m

n n nn n n n nA

m
n n n m

n n nn n n n nA

m

T f

A

T f

A

T f

A

T f

χ ω ω ω ν ω ω µ

ε
µ

χ ω ω ω ν ω ω µ

ε
µ

χ ω ω ω ν ω ω µ

ε
µ

χ ω ω ω ν ω ω µ

ε

− +

− +

− +
− +

− +
− +

Ω ×Ω

Ω ×Ω

Ω ×Ω
Ω ×Ω

− +

Ω ×Ω
Ω ×Ω

+ −

+ −

+
Ω ×Ω

+

∫

∫

∫

∫

( )
.

\n n n mAµ − +Ω ×Ω

    (153) 

Due to the invariance of the measure nµ  relative to the transformation nT  
we have 

( )
{ } { }( )( ) { }( ) { } { }( )

( )

( )
{ } { }( )( ) { }( ) { } { }( )

( )

( )
{ }( )( ) { } { }( )( )

( )

( )
{ }( )( ) { } { }( )( )

( )

1 2 1 1 21

1 2 2 1 22

1 1 21 1

2 1 22 2

; ; d

1

; ; d

1

; d
1

; d
1 .

m

n n

m

n n

m

m

A n n nn n n n n

m
n m

A n n nn n n n n

m
n m

n n n nn n n
A

m
n m

n n n nn n n
A

m
m

T f

A

T f

A

f T T

A

f T T

A

χ ω ω ω ν ω ω µ

ε
µ

χ ω ω ω ν ω ω µ

ε
µ

ω ν ω ω µ
ε

µ

ω ν ω ω µ
ε

µ

− +

− +

Ω ×Ω

Ω ×Ω

−

+ −

= −

+ −

∫

∫

∫

∫

  (154) 

From the equalities (153), (154) it follows that 

{ }( )
{ }( ) { } { }( ) { }( ) { } { }( )

{ }( )( ) { } { }( )( )
{ }( )( ) { } { }( )( )

1 1 2 2 1 21 2

1 1 21 1

2 1 22 2

lim

; ;

;

; , 1, .

mnQ
n nm

n nn n n n n n

n n nn n n

n n nn n n

E f

f f

f T T

f T T n N

ε
ω

ω ν ω ω ω ν ω ω

ω ν ω ω

ω ν ω ω

→∞

= +

+

+ =

        (155) 

Theorem 9 is proved.                                            □ 
Theorem 10. On the probability space { }, , PΩ   with the filtration n  on 

it, let 0
1Ω  be a complete separable metric space. Suppose that { }( )n nf ω  is a 

nonnegative integrable n -measurable random value, satisfying the condition 
{ }( ) 1,

nQ n
n nnE f Q Mω ≤ ∈ . Then, there exists a 1nF − -measurable random value 

nα , depending on { }( )n nf ω , such that 

{ }( ) { }( )[ ] { }( ) { }111 , .n n n n nn n n nf m mω α ω ω ω−−
≤ + − ∈Ω       (156) 
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Proof. First, let us consider the case 1n = . From Theorem 9, we have the in-
equality 

( ) [ ] ( )
[ ] ( ) [ ] ( )

( ) [ ] ( )
[ ] ( ) [ ] ( )

( )

1 2
1 1

1 1 1 2

1 1
1 2 1 2 1 1

1 1 1 2

1

1 1

1
1, , ,

1 1

m
f

m m

m
f

m m

ω
ω

ω ω

ω
ω ω ω

ω ω

+

− +

−
− +

− +

−

− + −

−
+ ≤ ∈Ω ×Ω

− + −

    (157) 

where [ ]( ){ }0
1 1 1 1 1, 1 0mω ω−Ω = ∈Ω − ≤ , [ ]( ){ }0

1 2 1 1 2, 1 0mω ω+Ω = ∈Ω − > . 
Let us put ( ) [ ]( )1 1 1mη ω ω= − . Then, the formula (157) is written in the form  

( ) ( )
( ) ( )

( )
( ) ( )

( )1 2 1 1
1 1 1 2 1 1 2 1

1 1 1 2 1 1 1 2

1, , .f f
η ω η ω

ω ω ω ω
η ω η ω η ω η ω

+ −
− +

− + − ++ ≤ ∈Ω ∈Ω
+ +

(158) 

From the inequalities (158), we obtain the inequalities 

( ) ( )
( )

( )1 1
1 2 1 2

1 1

1
1 ,

f
f

ω
ω η ω

η ω
+

−

−
≤ +                   (159) 

( ) ( )1 1 1 2 1 1 2 10, 0, , .η ω η ω ω ω− + − +> > ∈Ω ∈Ω              (160) 

Two cases are possible: a) for all 1 nω −∈Ω , ( )1 1 1f ω ≤ ; b) there exists 

1 1ω −∈Ω  such that ( )1 1 1f ω > . First, let us consider the case a). 

