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Abstract 
In this paper we consider properties of the four-dimensional space-time ma-
nifold   caused by the proposition that, according to the scheme theory, 
the manifold   is locally isomorphic to the spectrum of the algebra  , 

( )Spec≅  , where   is the commutative algebra of distributions of 
quantum-field densities. Points of the manifold   are defined as maximal 
ideals of density distributions. In order to determine the algebra  , it is ne-
cessary to define multiplication on densities and to eliminate those densities, 
which cannot be multiplied. This leads to essential restrictions imposed on 
densities and on space-time properties. It is found that the only possible case, 
when the commutative algebra   exists, is the case, when the quantum 
fields are in the space-time manifold   with the structure group ( )3,1SO  
(Lorentz group). The algebra   consists of distributions of densities with 
singularities in the closed future light cone subset. On account of the local 
isomorphism ( )Spec≅  , the quantum fields exist only in the space-time 
manifold with the one-dimensional arrow of time. In the fermion sector the 
restrictions caused by the possibility to define the multiplication on the den-
sities of spinor fields can explain the chirality violation. It is found that for 
bosons in the Higgs sector the charge conjugation symmetry violation on the 
densities of states can be observed. This symmetry violation can explain the 
matter-antimatter imbalance. It is found that in theoretical models with 
non-abelian gauge fields instanton distributions are impossible and tunneling 
effects between different topological vacua | n〉  do not occur. Diagram ex-
pansion with respect to the  -algebra variables is considered. 
 

Keywords 
Space-Time Properties, Quantum Field, Arrow of Time, Chirality, Algebra of 

How to cite this paper: Lutsev, L. (2019) 
Space-Time Properties as Quantum Effects. 
Restrictions Imposed by Grothendieck’s 
Scheme Theory. Journal of Modern Phys-
ics, 10, 795-823. 
https://doi.org/10.4236/jmp.2019.107054 
 
Received: May 14, 2019 
Accepted: June 21, 2019 
Published: June 24, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.107054
http://www.scirp.org
https://doi.org/10.4236/jmp.2019.107054
http://creativecommons.org/licenses/by/4.0/


L. Lutsev 
 

 

DOI: 10.4236/jmp.2019.107054 796 Journal of Modern Physics 
 

Distributions, Symmetry Violation 

 

1. Introduction 

The origin of the arrow of time, the possibility of physics in multiple time di-
mensions, the violation of the parity principle, and the matter-antimatter im-
balance are ones of the most exciting and difficult challenges of physics. 

Physics in multiple time dimensions leads to new insights and, at the same 
time, contains theoretical problems. According to the assertion written in [1] [2] 
[3], extra time dimensions give new hidden symmetries that conventional one 
time physics does not capture, implying the existence of a more unified formula-
tion of physics that naturally supplies the hidden information. At the same time, 
it notes that all but the ( )3 1+ -dimensional one might correspond to “dead 
worlds”, devoid of observers, and we should find ourselves inhabiting a ( )3 1+
-dimensional space-time [4]. The natural description of the ( )3 1+ -space-time 
with the one-dimensional time can be provided on the base of the Clifford geo-
metric algebra [5]. In the opposite case of multidimensional time, the violation 
of the causal structure of the space-time and the movement backwards in the 
time dimensions are possible [6]. A particle can move in the causal region faster 
than the speed of light in vacuum. This leads to contradictoriness of the multi-
dimensional time theory and, at present, these problems have not been solved. 

The arrow of time is the one-way property of time which has no analogue in 
space. The asymmetry of time is explained by large numbers of theoretical mod-
els—by the Second law of thermodynamics (the thermodynamic arrow of time), 
by the direction of the universe expansion (the cosmological arrow), by the 
quantum uncertainty and entanglement of quantum states (the quantum source 
of time), and by the perception of a continuous movement from the known (past) 
to the unknown (future) (the psychological time arrow) [7]-[13]. At present, 
there is not a satisfactory explanation of the arrow of time and this problem is 
far from being solved. 

The discrete symmetry of the space reflection P of the space-time and the 
charge conjugation C may be used to characterize the properties of chiral sys-
tems. The violation of the space reflection P exhibits as the chiral symmetry 
breaking—only left-handed particles and right-handed anti-particles could be 
observed [14] [15] [16]. The cause of the parity violation is not clear. 

The matter-antimatter imbalance remains as one of the unsolved problems. 
The amount of CP violation in the Standard Model is insufficient to account for 
the observed baryon asymmetry of the universe. At present, the hope to explain 
the matter-antimatter imbalance is set on the CP violation in the Higgs sector 
[17] [18] [19] [20] [21]. 

In this paper we consider the above-mentioned space-time properties (the ar-
row of time, multiple time dimensions, and the chirality violation), the violation 
of the charge conjugation, and find that in the framework of the scheme theory 
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these properties can be determined by the spectrum of the commutative algebra 
  of distributions of quantum-field densities. Points of the space-time mani-
fold   are defined as maximal ideals of quantum-field density distributions. 
The scheme theory imposes restrictions on space-time properties. Schemes were 
introduced by Alexander Grothendieck with the aim of developing the formal-
ism needed to solve deep problems of algebraic geometry [22]. This led to the 
evolution of the concept of space [23]. The space is associated with a spectrum of 
a commutative algebra or, in other words, with a set of all prime ideals. In the 
case of the classical physics, the commutative algebra is the commutative ring of 
functions. In contrast with the classical physics, quantum fields are determined 
by equations on functionals [24] [25] [26] [27]. Quantum-field densities are li-
near functionals of auxiliary fields and, consequently, are distributions. There 
are many restrictions to construct the commutative algebra of distributions. In 
the common case, multiplication on distributions cannot be defined and de-
pends on their wavefront sets. In the microlocal analysis the wavefront set 

( )WF u  characterizes the singularities of a distribution u, not only in space, but 
also with respect to its Fourier transform at each point. The term wavefront was 
coined by Lars Hörmander [28]. It should be noted that the microlocal analysis 
has resulted in the recent progress in the renormalized quantum field theory in 
curved space-time [29] [30] [31] [32]. In our case, the possibility to define mul-
tiplication on distributions leads to essential restrictions imposed on densities 
forming the algebra  . The spectrum of the algebra   is locally isomorphic 
to the space-time manifold  , ( )Spec≅  , and characterizes its proper-
ties such as the one-dimensional arrow of time, the chirality violation and the 
structure group of the space-time manifold  . One can say that the space-time 
is determined by matter. 

The principal assertion of the paper is the proposition that, according to the 
scheme theory, the manifold   is locally isomorphic to the spectrum of the 
algebra  , ( )Spec≅  , where   is the commutative algebra of distribu-
tions of quantum-field densities. So, the paper is organized as follows. In order 
to find distributions of quantum-field densities, in Section II we derive differen-
tial equations for the densities of quantum fields from the Schwinger equation 
and find that wavefronts of the quantum-field density distributions are deter-
mined by characteristics of the matrix differential operator and by wavefronts of 
distributions of composite fields (higher order functional derivatives defined at a 
point). The quantum fields contain fermion, boson (Higgs), and gauge field 
components. Multiplication on the quantum-field densities and the commuta-
tive algebra   of distributions of fermion and boson densities are considered 
in Section III. It is found that the only possible case, when the commutative al-
gebra   of distributions of quantum-field densities exists, is the case, when the 
quantum fields are in the space-time manifold   with the structure group 

( )3,1SO  (Lorentz group) and the time is one-dimensional. The asymmetry of 
time, the chirality violation of spinor fields, and the charge conjugation symme-
try violation in the boson sector are the necessary conditions for the existence of 

https://doi.org/10.4236/jmp.2019.107054


L. Lutsev 
 

 

DOI: 10.4236/jmp.2019.107054 798 Journal of Modern Physics 
 

the algebra  . The quantum fields exist only in the space-time manifold with 
the one-dimensional arrow of time and with chirality and charge conjugation 
symmetry violations. In Section IV we consider possibility to define a multipli-
cation operation on instanton density distributions in theoretical models with 
non-abelian gauge fields. It is found that instanton distributions are impossible 
and, therefore, tunneling effects between different topological vacua n  do not 
occur. This leads to the zero value of the Pontryagin index Q and to the zero 
neutron electric dipole moment. Fermion, boson (Higgs) and gauge field density 
distributions satisfying the restriction requirements considered in Sections III 
and IV are generators of the algebra  . Ideals, localization, the spectrum of the 
density distribution algebra   and the scheme ( ),    are considered in 
Section V. If the algebra   can be determined and is the component of the 
scheme, then the space-time manifold   with quantum fields exists. Other-
wise, the space-time manifold is devoid of matter and, consequently, does not 
exist. In Section VI we consider diagram expansion with respect to auxiliary 
fields and find that wavefronts of distributions of composite fields at a point in-
troduced in Section II are included in the characteristics of the matrix differen-
tial operator and wavefront sets of quantum-field density distributions are lo-
cated on the light cone. Diagram expansion with respect to the  -algebra va-
riables are considered in Section VII. 

2. Quantum-Field Equations 

Quantum fields are determined by equations on functionals. In this section we 
consider singularities of the linear components ( )w xζ  (densities) of the func-
tional solution 

( ) ( ) ( )

( ) ( ) ( )1 1

1

1 1 1
1

d

d d ,n n

n
n n n

n

Z q w x q x x

G x x q x q x x x

ζ ζ

ζ

ζ ζ ζζ

ζ ζ>

=

+

∑∫

∑ ∑ ∫ ∫ 



   

       (1) 

where ( )q xζ  is the auxiliary fields, ( )1
1

n
nG x xζ ζ

  are the higher order dis-
tributions ( )1n > . For this purpose, we derive differential equations for the 
densities of quantum fields from the Schwinger equation. Let us consider fields 
Ψ  on the 4-dimensional space-time manifold   

( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }, , , , ,n n ax x x x x x A xζ α α
µψ ψ ϕ ϕ+Ψ = Ψ =      (2) 

where ( )xαψ , ( )xαψ  are the fermion (spinor) fields, ( )n xϕ , ( )n xϕ+  are 
the bosons (for example, Higgs bosons), and ( )aA xµ  are the gauge field poten-
tials. In relation (2) and in the all following relations Greek letter indices α  
and β  enumerate types of fermions, µ , ν  and ρ  are indices of the 
space-time variables, Latin letters n, m, l enumerate types of bosons, and a, b, c 
are the gauge indices, respectively. { }, ,n aζ α=  is the multiindex. 

Since wavefronts of distributions can be localized [33] and a differential ma-
nifold locally resembles Euclidian space near each point, we consider the case 
when the space-time manifold   is the 4-dimensional Euclidian (pseu-
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do-Euclidian) space with the Euclidian metric tensor g µν . In order to derive 
quantum-field equations, we consider the action of the fields Ψ  on the mani-
fold   [14] [15] [34] 

( ) ( )( )dS L x xΨ = Ψ∫  

with the Lagrangian 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

*

22 2

1
4

,

a a

n
n

n l n l m
n n m

n n n n n

L x F x F x i x x

m c x x x x x

x x x x x

m c x x x x

µν α µ α β
µν µβ

α α α α β
αβ

α β µ
αβ µ

ψ γ ψ

ψ ψ µ ψ ϕ ψ

µ ψ ϕ ψ ϕ ϕ

ϕ ϕ ν ϕ ϕ

+ +

+ +

Ψ = − + ∇

− −

− +∇ ∇

− +

      (3) 

where 

( ) ,a a a a b c
bcj aF A A e C A Aµν µ ν ν µ µ ν= ∂ − ∂ +  

,a aF g g Fµν µρ νσ
ρσ=  

are the intensity of the gauge fields, 

2gµ ν ν µ µνγ γ γ γ+ =  

are Dirac matrices. nαβµ  and *
nαβµ  are the Yukawa interaction constants. ν  

is the boson interaction constant. ( )m α  and ( )nm  are masses of fermions and 
bosons, respectively. c is the light velocity. 

( ) ,a
aj aie T Aα α α

µβ µ β β µδ∇ = ∂ −  

( ) , ,l l l a l l
m m am m mj aie A gµ µν

µ µ µ νδ τ∇ = ∂ − ∇ = ∇  

( )
* ,l l l a

m m amj aie Aµ µ µδ τ∇ = ∂ +  

a aT Tα
β=  is the gauge matrix with the commutation relation [ ], c

a b ab cT T iC T=  
acting on spinors as ( )exp a

ai Tψ σ ψ′ = , aσ  is an arbitrary real number. 
m

a anτ τ=  is the gauge matrix with the commutation relation [ ], c
a b ab ciCτ τ τ=  

acting on bosons as ( )exp a
aiϕ σ τ ϕ′ = . It is supposed that the summation in 

relation (3) and in the all following relations is performed over all repeating in-
dices. ( )j ae  is the charge corresponding to the j factor of the direct decomposi-
tion of the gauge group jj=∏   ( ( ) ( ) ( )3 2 1SU SU U= × × ). If the index a of 
operators aT  and aτ  belongs to the subgroup j , then in the charge ( )j ae  
( )j a j= . 
For derivation of the quantum-field Schwinger equation it needs to add the 

linear term ( ),q Ψ  with auxiliary fields  
( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,n n a

Aq x q x q x q x q x q x q xζ α α
ψ ψ ϕ µϕ+

 = =  
 

 to the action 
( )S Ψ  

( ) ( ) ( ), , ,S q S qΨ = Ψ + Ψ  

where 
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( ) ( ) ( ) ( )( ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))
,

( ) d .

n n

n n a a
A

q q x x q x x q x x

q x x q x A x x

α α α α
ψ ψ ϕ

µµϕ

ψ ψ ϕ

ϕ+
+

Ψ = + +

+ +

∫
 

For fields ( )n xϕ , ( )n xϕ+ , and ( )aA xµ  the auxiliary fields ( )q xζ  are sim-
ple variables and for fields ( )xαψ  and ( )xαψ  the auxiliary fields are Grass-
manian ones, respectively. Then, the Schwinger equation is written in the form 
[24] [25] 

( )
( ) ( ) ( )

( ) ( ) 0,
x iq x

S
q x Z q

x ζ ζ

ζ
ζ

δ δ

δ
δ

Ψ =

 Ψ + = 
Ψ  







            (4) 

where δ δΨ


 is the functional derivative on the left, ( )Z q  is the generating 
functional. The derivatives ( ) ( )S xζδ δΨ Ψ



 have been written as 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )* ,

n
n

n
n

S i x m c x x x
x

x x

αµ α β α β
µβ αβα

β
αβ

δ γ ψ ψ µ ϕ ψ
δψ

µ ϕ ψ+

= ∇ − −

−



 

( )
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )* ,

a
aj a

n n
n n

S i x ie T A x m c x
x

x x x x

αβ µ β β α
µ α α µα

β β
βα βα

δ ψ γ δ ψ
δψ

µ ϕ ψ µ ϕ ψ+

= ∂ + +

+ +







 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

22 ,

mm k n m
k nm

m m
m

S x m c x
x

x x x x

µ
µ

α β
αβ

δ ϕ ϕ
δϕ

νϕ ϕ µ ψ ψ

+ +

+

= −∇ ∇ −

+ −

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 *2 ,

nn k m n
k mn

n n
n

S x m c x
x

x x x x

µ
µ

α β
αβ

δ ϕ ϕ
δϕ

νϕ ϕ µ ψ ψ

+

+

= −∇ ∇ −

+ −

 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )* .

a a c b
b cb aj aa

k n k m k n k m
an m n am

S e C A x F x x T x
A x

i x x x x

νµ α µ α β
ν ν β

µ

µ µ

δ δ ψ γ ψ
δ

τ ϕ ϕ ϕ τ ϕ+ +

= ∂ + +

− − ∇ +∇

     (5) 

In order to get the Schwinger equation we should substitute of derivatives 
( )iq xζδ δ



  for ( )xζΨ  in relations (5). The formal solution of the Schwing-
er Equation (4) is the functional integral 

( ) ( ) ( )( )exp , .iZ q S q D = Ψ + Ψ Ψ  ∫


             (6) 

We consider densities of the quantum fields ( )xαψ , ( )xαψ , ( )n xϕ , 
( )n xϕ+ , and ( )aA xµ  in the expansion (1) 

( ) ( )
( )

0

.
q

Z q
w x

q x
ζ

ζ

δ
δ

→

=



 

Taking into account the form of the functional ( )Z q  (1) and the form of the 
Lagrangian (3), from the Schwinger Equation (4) we can obtain differential equ-
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ations for the densities 

( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ), , , ,n n a
Aw x w x w x w x w x w x w xζ α α

ψ ψ ϕ µϕ+
 = =  
 

 

which can be written in the form 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )compnw x i m c B w xζαα µ α

µψ ψγ ∂ + =


  

( )( ) ( ) ( ) ( )
( ) ( ) ( )( )compni m c w x B w xζαµ α α

µ ψ ψγ ∂ − =


  