Since the inequalities (159) are valid for every value 
( )
( )
1 1

1 1

1 f ω
η ω−

−
, as  

( )1 1 0η ω− > , and ( )1 1 1 11,f ω ω −≤ ∈Ω , then, if to denote 

( ){ }
( )
( )1 1 1

1 1
1

, 0 1 1

1
inf ,

f
ω η ω

ω
α

η ω− −
>

−
=                    (161) 

we have 10 α≤ < ∞  and 

( ) ( ) ( )1 2 1 1 2 1 2 2 11 , 0, .f ω α η ω η ω ω+ + +≤ + > ∈Ω             (162) 

From the definition of 1α , we obtain the inequalities 

( ) ( ) ( )1 1 1 1 1 1 1 1 11 , 0, .f ω α η ω η ω ω− − −≤ − > ∈Ω              (163) 

Now, if ( )1 1 0η ω− =  for some 1 1ω −∈Ω , then in this case ( )1 1 1f ω ≤ . All 
these inequalities give the inequalities 

( ) ( )1 1 1 1 11 , .f ω α η ω ω − +≤ + ∈Ω Ω                  (164) 

Consider the case b). From the inequality (159), we obtain the inequalities 

( ) ( )
( )

( )1 1
1 2 1 2

1 1

1
1 ,

f
f

ω
ω η ω

η ω
+

−

−
≤ −

−
                   (165) 

( ) ( )1 1 1 2 1 1 2 10, 0, , .η ω η ω ω ω− + − +> > ∈Ω ∈Ω             (166) 

The inequalities (165) give the inequalities 

( )
( ) ( ){ } ( )

( )
2 1 2

1 1
1 1 1 1

, 01 1 1 2

1 1inf , 0, .
f

ω η ω

ω
η ω ω

η ω η ω+

− −
− +

>

−
≤ < ∞ > ∈Ω

−
      (167) 
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Let us define 
( ){ }

( )
( )1 1 1

1 1
1

, 0 1 1

1
sup

f

ω η ω

ω
α

η ω−
−

>

−
= < ∞

−
. Then, from (165) we obtain the 

inequalities 

( ) ( ) ( )1 2 1 1 2 1 2 2 11 , 0, .f ω α η ω η ω ω+ + +≤ − > ∈Ω           (168) 

From the definition of 1α , we have the inequalities 

( ) ( ) ( )1 1 1 1 1 1 1 1 11 , 0, .f ω α η ω η ω ω− − −≤ + > ∈Ω          (169) 

The inequalities (168), (169) give the inequalities 

( ) ( )1 1 1 1 11 , .f ω α η ω ω − +≤ − ∈Ω Ω            (170) 

Theorem 10 in the case 1n =  is proved, since the set 1 1
− +Ω Ω  has the 

probability one. 
Now let us consider the case of arbitrary 2 n N≤ ≤ . In this case we have the 

inequality 

{ }( ) { } { }( ) { }( ) { } { }( )
{ }( )( ) { } { }( )( ) { }( )( ) { } { }( )( )

1 1 2 2 1 21 2

1 1 2 2 1 21 1 2 2

; ;

; ; 1.

n nn n n n n n

n n n n n nn n n n n n

f f

f T T f T T

ω ν ω ω ω ν ω ω

ω ν ω ω ω ν ω ω

+

+ + ≤
(171) 

Let us put in this inequality { } { } { }1 2
1 1 1n n nω ω ω
− − −
= = , then the inequality (171) 

is transformed into the inequality 

{ }( ) ( )
( ) ( )

( )
( ) ( ) { }( )

{ }( ) { }( )

2 1
1 2

1 11 2 1 2

1 2
1 1

, , 1,

, , , .

n n n n
n n n nn n

n n n n n n n n

n n n nn n

f f
η ω η ω

ω ω ω ω
η ω η ω η ω η ω

ω ω ω ω

+ −

− −− + − +

− +
− −

+ ≤
+ +

∈Ω ∈Ω

 (172) 

Taking into account the first part of the proof of Theorem 10 from the in-
equality (172) we obtain 

{ }( ) ( )
[ ] { }( )
{ }( ) { }( )

1 1
1

1 1 1

1 1 ,n n n
n nn

n nn n

m m
f

m a

α ω
ω α η ω

ω ω
−

− − −

−
≤ + = +        (173) 

where the constant 1α  is the same as in the first part of the proof of Theorem 
10. Theorem 10 is completely proved.                                 □ 

Theorem 11. On the probability space { }, , PΩ   with the filtration n  on 
it, let 0

1Ω  be a complete separable metric space. Then, every nonnegative su-
per-martingale { } 0

,n n n
f ∞

=
  is a local regular one. 

Proof. Without loss of generality, we assume that 0 0nf d≥ > . From the last 
fact, we obtain 

1

1, , 1, .
nQ nn

n
n

f
E Q M n

f −

≤ ∈ = ∞                (174) 

The inequalities (174) and Theorems 4, 10 prove Theorem 11.           □ 
Theorem 12. On the probability space { }, , PΩ   with the filtration n  on 

it, let 0
1Ω  be a complete separable metric space. Then, every bounded from be-

low super-martingale { } 0
,n n n

f ∞

=
  is a local regular one. 

Proof. Since the super-martingale { } 0
,n n n

f ∞

=
  is bounded from below, then 
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there exists a real number 0C  such that 0 0nf C+ > . If to consider the su-
per-martingale { }0 0

,n n n
f C ∞

=
+  , then all conditions of Theorem 11 are true. 

Theorem 12 is proved.                                             □ 
Theorem 13. On the probability space { }, , PΩ   with the filtration n  on 

it, let 0
1Ω  be a complete separable metric space. Suppose that evolution of the 

risk asset is defined by the formula (114) and non risk asset evolve by the law 
1, 0,nB n N= = . If the nonnegative payment function Nf  is N  measurable 

integrable random value relative to every martingale measure and satisfying 
conditions Theorem 16 from [5], then the fair price of super-hedge is given by 
the formula 

sup d sup d .N N v
Q M v

f Q f ν
∈ ∈Ω Ω

=∫ ∫


                    (175) 

Proof. The left part of the formula (175) for the super-hedge is true (see: [5]), 

since for the super-martingale { }{ }
0

ess sup | ,
N

P
n n

P M n
E Fξ

∈ =

  the optional decom-

position is true due to Theorem 11. The left hand side of the formula (175) 
equals right hand side one due to Theorem 8. Theorem 13 is proved.        □ 

5. Description of Local Regular Super-Martingales Relative 
to a Regular Set of Measures 

In this section, we give the description of local regular super-martingales. 
Theorem 14. On the measurable space { },Ω   with the filtration n  on it, 

let M be a regular set of measures. If { } 0
,m m m

f ∞

=
  is an adapted random process, 

satisfying the conditions 

1 0, , , 1, , ,P
m m mf f E f P M m Aξ ξ−≤ < ∞ ∈ = ∞ ∈          (176) 

then the random process 

{ }{ }
0

| , , ,P
m m m m

f E P Mξ
∞

=
∈                   (177) 

is a local regular super-martingale relative to the regular set of measures M. 
Proof. Due to Theorem 3, the random process { }{ }

0
| ,P

m m m
E ξ

∞

=
   is a 

martingale relative to the regular set of measures M. Therefore, 

{ } { }{ }
( ) { }{ }

1 1 1

1 1

| | |

| | , 1, .

P P P
m m m m m

P P
m m m m

f E E f E

E f f E m

ξ ξ

ξ

− − −

− −

−

= − = ∞

  

 
            (178) 

So, if to put ( ) { }0
1 | , 1,P

m m m mg f f E mξ−= − = ∞ , then 0 0mg ≥ , it is m - 
measurable and ( )0

1
P P

m m mE g E f fξ −≤ + < ∞ . Due to Theorem 1, we obtain 
the proof of Theorem 14.                                           □ 

Corollary 1. If 1
0, 1, , ,mf m R Aα α ξ= = ∞ ∈ ∈ , then { }{ }

0
| ,P

m m m
Eα ξ

∞

=
   

is a local regular martingale. Assume that 1ξ = , then { } 0
,m m m

f ∞

=
  is a local 

regular super-martingale relative to the regular set of measures M. 
Denote 0F  the set of adapted processes 

{ } ( ){ }0 10
, 1, , .m m m mm

F f f P f P M f f∞
−=

= = < ∞ = ∈ ≤        (179) 
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For every 0Aξ ∈ , let us introduce the set of adapted processes 