( )( ) ( ) ( ) ( )
( ) ( ) ( )( )comp22 2 nn n nm c w x B w xζ

ϕ ϕ+ =   

( )( ) ( ) ( ) ( )
( ) ( ) ( )( )comp22 2 nn n nm c w x B w xζ

ϕ ϕ+ ++ =   

( ) ( ) ( )
( ) ( ) ( )( )comp ,na a

A Aw x B w xζ
µ µ=

                 (7) 

where 

( ) ( )2

g
x x

µν
µ ν

∂ ⋅
⋅ =

∂
  

is the d’Alembert operator; ( ) ( ) ( ) ( ) ( ), , , ,n n a
AB B B B B Bζ α α

ψ ψ ϕ µϕ+
 =  
 

 are polynomials 
of distributions ( ) ( ) ( )compnw xζ

 of composite fields ( ) ( )x xα βψ ψ , 
( ) ( )n x xβϕ ψ , ( ) ( )n mx xϕ ϕ+ , ( ) ( )a bA x A xµ ν ,  . Distributions ( ) ( ) ( )compnw xζ

 
( ( ) { }1, , nnζ ζ ζ=  , 2n ≥ ) are defined as higher order functional derivatives at a 
point 

( ) ( ) ( )
( ) ( )1

1

comp

1

, ,

n

n

n

n

n

n x x x

Ww x
q x q x

ζ

ζζ

δ
δ δ

→

=







 

Equations (7) can be written in the form 

( ) ( ) ( ) ( )( )comp ,nw x B w xζη ζ η
ζ =                  (8) 

where 0
k p

p xp aη η
ζ ζ=
= ∂∑  is the matrix differential operator. Solutions of the 

Schwinger equation (4) determined the generating functional ( )Z q  and solu-
tions of Equations (7), (8) can be found in the approximate form by the diagram 
technique [25] [26] [27], which will be considered in Sections VI and VII. In the 
common case, solutions of Equations (7) and (8) are distributions and have sin-
gularities. The question is: which distributions of the densities ( )w xζ  can be 
multiplied and, therefore, form a commutative algebra? We consider the densi-
ties ( )w xζ  expressed in the oscillatory--integral form [33] [35] [36] 

( ) ( ) ( )* , exp , d ,
T

w x F x i xζ ζ ζχ σ χ χ =  ∫ 
            (9) 

where *T   is the cotangent bundle over the space-time manifold  , 
( ),xζσ χ  is the phase function, ( ),F xζ χ  is the amplitude, χ  is the covec-

tor, and ( ) *,x Tχ ∈  . It should be noted that relation (9) defines Lagrangian 
distributions, which form the subset of the space of all distributions ( )D′  . 

https://doi.org/10.4236/jmp.2019.107054


L. Lutsev 
 

 

DOI: 10.4236/jmp.2019.107054 802 Journal of Modern Physics 
 

Any Lagrangian distribution can be represented locally by oscillatory integrals 
[36]. Conversely, any oscillatory integral is a Lagrangian distribution. We con-
sider the case of the real linear phase function of χ  

( ), ,x k xζ ζ
ν νσ χ χ=                       (10) 

where kζ  is a coefficient. Our consideration of the case of Lagrangian distribu-
tions is motivated by the statement that, if the multiplication cannot be defined 
on the Lagrangian distribution subset, then this operation cannot be defined on 
the space ( )D′  . 

The wavefront set ( )WF u  of a distribution u can be defined as [28] [33] [35] 

( ) ( ) ( ){ }*WF , | ,xu x T uξ ξ= ∈ ∈Γ  

where the singular cone ( )x uΓ  is the complement of all directions ξ  such 
that the Fourier transform of u, localized at x, is sufficiently regular when re-
stricted to a conical neighborhood of ξ . The wavefront of the distributions 

( )WF wζ  characterizes the singularities of solutions and is determined by the 
wavefront of ( ) ( ) ( )compnw xζ

 and by the characteristics of the matrix operator 
η
ζ  [33] [35] 

( ) ( ) ( ) ( )( )( )compWF Char WF ,nw B wζζ η η
ζ⊂              (11) 

where the characteristics ( )Char η
ζ  is the set ( ){ }*, \ 0x T Mξ ∈  defined by 

linear algebraic equations of highest power orders in the unknown Fourier 
transforms ( )wζ ξ  

( ) ( )
, max

0,p
p

p k
a i wη ζ

ζ
ζ

ξ ξ
=

− =∑   

where coefficients paη
ζ  are defined by the matrix differential operator 

0
k p

p xp aη η
ζ ζ=
= ∂∑  in Equation (8) and are equal to coefficients of linear diffe-

rential operators acted on the densities ( )w x  in equation (7). The covector 
( )*T xξ ∈  lies in the cotangent cone xΓ  at the point x. Taking into account 

Equations (7), we can find that 

( )Char ,
x

gη µν
ζ µ νξ ξ=  

consequently, singularities of solutions are located on this cone. The wavefronts 
( ) ( )( )compWF nwζ  of composite fields are considered in Sections III and VI. In 

Section VI we find that in the framework of the diagram expansion wavefronts 
( ) ( )( )compWF nwζ  are determined by ( )Char η

ζ . 
Starting from the proposition that properties of the space-time manifold   

are defined by the quantum fields ( )xζΨ  and, consequently, by the commuta-
tive algebra   of distributions ( )w xζ , in the next section we find that this 
statement results in essential restrictions imposed on the space-time manifold 
 . 

3. Algebra of Distributions of Quantum-Field Densities. 
Fermion and Boson Sectors 

In order to determine points of the space-time manifold   by means of the 
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densities ( )w xζ , it is necessary to define multiplication on densities, to con-
struct the commutative algebra   of distributions of densities, and to find 
maximal ideals of this algebra. According to Ref. [33] [35], multiplication on 
distributions ( ),u v D M′∈  with wavefronts ( ) ( ){ }WF ,u x ξ=  and  

( ) ( ){ }WF ,v x η=  is determined, if and only if 

( ) ( )WF WF ,u v′ = ∅                    (12) 

where ( )WF v′  is the image of ( )WF v  in the transformation  
( ) ( ), ,x xη η−  in the cone subset Γ  of the cotangent bundle *T M . The 
wavefront of the product is defined as 

( ) ( ) ( ) ( ){
( ) ( ) }

WF , | , WF or 0,

, WF or 0; 0 .

uv x x u

x v

ξ η ξ ξ

η η ξ η

⊂ + ∈ =

∈ = + ≠
          (13) 

Taking into account the linear form of the phase function (10), from relations 
(12) and (13) we obtain restrictions on the densities ( )w xζ . For this purpose, 
we consider wavefronts of densities for the case of the 4-dimensional space-time 
manifold  , when the structure group of the cotangent bundle *T   is the 
Lie group ( )4 ,SO p p−  with 0p = , 1p = , and 1p > . 

The fields Ψ  (2) are observed relative to inertial frames of reference in the 
space-time manifold  . Rectilinear motion transforms the fields Ψ  and, 
consequently, their densities ( )w xζ  and wavefronts. This transformation can 
be considered as a diffeomorphism of   and is described by the arcwise con-
nected part of the ( )4 ,SO p p−  group. More precisely, if :f ′Ω →Ω  is the 
diffeomorphism of open subsets , M′Ω Ω ⊂ , * *:f T T+ ′Ω → Ω  is the diffeo-
morphism induced by f, and ( ) ( )* :f D D′ ′ ′Ω → Ω  is the isomorphism, then 
for the distribution ( )u D′∈ Ω  [33] [35] 

( ) ( )*WF WF .f u f u+=                     (14) 

Thus, rectilinear motion results in the transformation *f  of the field densi-
ties ( )w xζ  induced by the arcwise connected part of the structure group and 
the transformation f+  of density wavefronts (14). If, as a result of these trans-
formations, the covector ( ) *WF w T Mζξ ∈ ⊂  changes its orientation ξ ξ− , 
then the multiplication (13) on the density ( )1w xζ  with the covector ξ  and 
the density ( )2w xζ  with the covector ξ−  is impossible. We consider trans-
formations of density wavefronts induced by the arcwise connected part of the 
structure group (14) and by discrete symmetry transformations—the time re-
versal and the space reflection. 

3.1. Time Reversal 

We assume that the co-ordinate variables of the space-time manifold   can 
be divided by time ct and space r variables, { }1 1, , , ,p px ct ct r +=     
( )0,1,2,p =  . The structure group of the space-time manifold is ( )4 ,SO p p− . 
We consider the time reversal T on the manifold   and the possibility of em-
bedding of the time reversal into the arcwise connected part of the group 
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( )4 ,SO p p− . 
Euclidian space-time manifold with the structure group ( )4,0SO . Let us 

consider the case of the time reversal on the Euclidian space-time manifold M 
with the structure group ( )4,0SO  of the cotangent bundle *T  . The signa-
ture of the space-time metric is ( )− − − − . In this case, 0p =  and the time va-
riable ct is identical to the space one (for example, 1r ). The image of the inver-
sion ξ ξ−  in relation (14) on wavefronts of densities can be reached by the 
transformation induced by the arcwise connected part of the group ( )4,0SO  
(Figure 1(a)). Thus, we always can find densities with covectors ξ  and η  in 
relation (13) such that 0ξ η+ = . Consequently, multiplication on distributions 
in the Euclidian space-time manifold with the signature of the space-time metric 
( )− − − −  is impossible. One can only say about a partial multiplication opera-
tion on a subset of the distribution space. The analogous consideration can be 
carried out for manifold   with the structure group ( )0,4SO  and with the 
signature of the space-time metric ( )+ + + + . 

Pseudo-Euclidian space-time manifold with the structure group ( )3,1SO . 
The signature of the space-time metric is ( )+ − − − . In accordance with relation 

0g µν
µ νξ ξ =  defining boundaries of a singular cone, the space-time manifold is 

separated by three regions: the future light cone ( )fΓ , the past light cone ( )pΓ , 
and the space-like region ( )sΓ  (Figure 1(b)). The multiplication of distribu-
tions with singularities in the region ( )sΓ  is impossible because of the existence 
of the inversion ξ ξ−  reached by the arcwise connected part of the group 

( )3,1SO . Therefore, singularities can exist only in the cone ( )fΓ  or in the cone 
( )pΓ . The time reversal T inverts the covector ( ) *WF w Tζξ ∈ ⊂   from the 

future light cone ( )fΓ  to the past light cone ( )pΓ  (Figure 1(b)). The Lorentz 
transformation ( )3,1SO  acts on future and past light cones separately. Con-
sequently, the arcwise connected part of the group ( )3,1SO  does not contain 
the time inversion. So, if we exclude field density distributions ( )w xζ  with 
singularities in the past light cone ( )pΓ  and consider only density distributions 
with singularities in the future light cone ( )fΓ , then for these distributions the 
multiplication can be defined. Correspondingly, densities of states ( )T xζΨ  are 
forbidden. In this case, we have the one-way direction of time and there is not 
the symmetry of time on density distributions. The arrow of time is pointing 
towards the future. According to (13), the wavefront of the product of quan-
tum-field densities in the future light cone ( )fΓ  is given by 

( ) ( )1WF , | , 0 ,n i i i
n n

f

i i
w w xζ ζ ζ ζζ ξ ξ ξ

  ⊂ ∈Γ ≠  
  
∑ ∑  

where ( )i i iζ ζξ β χ=  is the covector associated with the density iwζ , ζβ  is a 
function of field invariants, such as chirality, charge signs, charge parity, etc. 
Taking into account that for the Dirac adjoint spinor density ( ) ( )w xα

ψ  and for 
the density ( ) ( )nw x

ϕ+
 the exponent term in the integral in relation (9) must 

have opposite sign than for densities ( ) ( )w xα
ψ  and ( ) ( )nw xϕ , respectively, and, 

therefore, is transformed as ( ) ( ), ,i x i xζ ζσ χ σ χ→ −  (for ( ) ( ) ( ) ( )w x w xα α
ψ ψ→ , 

( ) ( ) ( ) ( )n nw x w xϕ ϕ+
→ ), we find that in the cone ( )fΓ  
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Figure 1. Transformation of the covector ξ ξ−  at the time 
reversal of the space-time manifold   with the structure 
groups (a) ( )4,0SO , (b) ( )3,1SO , and (c) ( )2,2SO . The 

image of the transformation ξ ξ−  can be reached by means 
of a transformation of the arcwise connected part of groups 

( )4,0SO  and ( )2,2SO  and is not attainable for the case of the 

arcwise connected part of the ( )3,1SO  group. 

 

( ) ( )0, 0ψ ψβ β> <  

( ) ( )0, 0.ϕ ϕ
β β +> <                      (15) 

Pseudo-Euclidian space-time manifold with the structure group  
( )4 ,SO p p−  ( 1p > ). The signatures of the space-time metric are ( )+ + − −  

( 2p = ) and ( )+ + + −  ( 3p = ). If the time dimension is equal to 2 or higher 
( 1p > ), then the image of the time inversion of densities in the time plane 

( )1, , pct ct  is attained by means of a transformation of the arcwise connected 
part of the group ( )4 ,SO p p−  (Figure 1(c)). In this case, one can find densi-
ties with covectors ξ  and η  in relation (13) such that 0ξ η+ = . Multiplica-
tion on distributions in this space-time manifold is impossible. 

3.2. Space Reflection and Charge Conjugation in the Fermion  
Sector 

Another restriction to define multiplication on the density distribution algebra is 
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caused by the chirality of fermions and by the charge conjugation. Since, ac-
cording to the above-mentioned subsection the pseudo-Euclidian space-time 
manifold with the Lorentz group ( )3,1SO  and the arrow of time are necessary 
conditions for definition of multiplication on density distributions, we consider 
fermion distributions with singularities in the future light cone ( )fΓ . 
Right-handed and left-handed states of the Dirac fields ( )xαψ  and ( )xαψ  
are defined by projective operators ( )51 2γ±  acting on a spinor [14] [15] [37] 

( ) ( )
51

2R x xα αγψ ψ+
=  

( ) ( )
51 .

2L x xα αγψ ψ−
=  

The space reflection P converts the right-handed spinor into the left-handed 
one, and vice versa 

( ) ( )R p LP x iL xα αψ ψ=  

( ) ( ) ,L p RP x iL xα αψ ψ=  

where in the Weyl (chiral) basis 

0
0p

I
L

I
 

=  
 

 

and I is the identity 2-matrix. ( )R xαψ  and ( )L xαψ  are eigenvectors of the op-
erator 5γ  with the chirality 1λ =  (the right-handed state) and the chirality 

1λ = −  (the left-handed state), respectively. Double space reflection 2P  can be 
regarded as 360˚ rotation. It transforms spinors as 

( ) ( )2 ,P x xα α
ρ ρψ ψ= −  

where { },R Lρ = . 
For fulfilment of relations (15) the coefficients ( )ψβ  and ( )ψβ  must contain 

a charge factor cκ  such that ( ) 1β ψ =  and ( ) 1β ψ = − . We consider two 
cases, (1) cβ λκ=  with the chirality λ  and (2) cβ κ=  without chirality. In 
order to fulfil multiplication on densities ( ) ( )

R
w xα

ψ , ( ) ( )
L

w xα
ψ , ( ) ( )

R
w xα

ψ , 

( ) ( )
L

w xα
ψ  in the first case, for right-handed and left-handed states of the fer-

mion fields we should get 

( )( ) ( )( )1, 1,c R c Lx xα ακ ψ κ ψ= = −  

( )( ) ( )( )1, 1,c R c Lx xα ακ ψ κ ψ= − =  

( )( ) ( )( )1, 1,R Lx xα αλ ψ λ ψ= = −  

( )( ) ( )( )1, 1.R Lx xα αλ ψ λ ψ= = −  

The charge conjugation C transforms cκ : ( )( ) ( )( ) 1c R c RC x xα ακ ψ κ ψ= = − , 
( )( ) ( )( ) 1c R c RC x xα ακ ψ κ ψ= = , ( )( ) ( )( ) 1c L c LC x xα ακ ψ κ ψ= = , and  
( )( ) ( )( ) 1c L c LC x xα ακ ψ κ ψ= = − . The commutative algebra   of distributions 

contains densities ( )w xζ  of states ( )R xαψ , ( )L xαψ , ( )R xαψ , ( )L xαψ ,  
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( )RCP xαψ , ( )LCP xαψ , ( )RCP xαψ , ( )LCP xαψ , their sums and products. Den-
sities ( )w xζ  of states ( )RP xαψ , ( )LP xαψ , ( )RP xαψ , ( )LP xαψ , ( )RC xαψ , 

( )LC xαψ , ( )RC xαψ , ( )LC xαψ  are forbidden and are not contained in the al-
gebra  . This version of the theoretical model contains particles and antipar-
ticles and can explain the chirality violation. Quantum states of a particle and an 
antiparticle can be interchanged by applying the CP-operation. 

In the second case, the fulfilment of the relation cβ κ=  with  
( )( ) ( )( ) 1c R c Lx xα ακ ψ κ ψ= =  and ( )( ) ( )( ) 1c R c Lx xα ακ ψ κ ψ= = −  results in for-

bidden densities ( )w xζ  of states ( )RC xαψ , ( )LC xαψ , ( )RC xαψ , and 
( )LC xαψ . Wavefronts of these densities are in the past light cone ( )pΓ : 

( )( )WF
RCwα

ψ , ( )( )WF
LCwα

ψ , ( )( )WF
RCwα

ψ , and ( )( ) ( )WF
L

p
Cwα
ψ ∈Γ . At the same 

time, the commutative algebra   of distributions contains densities ( )w xζ  
of states ( )R xαψ , ( )L xαψ , ( )R xαψ , ( )L xαψ , ( )RP xαψ , ( )LP xαψ , ( )RP xαψ , 
and ( )LP xαψ . In this case, the theoretical model does not contain antiparticles 
and the chirality is not violated. In the experiment this case of the theoretical 
model is not observed. 