{ }{ } { }{ }000
| , , , ,P P

m m m mmm
L f f E f F E f P Mξ ξ ξ

∞ ∞

==
= = ∈ < ∞ ∈   (180) 

and 

0

.
A

V Lξ
ξ∈

=


                        (181) 

Corollary 2. Every random process from the set K, where 

1
, , 0, 1, , 1, ,

m

i i i i
i

K C f f V C i m m
=

 = ∈ ≥ = = ∞ 
 
∑           (182) 

is a local regular super-martingale relative to the regular set of measures M on 
the measurable space { },Ω   with the filtration n  on it. 

Proof. The proof is evident.                                       □ 
Theorem 15. On the measurable space { },Ω   with the filtration n  on it, 

let M be a regular set of measures. Suppose that { } 0
,m m m

f ∞

=
  is a nonnegative 

uniformly integrable super-martingale relative to the set of measures M, then the 
necessary and sufficient conditions for it to be a local regular one is belonging it 
to the set K. 

Proof. The necessity. It is evident that if { } 0
,m m m

f ∞

=
  belongs to K, then it is a 

local regular super-martingale. 
The sufficiency. Suppose that { } 0

,m m m
f ∞

=
  is a nonnegative uniformly in-

tegrable local regular super-martingale. Then, there exists a nonnegative adapted 
process { }0 0

1
, , 1,P

m mm
g E g m

∞

=
< ∞ = ∞ , and a martingale { } 0

,m m m
M ∞

=
 , such 

that 

0

1
, 0, .

m

m m i
i

f M g m
=

= − = ∞∑                   (183) 

Then, 0, 0, , ,P
m mM m E M P M≥ = ∞ < ∞ ∈ . Since 00 P

mE M f< = < ∞ , we  

have 0
0

1

m
P

i
i

E g f
=

<∑ . Let us put 0

1
lim

m

im i
g g∞ →∞ =

= ∑ . Using the uniform integrability 

of { } 0
,m m m

f ∞

=
 , we can pass to the limit in the equality 

0
0

1
, ,

m
P

m i
i

E f g f P M
=

 + = ∈ 
 

∑                 (184) 

as m →∞ . Passing to the limit in the last equality, as m →∞ , we obtain 

( ) 0 , .PE f g f P M∞ ∞+ = ∈                  (185) 

Introduce into consideration a random value 
0

f g
f

ξ ∞ ∞+
= . Then,  

1,PE P Mξ = ∈ . From here, we obtain that 0Aξ ∈  and 

{ }0 | , 0, .P
m mM f E mξ= = ∞                 (186) 

Let us put 2 0

1

m

m i
i

f g
=

= −∑ . It is easy to see that the adapted random process 

{ }2
2 0

,m m m
f f

∞

=
=   belongs to 0 . Therefore, for the super-martingale  
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{ } 0
,m m m

f f ∞

=
=   the representation 

1 2 ,f f f= +  

is valid, where { }{ }1 0 0
| ,P

m m m
f f E ξ

∞

=
=    belongs to Lξ  with 

0

f g
f

ξ ∞ ∞+
=   

and 1
0 , 0,mf f m= = ∞ . The same is valid for 2f  with 1ξ = . This implies that f 

belongs to the set K. Theorem 15 is proved.                            □ 
Theorem 16. On the measurable space { },Ω   with the filtration n  on it, 

let M be a regular set of measures. Suppose that the super-martingale  
{ } 0

,m m m
f ∞

=
  relative to the set of measures M satisfy the conditions 

0 0 0, 1, , , 0 ,mf C m A Cξ ξ≤ = ∞ ∈ < < ∞           (187) 

then the necessary and sufficient conditions for it to be a local regular one is be-
longing it to the set K. 

Proof. The necessity is evident. 
The sufficiency. Suppose that { } 0

,m m m
f ∞

=
  is a local regular super-martingale. 