3.3. Charge Conjugation in the Boson Sector 

We consider the common case of the boson (Higgs) sector containing the quan-
tum fields ( )n xϕ  and ( )n xϕ+ . We assume that ( ) ( )n nx xϕ ϕ+≠ . By analogy 
with the fermion case, the covector of singularity of the density of ( )n xϕ  is 

( )ϕβ χ  and the analogous covector of the density of ( )n xϕ+  is ( )ϕ
β χ+− , re-

spectively. In order to fulfil relations (15) and the requirement that ( )ϕβ χ , 

( )
( )f

ϕ
β χ+− ∈Γ , we must write the coefficient β  in the form  

( ) ( )( ) 1n
c xϕβ κ ϕ= =  and ( ) ( )( ) 1n

c x
ϕ

β κ ϕ+
+= = − . The charge conjugation C 

changes the sign of the factor cκ : ( )( ) ( )( ) 1n n
c cC x xκ ϕ κ ϕ+= = −  and 

( )( ) ( )( ) 1n n
c cC x xκ ϕ κ ϕ+ = = . Thus, densities of ( )n xϕ  and ( )n xϕ+  can be 

multiplied and are included in the algebra  . On the contrary, wavefronts of 
densities of states ( )nC xϕ  and ( )nC xϕ+  are in the past light cone ( )pΓ  and 
must be excluded. This leads to the charge conjugation symmetry violation in 
the boson sector. 

It should be noted that in the modified theoretical models of the Higgs boson 
sector [17] [18] [19] [20] [21] [41] [42] [43] [44] extending the BEH model [38] 
[39] [40] some particles in the Higgs sector have negative charge parities and are 
charged. In this case, the above-mentioned C-violation on density distributions 
in the Higgs sector can explain the observed matter-antimatter imbalance. 

Thus, as a result of this section, we define the multiplication on distributions 
of the fermion and boson (Higgs) quantum-field densities. Fermion and boson 
density distributions with singularities in the future light cone ( )fΓ  are genera-
tors of the algebra  , which is commutative for boson densities and super-
commutative for fermion ones (Grassmanian variables). The asymmetry of time 
(T-violation), the chiral asymmetry (P-violation) and the charge (C) conjugation 
symmetry violation are caused by singularities of density distributions and these 
space-time manifold properties are local. In the next section we consider restric-
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tions imposed by fulfilment of the density multiplication operation for gauge 
fields. 

4. Gauge Fields and the Density Distribution Algebra 

Multiplication on distributions in the density distribution algebra   imposes 
restrictions on theoretical models with non-abelian gauge fields. In this section 
we demonstrate that instantons ensured tunneling between different topological 
vacua cannot be included in the algebra  . Let us consider the gauge fields aAµ  
with the non-abelian gauge group   in the pseudo-Euclidian space-time ma-
nifold   (the Minkowski space-time) with the structure group ( )3,1SO  and 
discuss the generally accepted instanton model, in which instantons are func-
tions. At the given time t the space variables form the Euclidian space 3 . Ad-
joining the single point ∞ , we can form the compact topological space 

{ }3 ∞ . This one-point compactification of the 3-dimensional Euclidean 
space 3  is homeomorphic to the 3-sphere 3 . If the local transformation 
( ),U x t G∈  of the gauge Lie group   is trivial at x →∞  

( )lim , 1,
x

U x t
→∞

=  

then the gauge potential a
aA A Tµ µ=  ( aT  is the gauge matrix belonging to the 

Lie algebra of the group  ) at x →∞  is the pure gauge 

( ) ( )1 , , .A U x t U x tµ µ
−= ∂                    (16) 

and the gauge fields aFµν  are vanishing. The map on the gauge group   
3:f →   

defines the homotopy group ( )3π  . If ( )G SU N= , then, using the Bott peri-
odicity theorem for unitary groups ( )SU N  ( 2N ≥ ), one can find that [45] 
[46] 

( )( )3 .SU Nπ =                         (17) 

In this case, the gauge potential Aµ  (16) is characterized by homotopy 
classes n∈  of the group ( )( )3 SU Nπ  (17) and can be classified by the to-
pological index [47] 

32

1 tr d ,
24

n A A Aµνρσ ν ρ σ µε σ
π

 =  ∫                 (18) 

where ( )1 p
µνρσε = − , p is the parity of the permutation { }µνρσ . If the Min-

kowski space-time   can be substituted by the Euclidian space-time manifold, 
then the topological index (18) can be written via the Pontryagin index 

4
2

1 tr d ,
16

Q F F xµν
µνπ

−  =  ∫                    (19) 

where 2F F ρσ
µν µνρσε=  is the dual fields in Euclidean space, a aF F Tµν µν= , 

and a aF F Tµν µν=  . 
Taking into account (16), (17), and (18), one can find that vacuum states are 

characterized by the topological index n. The gauge operator mU  with the to-
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pological index m transforms the vacuum state [47] [48] [49] 

.mU n n m= +                        (20) 

According to [14] [15] [47] [48] [49] [50] an instanton is a gauge field confi-
guration fulfilling the classical equations of motion in Euclidean space-time, 
which is interpreted as a tunneling effect between different topological vacua 
n . Instantons are labeled by its Pontryagin index Q (19). If 1Q = , the instan-

ton solution is written as [14] [15] [47] [48] [49] [50] 

( ) ( )
2

1
1 12 2 , , ,A U x t U x tµ µ

ρ
ρ λ

− 
= ∂ 

+ 
                (21) 

where λ  is the scale parameter giving the instanton size,  
( )

1 2222x ct aρ = + − , a is the instanton center point. One can imagine that the 
instanton (21) ensures tunneling between the topological vacuum n  at 
t → −∞  and the vacuum 1n +  at t →∞ . Taking into account that topolog-
ical vacua n  are connected by instanton tunneling and requiring the physical 
vacuum state to be stable against gauge transformations (20), one can find that 
the physical vacuum is 

e ,in

n
nθθ −= ∑                       (22) 

where θ  is the phase angle. In this case, eim
mU θθ θ= . The gauge theory 

with θ -vacuum ( 0θ ≠ ) (22) can be regarded as the theoretical model with the 
additional term proportional to Qθ  in the action (3) [14] [15] [47] 

S S i Qθ→ −  

in the case of the Euclidean space-time and 

S S Qθ→ +                           (23) 

in the case of the Minkowski space-time. Q is the Pontryagin index (19). The 
additional term Qθ  breaks P and CP invariance [14] [15] [47] [51]. 

In the instanton solution a
aA A Tµ µ=  (21) the gauge potentials aAµ  are func-

tions. Can the instanton solution (21) be generalized on the distribution space 
( )D′  ? And can instanton density distributions are multiplied? In order to 

answer these questions, we consider theoretical models, in which Euclidean in-
stanton solutions have been found and the tunneling behavior has been 
transfered on the Minkowski space by the Wick rotation [47] [49] [50] [52] [53], 
and models, in which vacuum tunneling has been studied directly in the Min-
kowski space [54] [55]. 

Euclidean instanton solutions. 
In order to look for a tunneling path in gauge theory which connects topolog-

ically different classical vacua n , one performs an analytic continuation of the 
action ( )S Ψ  (3) to imaginary (Euclidean) time itτ =  [47] [49] [50] [52] [53]. 
In this case, instanton solutions (21) are functions and the analytic continuation 
is correct. In contrast with function spaces, the analytic continuation of density 
distributions of quantum fields ( ) ( ) ( )a

Aw x A Dµ ′∈ ∈   to imaginary time 
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itτ =  changes their singularities. The changes in singularities are due to 
changes in the functional integral (6) 

( ) ( ) ( )( )exp ,iZ q S q D = Ψ + Ψ Ψ  ∫


 

( ) ( )( )1exp , .S q D− → Ψ + Ψ Ψ  ∫


 

Let us consider these changes in distributions ( ) ( )a
Aw xµ  in detail. Suppose 

that a gauge field has the topological vacuum n  at t → −∞ . In order to find a 
tunneling path, we consider t > −∞  and perform the complexification 

ct t iτ→ +  ( ,t τ ∈ℜ ). In this case, the time is 2-dimensional. According to Fig-
ure 1(c) (Section III), one can find densities ( ) ( )a

Aw xµ  with covectors ξ  and 
η  in relation (13) such that 0ξ η+ =  and multiplication on distributions in 
this space-time manifold is impossible. If we consider the restriction of distribu-
tions on the imaginary time τ , then the space-time manifold is Euclidean. As in 
the above-mentioned case, we always can find densities with covectors ξ  and 
η  in relation (13) such that 0ξ η+ =  (Figure 1(a)). Consequently, multipli-
cation on distributions ( ) ( )a

Aw xµ  is impossible, too. Thus, instanton density 
distributions are not contained in the algebra  . 

Vacuum tunneling in the Minkowski space. 
Vacuum tunneling of non-abelian gauge theory directly in the Minkowski 

space has been studied in [54]. In order to connect vacua of different topological 
indices and to obtain the potential-energy barrier in winding-number space, 
through which tunneling occurs, the authors introduce a family of intermediate 
field configurations as 

0 0,A =  

( ) ( )( ), , ,A x t f x tλ=


                    (24) 

where λ  is a parameter describing the field configuration within the family. 
The initial potential is ( )

1

1A f
λ λ=

=


 and the terminal potential is ( )
2

2A f
λ λ=

=


. 
The function f



 varies continuously from ( )1A


 to ( )2A


 as λ  varies from 

1λ  to 2λ . The WKB vacuum-tunneling amplitude has been found from diffe-
rential equations in which the parameter ( )tλ  is the dynamical variable. 

But, the attempt to generalize the above-mentioned family of intermediate 
field configurations on density distributions ( ) ( )a

Aw xµ  of quantum fields results 
in impossibility to define multiplication on these densities. Indeed, the motion 
along the curve ( )tλ  (24) in the winding-number space is possible in forward 
and backward directions. Consequently, the time reversal T inverts the covector 

( )( ) *WF a
Aw Tµξ ∈ ⊂   and one can always find densities ( )

( ) ( )1a
Aw xµ  and 

( )
( ) ( )2a
Aw xµ  with covectors ξ  and η , relatively, in relation (13) such that 

0ξ η+ = . Multiplication is only partial defined and, therefore, one can conclude 
that instanton density distributions must be excluded from the algebra  . As it 
is shown in Section V, these distributions cannot define ideals and points of the 
space-time manifold  . 
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The additional term Qθ  in the action S (23) breaks P and CP invariance and 
contributes directly to the neutron electric dipole moment [51] [56]. According 
to the above-mentioned consideration, instanton distributions are impossible 
and, therefore, tunneling effects between different topological vacua n  do not 
occur. This leads to a degeneration of the energy density of the θ -vacuum (22) 
with respect to the phase θ . The vacuum energy density becomes θ -invariant. 
In order to achieve the θ -invariance in the action S (23), one should require 
that the Pontryagin index Q is equal to zero. This leads to the zero value of the 
neutron electric dipole moment. 

Thus, in Sections III and IV, we define the multiplication on distributions of 
the quantum-field densities and construct the commutative density distribution 
algebra  . Multiplication is well-defined operation for all elements of the alge-
bra. Fermion, boson (Higgs) and gauge field density distributions with singulari-
ties in the future light cone ( )fΓ  satisfying the restriction requirements are ge-
nerators of the algebra  . Spectrum of the density distribution algebra   
and the scheme ( ),    are considered in the next section. 

5. Ideals and Spectrum of the Density Distribution Algebra. 
Scheme ( ),    

For definition of the scheme ( ),    contained the spectrum of the com-
mutative density distribution algebra   isomorphic to the space-time mani-
fold  , it needs to carry out localization and to determine the sheaf of struc-
ture algebras and the spectrum of the algebra  . To this end, we define prime 
and maximal ideals of this algebra. The algebra   consists of density distribu-
tions ( )w xζ  with singularities in the closed future light cone subset, 

( ) ( ) *WF fw Tζ ⊂ Γ ⊂  . The complement of the future light cone subset ( )fΓ  
is the open cone subset ( )fΓ . In the cone subset ( )fΓ  the densities ( )w xζ  are 
C∞ -smooth functions. We define the maximal ideal at the point 0x  as the set 
of distributions equal to zero at the point 0x  in the cone subset ( )fΓ  (Figure 
2) 

( ) ( ) ( ){ }0
0

| lim 0 in .f
x x x

m w x w xζ ζ

→
= = Γ  

p is called a prime ideal if for all distributions ( )1w x  and ( )2w x A∈  with 
( ) ( )1 2w x w x p∈  we have ( )1w x p∈  or ( )2w x p∈  [57] [58]. Every maximal 

ideal xm  is prime. 
In the process of localization of the algebra   we find a local algebra con-

tained only information about the behavior of density distributions ( )w xζ  
near the point x of the space-time manifold  . We consider the case of max-
imal ideals. Then, the local algebra x  is defined as the commutative algebra 
consisting of fractions of density distributions ( )1w x  and ( )2w x  

( )
( ) ( ) ( ) ( )1

1 2 2
2

, , ,x x

w x
w x w x w x m

w x
  = ∈ ∉ 
  

             (25) 
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Figure 2. Maximal ideal is defined as the set of 
distributions equal to zero at the point 0x  in the 

cone subset ( )fΓ , which is complement of the 
future light cone. 

 
where xm  is the maximal ideal at the point x. The fraction ( ) ( )1 2w x w x  is 
the equivalence class defined as 

( )
( )

( )
( )

1 1

2 2

,
w x w x
w x w x

′
=

′
 

if there exists the distribution ( )v x ∈ , ( ) xv x m∉  such that 

( ) ( ) ( ) ( ) ( )( )1 2 2 1 0.v x w x w x w x w x′ ′− =  

Operations on the local algebra x  (25) look identical to those of elementary 
algebra 

( )
( )

( )
( )

( ) ( ) ( ) ( )
( ) ( )

1 1 1 2 1 2

2 2 2 2

w x w x w x w x w x w x
w x w x w x w x

′ ′ ′+
+ =

′ ′
 

and 

( )
( )

( )
( )

( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

.
w x w x w x w x
w x w x w x w x

′ ′
⋅ =

′ ′
 

Algebras 
iU  on open sets iU M⊂  

i
i

U x
x U∈

=


   

determine the structure sheaf [59] { }iM U=   on the space-time manifold 
 . The inverse limit of the structure sheaf M  coincides with the algebra   

lim ,
i

i
UU M∈

=


   

where { }iU  is the open covering of  . 
The spectrum of the algebra  , denoted by ( )Spec A , is the set of all prime 

ideals of  , equipped with the Zariski topology [22] [59] [60]. The prime ideals 
correspond to irreducible subvarieties of the space ( )Spec A . Maximal ideals of 
the algebra   correspond to points. 

The structure sheaf and the spectrum of the algebra   are used in definition 
of schemes [22] [59] [60]. In our case, the scheme over the algebra   is the 
pair ( ),    such that there exists an open covering { }iU  of   for 
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which each pair ( ),
ii UU   is isomorphic to ( ),

ii VV  , where { }iV  is the open 
covering of ( )Spec A  and 

iV  is the restriction of the structure sheaf ( )Spec A  
to each iV . As a result, one can say that the local isomorphism ( )Spec≅   
imposed by the theory of schemes and by restrictions on multiplication on the 
quantum-field-density distributions in the algebra   lead to the dependence 
of the space-time properties on the matter. The arrow of time, the chirality vi-
olation of spinor fields, and the charge conjugation symmetry violation in the 
boson sector are consequences of this dependence. 

6. Densities of Composite Fields in the Framework of the 
Diagram Expansion 

Let us consider approximations of Schwinger equation solutions expressed by 
the diagram expansion and find singularities and wavefronts of composite field 
densities ( ) ( )compnwζ

 in relation (11). For this purpose, it needs to define the ge-
nerating functional of connected Green’s functions W. In the abridged notation, 
the action in the exponent of the formal solution ( )Z q  (6) of the Schwinger 
equation can be written in the form 

( ) ( )( )

( ) ( ) ( )1 1

1

4

1

4

1 1 1
1

1,
!