Then, there exists a nonnegative adapted random process 

{ }0 0

1
, , 1,P

m mm
g E g m

∞

=
< ∞ = ∞ , and a martingale  

{ } 0
, , 1, ,P

m mm
M E M m P M∞

=
< ∞ = ∞ ∈ , such that 

0

1
, 0, .

m

m m i
i

f M g m
=

= − = ∞∑                  (188) 

The inequalities 0 0, 1,mf C mξ+ ≥ = ∞ , give the inequalities 

{ }0 | 0, 0, .P
m mf CE mξ+ ≥ = ∞                 (189) 

From the inequalities (187), it follows that the super-martingale { } 0
,m m m

f ∞

=
  

is a uniformly integrable one relative to the regular set of measures M. The mar-
tingale { }{ }0 0

| ,P
m m m

E ξ
∞

=
   relative to the regular set of measures M is also 

uniformly integrable one. 
Then, { }0 | 0, 0,P

m mM CE mξ+ ≥ = ∞ . Since  

{ }0 00 |P P
m mE M CE f Cξ < + = + < ∞  , we have 0

0
1

m
P

i
i

E g f C
=

< +∑ . Let us 

put 0

1
lim

m

im i
g g∞ →∞ =

= ∑ . Using the uniform integrability of mf  and 0

1

m

i
i

g
=
∑ , we can 

pass to the limit in the equality 

0
0

1
, ,

m
P

m i
i

E f g f P M
=

 + = ∈ 
 

∑                 (190) 

as m →∞ . Passing to the limit in the last equality, as m →∞ , we obtain 

( ) 0 , .PE f g f P M∞ ∞+ = ∈                  (191) 

Introduce into consideration a random value 0
1

0

0
f C g

f C
ξ

ξ ∞ ∞+ +
= ≥

+
. Then, 

1 1,PE P Mξ = ∈ . From here, we obtain that 1 0Aξ ∈  and for the su-
per-martingale { } 0

,m m m
f f ∞

=
=   the representation 
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{ } { } { }0 1 2
0 1 2| | | , 0, ,P P P

m m m m m m mf f E f E f E mξ ξ ξ= + + = ∞        (192) 

is valid, where 0 1 2 0
0 2

1
, , , 0, , 1

m

m m m i
i

f C f f C f g m ξ
=

= − = + = − = ∞ =∑ . From the  

last representation, it follows that the super-martingale { } 0
,m m m

f f ∞

=
=   be-

longs to the set K. Theorem 16 is proved.                              □ 
Corollary 3. Let ,Nf N < ∞ , be a N -measurable integrable random value, 

sup P
N

P M
E f

∈
< ∞ , and let there exist 1

0 Rα ∈  such that 

0 0, ,N NM fα ω− + ≤ ∈Ω  

where { } { }{ } 00 0
, | , ,P

m m m mm m
M E Aξ ξ

∞∞

= =
= ∈   . Then, a super-martingale 

{ }0

0m m m
f f

∞

=
+  is a local regular one relative to the regular set of measures M, 

where 
0

0 ,m mf Mα=                         (193) 

0

0, ,
, .m

N N

m N
f

f M m Nα
<

=  − ≥
                 (194) 

Proof. It is evident that 1 0, 0,m mf f m− − ≥ = ∞ . Therefore, the super-mar- 
tingale 

0
0

0 0

, ,
, ,

,

m

m m N

N N m

M m N
f f f m N

f M M m N

α

α α

<
+ = =
 − + >

          (195) 

is a local regular one relative to the regular set of measures M. Corollary 3 is 
proved.                                                          □ 

6. Discrete Geometric Brownian Motion 

In this section, we construct for the discrete evolution of risk assets the set of 
equivalent martingale measures and give a new formula for the fair price of su-
per-hedge. Let ( )0 1 0 1

1 1,R F B RΩ = = , where 1R  is a real axis, ( )1B R  is a Bo-
rel σ-algebra of 1R . Let us put 0 0

1 1, , 1,i iF F iΩ = Ω = = ∞ , and let us construct 
the infinite direct product of the measurable spaces { }0 0, , 1,i i iΩ = ∞ . Denote  

0

1
i

i

∞

=

Ω = Ω∏ . Under the σ-algebra   on Ω , we understand the minimal 

σ-algebra generated by sets 0

1
,i i i

i
G G

∞

=

∈∏  , where in the last product only the  

finite set of iG  do not equal 0
iΩ . On the measurable space { },Ω  , under the 

filtration n  we understand the minimal σ-algebra, generated by sets 
0

1
,i i i

i
G G F

∞

=

∈∏ , where 0
i iG = Ω  for i n> . Suppose that the points 

0 1 20, , , , ,nt t t t=   , belongs to 1R+  with 1i it t t −∆ = −  not depending on the 
index i. Let us consider the probability space { }, , PΩ  , where 

0 0 0
1

1
, , 1,i i

i
P P P P i

∞

=

= = = ∞∏ , 
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( )
[ ]

2

0 02
1 11 2

1 e d , .
2π

y
t

A

P A y A
t

−
∆= ∈

∆
∫                 (196) 

Define on the set 0 1 20, , , , ,nt t t t=   , the discrete Brownian motion. We say 
that the random process ( ) , 0,iw t i = ∞ , is a discrete Brownian motion, if on 
{ },Ω   the joint distribution function is given by the formula 

( ) ( )( )1 1

22
11

1
1

1

0

22 0

, ,

1 e e d d , ,

k
k

i ii k k

ii k
k s s

i ik

i i i i

y y y

tt
i i i i

A A

P w t A w t A

y y A
D

−
 − −−

∆∆

× ×

∈ ∈

= × × ∈∫




  
       (197) 

[ ]
1 1

1 222π , .
k s s s

k
i i i i iD t t t t t

−
 = ∆ × ×∆ ∆ = −   

So defined above the random process ( )iw t  on the set 0 1 2, , , , ,nt t t t  , 
with ( )0 0w = , is a homogeneous one relative to the displacement on k t∆ , 
where 1k ≥ , and is a natural number, with the independent increments, the 
zero expectation and the correlation function ( ) ( ) { }0 min ,P

s k s kE w t w t t t= . 
We assume that the evolution of non risk asset is given by the formula 

e , 0,nrt
nB n= = ∞ , where r is an interest rate. Let us consider on { }, , PΩ   the 

evolution of risk asset given by the law 

( )
2

2
0e .

n nt w t

nS S
σµ σ

 
 − + 
 =                     (198) 

Further, we consider the discount evolution of the risk asset  

( )
2

2
0e .

n nr t w t
n

n
n

S
S S

B

σµ σ
 
 − − + 
 = =                  (199) 

It is convenient to present these evolutions in the form 

( ) 11 , 1, ,n n nS S nρ −= + = ∞                  (200) 

with 
( ) ( )( )

2
12e 1

n nr t w t w t

n

σµ σ

ρ
−

 
 − − ∆ + − 
 = − . 

On the probability space { }, , PΩ   with the filtration n  on it, for further 
investigations it is convenient to present the Brownian motion in the equivalent 
form. We present the Brownian motion by the sequence of random values 

0

1
, , 1,

n

n i i i
i

y y nζ
=

= ∈Ω = ∞∑ , with the joint distribution functions 

( )

( )

1 1

22
11

11
1

1

22 0

, ,

1 e e d d , ,

k k

i ii k k

k k
k s s

i ik

i i i i

y y y

i i ti t
i i i i

A A

P A A

y y A
D

ζ ζ

−

−

 − −−
− ∆∆

× ×

∈ ∈

= × × ∈∫




  
      (201) 

[ ] [ ] ( ) ( ) 1 22 2
1 2 1 12π .k ki i

k kD t i i i i i − = ∆ − × × −   

Then, the discount evolution of the risk asset we can rewrite in the form 
2

2
0e .

nr n t

nS S
σµ σζ

 
 − − ∆ + 
 =                    (202) 
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It is convenient to present discount evolution in the form 

( )( ) 11 , 1, ,n n n nS y S nρ −= + = ∞                 (203) 

with ( ) ( )
2

2
1e 1

nr t y

n n ny y
σµ σ

ρ ρ
 
 − − ∆ + 
 = − = . 

On the measurable space { },N NΩ   with the filtration , 1,n n N= , on it,  

where 0

1

N
N

i
i=

Ω = Ω∏ , 0

1

N
N

i
i=

=∏  , we introduce into consideration the set of 

measures NM . A measure Q belongs to NM , if 0
1

1
,

N

i i
i

Q Q Q M
=

= ∈∏ . For every  

0
1Q M∈  the representation 

( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )

( )

1 1

1 1

1 2
1 1 2 1 2

1 1 1 2

1 1 0
2 1 2 1 2 1

1 1 1 2

, d ,

, d , , ,

A

A

y
Q A y y y y y

y y

y
y y y y y A

y y

ρ
χ α µ

ρ ρ

ρ
χ α µ

ρ ρ

− +

− +

+

− +
Ω Ω

−

− +
Ω Ω

=
+

+ ∈
+

∫ ∫

∫ ∫ 

 (204) 

( ){ }

2

1 1
1 1

2
, 0 , ,

r t
y R y y R y

σµ
ρ

σ
−

  
− − ∆  

  Ω = ∈ ≤ = ∈ ≤ − 
 
  