1 d d ,
!

p p

p

p
p

p

p p p p
p

i S q
p

x x x x x x
p

ζ ζ ζζ

ζ ζ

λ

λ

=

=

Ψ + Ψ = Ψ

≡ Ψ Ψ

∑

∑ ∑ ∫ ∫






   

    (26) 

where ( ){ } ( ){ }1 q q x iq xζ ζλ = = =   are the auxiliary fields, 2λ  are the op-
erator variables ( )im cαµ

µγ− ∂ −


 , ( )2 2ni im c− −  , and i−   acted on 
fermions, bosons and gauge field potentials, respectively. These operators are 
defined by Equations (7). 3λ  are constants of the three-particle interactions de-
fined by the Lagrangian terms (3) ( )

a
aj ae T Aα µ α β
β µψ γ ψ , n

n
α α

αβµ ψ ϕ ψ , 
* n

n
α α

αβµ ψ ϕ ψ+ , by terms with a b cA A Aµ ν ρ , and by terms with a n nAµϕ ϕ+ . The 
four-particle constants 4λ  are originated from the Lagrangian terms 
( )2n nν ϕ ϕ+  and ( )

2 a a b c d e
bc dej ae g g C C A A A Aµρ νσ

µ ν ρ σ . 
By definition, the generating functional of connected Green’s functions is 

written as 

( ) ( ) ( )1 2 3 4 1 2 3 4 2 3 4, , , ln , , , ln , , , ,W Z Z qλ λ λ λ λ λ λ λ λ λ λ= =        (27) 

where Z is defined by relation (1). The Schwinger Equation (4) for the functional 
W can be written in the form [25] 

( )
4

1 1
2

1 0,
1 ! p p

p
H

p
λ λ −

=

+ =
−∑                    (28) 

where 

1 1

1.
p

p
WH δ δ
δλ δλ

 
= + ⋅ 
 

 

Solution of the Schwinger Equation (28) can be found by iterations in the 
form of the power series expansion for the functional W with respect to the ver-
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tices 3λ , 4λ . In the zero approximation ( )3 4 0λ λ= =  the formal solution (28) 
of the functional W is written as 

( ) ( )0 1
2tr ln ,

2
W κ λ−= −  

where 1κ =  for bosons and 1κ = −  for fermions, respectively. ( )1
2 1 2x xλ−− −  

is the kernel of the inverse operator 2λ−  called the propagator. The next itera-
tion can be found by the substitution of ( )0W  for W in terms 1pH −  in Equa-
tion (28) and so on. The third order vertex approximation of the functional 

( )1 2 3 4, , ,W λ λ λ λ  is presented in Figure 3. We assign solid lines to the propaga-
tors 1

2λ
−− . Propagators 1

2λ
−−  connected to single ( 1λ ), triple ( 3λ ) and 

quadruple ( 4λ ) vertices must be integrated over space-time variables and must 
be summed over indices ζ . 

Taking into account the causality, which means that an effect cannot occur 
from a cause that is not in the back (past) light cone of that event [61] [62], we 
use causal Green’s functions and propagators. Thus, propagators  

( ) ( ) ( ){ }1
2 0, ,c c c

nlS x D x D xα
βλ−− =  can be written in the following form [61]. 

For fermions 

( ) ( )( ) ( ) ,c cS x i m c D xαα µ α
β µ βγ δ= ∂ +   

for bosons 

( ) ( ) ,c c
nl nlD x D x δ=  

and for gauge field potentials 
 

 
Figure 3. (a) Propagators 1

2λ
−− , vertices 1λ , 3λ  

and 4λ . (b) The third order vertex  
approximation of the functional ( )1 2 3 4, , ,W λ λ λ λ . 

( ) ( )0 1
2tr ln

2
W κ λ−= − . 
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( ) ( )0 0
,c c

m
D x D x

=
=                       (29) 

where 

( ) ( ) ( ) ( ) ( ) ,cD x t D x t D xθ θ− += − −  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

12

1
4 8

,
4

miD x t N m i t J m

mi K m

ε δ ρ θ ρ ρ ε ρ
π π ρ

θ ρ ρ
π ρ

±  =  

− −
−

 



 

( )2 2ct xρ = −  

( ) ( ) ( ).t t tε θ θ= − −  
( )1N x , ( )1J x , ( )1K x  are Neumann, Bessel and Hankel functions, respec-

tively. Propagators 1
2λ
−−  (29) are equal to zero in the light-cone exterior and 

have singularities on the light cone. Taking this into account, we find singulari-
ties and wavefronts of composite field densities ( ) ( )compnwζ

, which can be written 
as a derivative of the functional W 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

1

1

1

1

comp , , comp

1

, ,

1

2 1 1, ,

1

2 1 1

lim

, , d d ,

n n

n

n

n

n

n

n n

n

n x x x

n

x x x p

p
n n n n

iw x w x

i W
q x q x

i x z

x z A z z z z

ζ ζ ζ

ζζ

ζ

ζ

δ
δ δ

λ

λ

→

−

→

−

 =  
 

 =  
 

 = − − 
 

− −

∑∫ ∫


















  

      (30) 

where n is the number of fields, ( ) ( )1, ,p
nA z z  is the residual part of the dia-

gram which is depicted by the index p. Summation is drawn out over all dia-
grams. Differentiation of the functional W with respect to auxiliary fields qζ  
results in the removal of the corresponding 1λ -vertices in diagrams. In Figure 4 
hollow single vertices denote the removed 1λ -vertices and, therefore, the cor-
responding differentiation operation. For these vertices the integration over 
space-time variables and the summation over indices ζ  must be dropped out. 
In this case, singularities of derivations of the functional W (30) are determined 
by propagators 1

2λ
−−  (29) connected with hollow single vertices and the com-

posite field densities ( ) ( )compnwζ
 have singularities on the light cone. Thus, wave-

fronts ( ) ( )( )compWF nwζ  in relation (11) are included in the characteristics 

( )Char η
ζ  and wavefront sets of quantum-field density distributions are lo-

cated on the light cone. 
Now we return to relation (11) and consider a possible extension of the wave-

front set ( )WF wζ  formed by wavefronts ( ) ( )( )compWF nwζ  of composite fields. 
In other words, can wavefronts ( ) ( )( )compWF nwζ  of composite fields vary the 
wavefront set ( )WF wζ  without loss of multiplication in the algebra  ?  
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Figure 4. Differentiation of the functional W with respect 
to the auxiliary fields ( )1q xζ  and ( )2q yζ . Hollow single 

vertices denote the differentiation operation. The dotted 
line bounds residual part of the diagram. 

 
According to the above-mentioned, one can see that the only possible case, in 
which the multiplication of distributions of quantum-field densities can be de-
fined, is the case, when the quantum fields are in the space-time manifold   
with the structure group ( )3,1SO . Let us assume that wavefronts of 

( ) ( ) ( )compnw xζ
 are in the space-like region ( )sΓ  (Figure 1(b)) and wavefronts 

( ) ( )( )compWF nwζ  take part to the wavefront ( )WF wζ . The transformation f of 
the space-time manifold   induced by a rectilinear motion transforms the 
wavefront of densities ( )WF wζ  in relation (14) such that in the space-like re-
gion ( )sΓ  the covector inversion ( )WF wζξ ξ− ∈  can be reached by the 
arcwise connected part of the group ( )3,1SO . Consequently, the extension of 
the wavefront set ( )WF wζ  on the space-like region ( )sΓ  should be ignored 
because the multiplication on these distributions is impossible. The extension on 
the past light cone ( )pΓ  should be ignored too because one can find covectors 

( )
1

fξ ∈Γ  and ( )
2

pξ ∈Γ  such that 1 2 0ξ ξ+ = . Thus, the multiplication on the 
densities ( )w xζ  can be defined in the only case, in which the densities are dis-
tributions with the wavefront set ( ) ( )WF fwζ ∈Γ . 

7. Diagram Expansion with Respect to the A-Algebra  
Variables 

The multiplication on the commutative density distribution algebra   gives us 
possibility to define differentiation of functionals of  -algebra variables and to 
construct diagram expansion with respect to densities. Let us assume that func-
tionals can be given in the form of power series with respect to the densities 

( ) ( ){ }1 , , mw w x w xζζ= ∈   

( ) ( ) ( ) ( )1 1

1

1 1 1
0

d d .n n

n
n n n

n
R w F x x w x w x x xζ ζ ζζ

ζ ζ

∞

=

= ∑ ∑ ∫ ∫ 



      (31) 

The differentiation of the functional ( )R w  with respect to the density 
( )p

pw xξ  is reduced to the elimination of the density ( )p
pw xξ  and to the 

dropping out the integral over variables px  in the power series (31) 

( )
( )

( )

( ) ( ) ( )

1

1

1

1
ˆ0 , , , ,

1

1 1
0

1

ˆ ˆd d d ,

n
p

p n

p n

n
np

p

pk p n p n
k

n

R w
F x x

w x

w x w x w x x x x

ζ ζ
ξ

ζ ξ ζ

ξ ζζ

δ

δ

κ

∞

=

−

=
−

=

×

∑ ∑ ∫ ∫

∏



 

 

   



      (32) 
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where the mark ∧  points out that the given variable must be dropped. The 
summation over indices 1

ˆ, , , ,p nζ ξ ζ   in relation (32) is performed over all 
sets { }2

ˆ , , ,p nξ ζ ζ ,  , { }1 1
ˆ, , ,n pζ ζ ξ− . Since the densities ( )i

iw xζ  can be 
Grassmanian variables, we define the differentiation as left one. The term 

1
0

p
pkk κ−

=∏  appears from permutations between densities ( )i
iw xζ  during the 

differentiation. ( )deg deg1
p kw w

pkκ ⋅= −  depends on parity degrees deg pw , 
deg kw  of densities ( )p

pw xξ , ( )k
kw xζ . 