 

( ){ }

2

1 1
1 1

2
, 0 , ,

r t
y R y y R y

σµ
ρ

σ
+

  
− − ∆  

  Ω = ∈ > = ∈ > − 
 
  

 

is valid, where ( ) ( ) ( )1 1 1y y yρ ρ ρ+ −= − , ( )
2

2
1 e 1

r t y

y
σµ σ

ρ
 
 − − ∆ + 
 = − ,  

P Pµ − += × , 

( )
[ ]

( )
2

2
11 2

1 e d , ,
2π

y
t

A

P A y A B
t

−− −∆= ∈ Ω
∆

∫  

( )
[ ]

( )
2

2
11 2

1 e d , .
2π

y
t

A

P A y A B
t

−+ +∆= ∈ Ω
∆

∫  

On the measurable space ( ) ( ){ }1 1 1 1, B B− + − +Ω ×Ω Ω × Ω , the random value 
( )1 2,y yα  satisfy the conditions 

( ) ( ){ }( ) ( ) ( )1 2 1 1 1 2 1 1, , , 0 ,y y y y P Pµ α− + + −∈Ω ×Ω > = Ω Ω        (205) 

( ) ( ) ( )
( ) ( )

( )
1 1

1 1 1 2
1 2 1 2

1 1 1 2

, d , ,
y y

y y y y
y y

ρ ρ
α µ

ρ ρ− +

− +

− +
Ω Ω

< ∞
+∫ ∫          (206) 

( ) ( )
1 1

1 2 1 2, d , 1,y y y yα µ
− +Ω Ω

=∫ ∫                  (207) 

for every bounded ( )1 2, 0y yα > , since ( )0
1

1
PE yρ < ∞ . Denote 0

N N
cM M=  
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the convex linear span of the set of measures NM . On the measurable space 

{ },N NΩ   with the filtration , 0,n n N= , on it, in correspondence with 
Theorem 8, the set of measures 0

NM  is a regular set of measures with the  

random variable ( )( )0
1

1
N

i i
i

yξ ρ
=

= +∏ , since the random value ( )1 1 1yη ρ= ,  

figuring in Theorem 8, is an integrable one relative to the measure 0
1P  and, 

therefore, 0 01,Q NE Q Mξ = ∈ . It means that the set of equivalent martingale  

measures 0
NM  for the discount evolution 

2

2
0e

nr n t

nS S
σµ σζ

 
 − − ∆ + 
 =  of the risk  

asset contains more than one martingale measure. In this case, the financial 
market is an incomplete one. 

Theorem 17. On the measurable space { },N NΩ   with the filtration 
, 0,n n N= , on it, let the discount risk asset evolution is given by the formula  

2

2
0e

nr n t

nS S
σµ σζ

 
 − − ∆ + 
 = . For the payment function ( )Nf S , satisfying the condi-

tion ( )
0

sup
N

Q
N

Q M
E f S

∈

< ∞ , the fair price of super-hedge is giving by the formula  

( )

( )( )
( )

( ) ( )

0

1

11 2
1

2

0
1, , 1 1 1, , 1,

sup

e 1
sup 1 ,

e e

N

iss

s
i is ss sNi i

Q
N

Q M

d y

N N
i
s

d y d yi i s sy d y d i N

E f S

f S y

σ

σ σ
ρ

+

+

∈

+

+ += = = =≤− >− =

−
 = + 
  −

∑ ∏ ∏


 (208) 

where we put 

2

2
r t

d

σµ

σ

 
− − ∆ 

 = , 3 1
s sy y= . 

Proof. Since 1R  is a separable metric space then due to Lemma 7 the Borel 
σ-algebra ( )1B R  has the exhaustive decomposition. Therefore, the filtration 

, 0,n n N= , has the exhaustive decomposition, due to Remark 1. Theorem 11 
guarantee the formula for the fair price of super-hedge [5]. Due to Remark 3  

after Theorem 8, the set of measures { }1 2,
1 i i

n

y y
i
µ

=
∏ , where 

{ } ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )1 2

2 1
1 2

1 2 1 2,
,

i i

i i i i
A i A iy y

i i i i i i i i

y y
A y y

y y y y

ρ ρ
µ χ χ

ρ ρ ρ ρ

+ −

− + − +
= +

+ +
  (209) 

( )1 2
1 1, , , , 1, ,i i i i i iy y i N− + − − + +∈Ω ×Ω Ω = Ω Ω = Ω =  

forms the extreme points of the convex set of measures 0
NM . The formula (208)  

is obtained by integration relative to the measure { }1 2,
1 i i

n

y y
i
µ

=
∏  of the random  

value ( )Nf S  and taking the sup on the set of all extreme points. Theorem 17 is 
proved.                                                          □ 

7. Conclusions 

In the paper, we generalize the results of the paper [5]. Section 2 contains the de-
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finition of local regular super-martingales relative to the set of equivalent meas-
ures. Theorem 1 gives the necessary and sufficient conditions of the local regu-
larity of a super-martingale. In spite of its simplicity, the Theorem 1 appeared 
very useful for the description of the local regular super-martingales. 

Section 3 contains the important Definition 3 of the set of equivalent meas-
ures consistent with the filtration. In Lemma 3, we give an example of the set of 
equivalent measures consistent with the filtration. Theorem 2 contains the suffi-
cient conditions under that there exists a nonnegative super-martingale on a 
measurable space with the set of measures consistent with the filtration. In 
Theorem 3, the sufficient conditions are founded which guarantee the existence 
on a measurable space a regular martingale. 

Lemma 4 gives the sufficient conditions of the existence of a set of measures 
consistent with the filtration and such that the mean value of a nonnegative 
random value relative to all measures equals one. 

Further the problem of constructing the set of equivalent measures satisfying 
the conditions of Lemma 4 is investigated. In Lemma 5 on a probability space we 
describe the set of equivalent measures satisfying the condition: the mean value 
of a random value relative to this set of measures equals zero. At last in this sec-
tion, Theorem 4 gives the necessary and sufficient conditions of the local regularity 
of a nonnegative super-martingale relative to the equivalent set of measures. 

In Section 4, in Lemma 6, we investigate the closure of the set of considered 
set of measure in the case of the countable space of elementary events. It is 
proved that in metrics (69) the closure of the set of considered set of measures 
contains the set of measures (70). 

Further, we introduce the notion of the exhaustive decomposition of a mea-
surable space. Lemma 7 states: if the measurable space is a complete separable 
metric space with the Borel σ-algebra on it then has an exhaustive decomposition. 

Using this notion, in Lemma 8, we describe the closure of the considered set 
of measures relative to the pointwise convergence of measures and the closure of 
expectation values relative to this set of measures. Theorem 5 is a consequence of 
Lemma 5 and contains the description of the set of measures, being equivalent to 
the given measure, expectations relative to which equals one. Theorem 6 states 
the necessary and sufficient conditions when the set of measures (95) is consis-
tent with filtration. 

Theorem 7 states the necessary and sufficient conditions of the consistency 
with the filtration of the set of measure (95). 

Using Lemma 5, in Lemma 9, we construct an example of the set of equivalent 
measures consistent with the filtration. 

Further we consider an evolution of risk asset with memory. In Theorem 8, we 
describe completely the set of martingale measures for the considered evolution 
and prove that every martingale measure of this family is an integral over some 
measure on the set of extreme points of the set of martingale measures. Theorem 
9 describes the closure of the mean value of integrable random values relative to 
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the contractions of martingale measures onto the filtration. In Theorem 10 the 
bound for every nonnegative n  measurable random value the mathematical 
expectation for which relative to every martingale measure is bounded by 1 is 
found. In Theorem 11, it is proved that every nonnegative super-martingale rel-
ative to the regular set of measures is a local regular one. The same statement, as 
in Theorem 11, it is proved in Theorem 12 in the case, as a super-martingale is 
bounded from below. 

Section 5 contains the description of the local regular super-martingales. Us-
ing Theorem 1, we prove Theorem 14, giving the possibility to describe the local 
regular super-martingales. Further, we introduce a class K of the local regular 
super-martingales relative to a regular set of measures. Theorem 15 states that 
every nonnegative uniformly integrable super-martingale relative to a regular set 
of measures belongs to the class K. The next Theorem 16 states that all su-
per-martingales that are majorized by elements from the set 0A  also belong to 
the class K. At last, in corollary 3, we give an example of the local regular su-
per-martingale playing an important role in the definition of the fair price of the 
contingent claim [5]. 

Section 6 contains the application of the results obtained above to calculation 
of the fair price of super-hedge, when the risk asset evolves by the discrete geo-
metric Brownian motion. In this case, we describe the set of regular measures. 
We find the set of extreme points of the regular set of measures. It is proved that 
the fair price of the super-hedge is given by the formula (208). 
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