In order to construct diagram expansion of Schwinger equation solutions with 
respect to densities ( )w xζ  belonging to the  -algebra, we use the first Le-
gendre transform of the generating functional W. The technique of Legendre 
transforms makes it possible to find anomalous solutions of the Schwinger equa-
tions (4) and (28). Anomalous solutions contain nonperturbative information 
about quantum field models at spontaneous symmetry breaking and at phase 
transitions [25] [63] [64] [65]. Furthermore, the use of the diagram expansion of 
the Legendre transform greatly reduces the number of diagrams. The first Le-
gendre transform Y of the functional W is defined as [25] 

( ) ( ) ( ) ( )2 3 4 2 3 4; , , , , , d ,Y w W q w x q x xζ ζ

ζ
λ λ λ λ λ λ= −∑∫       (33) 

where the functional W is defined by relation (27) and 

( ) ( ) ( )
( )

.
W q

w x w x
i q x

ζ ζ
ζ

δ
δ

= =



                   (34) 

Taking into account relations (33) and (34), one can obtain the variable 
( )q xζ  as the functional of the density ( )w xζ  

( )
( )

( ).
Y w

q x
w x

ζ
ζ

δ
δ

= −



                      (35) 

The Schwinger Equation (4) for the functional Y can be written in the form 
[25] 

( )
4

2 1
3

1 ,
1 ! p p

p

Y w H
w p

δ λ λ
δ −

=

= +
−∑



                (36) 

where in the abridged notation 
112

2

p

p
YH w w

ww
δ δ

δδ

−−  
 = −  
   

 

 

and 
12

2

Y
w

δ
δ

−
 
 
 



 

is the kernel of the inverse operator of 

( ) ( ) ( )
2

d .Y f y y
w x w y

δ
δ δ∫



 

By analogy with solutions of Equation (28), solution of the Schwinger equa-

https://doi.org/10.4236/jmp.2019.107054


L. Lutsev 
 

 

DOI: 10.4236/jmp.2019.107054 818 Journal of Modern Physics 
 

tion (36) can be found by iterations in the form of the power series expansion for 
the functional Y with respect to the vertices 3λ , 4λ . In the zero approximation 
( )3 4 0λ λ= =  the formal solution (36) is the Gaussian functional integral and 
the functional Y is written as 

( ) ( ) ( )0 1
2 2 2

1; tr ln ,
2 2

Y w w wκλ λ λ−= − +  

where 1κ =  for bosons and 1κ = −  for fermions, respectively. The next itera-
tion can be found by the substitution of ( )0Y  for Y in the term 2H  in equation 
(36) and so on. In diagrams describing these iterations propagators 1

2λ
−− , ver-

tices 3λ  and 4λ  remain the same as shown in diagrams in Section VI. The 1λ
-vertices should be removed from diagrams and the variables w  should be in-
cluded. The first order vertex approximation of the functional ( )2 3 4; , ,Y w λ λ λ  
is presented in Figure 5. We assign wavy lines to the variables w . Propagators 

1
2λ
−−  and variables w  connected to triple ( 3λ ) and quadruple ( 4λ ) vertices 

must be integrated over space-time variables and must be summed over indices 
ζ . 

The anomalous solution is found as an extremum 

( )
0

0
w

w x ζ
ζ

δ
δ

Φ
=  

at the stationarity point ( )0w xζ  of the functional 

( ) ( ) ( ) ( )1 2 3 4 2 3 4; , , , ; , , d .w Y w w x q x xζ ζ

ζ
λ λ λ λ λ λ λΦ = +∑∫  

In order to find the anomalous solution, the Legendre transform Y should be 
given in the relevant diagram approximation. 

The natural next step should be to go from bare to dressed lines in diagrams, 
which requires analysis based on the second Legendre transform of the func-
tional W. But, it should be noted that in the generating functional W (27) coeffi-
cients 2λ  are operator variables. Since, differential operators and density dis-
tributions ( )w xζ  form a noncommutative algebra, the differentiation of the 
functional W with respect to 2λ  may be incorrect. This is required accurate de-
finition of the functional derivative 2Wδ δλ  and, consequently, the second Le-
gendre transform. This problem is planed to consider in the next study. In con-
trast with this case, in models in statistical physics (for example, for the classical 
non-ideal gas and for the Ising model) coefficients 2λ  are not operator va-
riables and the second Legendre transform is well defined [25]. 

8. Conclusions 

In summary, in this paper in the framework of the scheme theory we describe 
the dependence between quantum fields and properties of the 4-dimensional 
space-time manifold  . Contrary to algebras of smooth functions, densities of 
quantum fields, which can be found from the Schwinger equation, are distribu-
tions and, in the common case, do not form an algebra. In order to determine  
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Figure 5. (a) Propagators 1

2λ
−− , vertices 3λ , 4λ , and 

variables w . (b) The first order vertex approximation of the 

functional ( )2 3 4; , ,Y w λ λ λ . ( ) ( )0 1
2 2

1tr ln
2 2

Y w wκ λ λ−= − + . 

 
the commutative algebra   of distributions of quantum-field densities, ideals 
and its spectrum, it is necessary to define multiplication on densities and to 
eliminate those densities, which cannot be multiplied. This leads to essential re-
strictions imposed on densities forming the algebra  . Taking into account 
that in the framework of the scheme theory the space-time manifold   is lo-
cally isomorphic to the spectrum of the algebra  , ( )Spec≅  , and points 
of the manifold   are defined as maximal ideals of quantum-field density 
distributions, the restrictions caused by the possibility to define multiplication 
on the density distributions result in the following properties of the space-time 
manifold  . 

1) The only possible case, when the commutative algebra   of distributions 
of quantum-field densities exist, is the case, when the quantum fields are in the 
space-time manifold   with the structure group ( )3,1SO  (Lorentz group). 
On account of the local isomorphism ( )Spec≅  , the quantum fields exist 
only in the space-time manifold with the one-dimensional time. 

2) We must exclude field density distributions with singularities in the past 
light cone ( )pΓ . The algebra   consists of the density distributions ( )w xζ  
with wavefronts in the closed future light cone subset,  

( )( ) ( ) *WF fw x Tζ ⊂ Γ ⊂  . In this case, we have the one-way direction of time 
and there is not the symmetry of time on the density distributions. The arrow of 
time is pointing towards the future. 

3) The restrictions caused by multiplication on the density distributions can 
explain the chirality violation of spinor fields. The densities of right-handed and 
left-handed fermion states ( )RP xαψ , ( )LP xαψ , ( )RP xαψ , ( )LP xαψ , 

( )RC xαψ , ( )LC xαψ , ( )RC xαψ , ( )LC xαψ , where P is the space reflection and C 
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is the charge conjugation, are forbidden and are not contained in the algebra  . 
The commutative algebra   contains densities ( )w xζ  of states ( )R xαψ , 

( )L xαψ , ( )R xαψ , ( )L xαψ , ( )RCP xαψ , ( )LCP xαψ , ( )RCP xαψ , ( )LCP xαψ , 
their sums and products. 

4) For bosons (for example, in the Higgs sector) the densities of states 
( )nC xϕ  and ( )nC xϕ+ , where ( ) ( )n nx xϕ ϕ+≠ , must be excluded from the 

algebra  . The algebra   contains densities of ( )n xϕ  and ( )n xϕ+ . This 
leads to the charge conjugation symmetry violation and can explain the observed 
matter-antimatter imbalance. 

5) Multiplication on distributions in the density distribution algebra   im-
poses restrictions on theoretical models with non-abelian gauge fields. In the 
framework of the scheme theory instanton distributions are impossible and, 
therefore, tunneling effects between different topological vacua n  do not oc-
cur. This leads to a degeneration of the energy density of the θ -vacuum with 
respect to the phase θ , to zero value of the Pontryagin index Q and to zero val-
ue of the neutron electric dipole moment. 

The well-defined multiplication on the density distributions ( )w xζ  and the 
commutability of the algebra   give the possibility to construct diagram ex-
pansion with respect to the  -algebra variables. The technique of Legendre 
transforms makes it possible to find anomalous solutions of the Schwinger equa-
tion. 
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