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Abstract 

In Part II of this study of spiral galaxy rotation curves we apply corrections 
and estimate all identified systematic uncertainties. We arrive at a detailed, 
precise, and self-consistent picture of dark matter. 
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1. Introduction 

Dark matter in the core of spiral galaxies can exceed 107 times the mean dark 
matter density of the Universe. For this reason we have studied spiral galaxy ro-
tation curves measured by the THINGS collaboration [1] with the hope of con-
straining the properties of dark matter [2]. In “Part I” of this study [2] we inte-
grate numerically the equations that describe the mixture of two self-gravitating 
non-relativistic ideal gases, “baryons” and “dark matter”. These equations re-
quire four boundary conditions: the densities ( )minh rρ  and ( )minb rρ  of dark 
matter and baryons at the first measured point minr , and the “reduced” 
root-mean-square radial velocities 

1 22
rhv ′  and 

1 22
rbv ′ , defined as follows: 

2
r2

r ,
1

h
h

h

v
v

κ
′ ≡

−                         
(1) 

and similarly for baryons. 1 22
rhv  is the root-mean-square of the radial compo-

nent of the dark matter particle velocities, and 0 1hκ≤ ≤  describes dark matter 
rotation, see [2] for details. In the present analysis we take ( )0.15 0.15 systhκ = ±  
[2]. The four boundary parameters are fit to minimize the 2χ  between the ro-
tation curves ( )obsv r  and ( )bv r  measured by the THINGS collaboration [1], 
and the calculated rotation curves. The fits obtain rotation curves within the ob-
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servational uncertainties. These fits are presented in Figures 1 to 10 of [2], and 
the fitted parameters are presented in Table 1 of [2]. 

In the present analysis we apply corrections and study all identified systematic 
uncertainties. We use the standard notation in cosmology as defined in [3], and 
the values of the cosmological parameters therein. Occasionally we use units 
with 1=  and 1c =  as is customary. 

2. Corrections from ( )h rρ min  to ( )h rρ 0→  

The first measured point minr  does not lie in the center of the spiral galaxy core, 
so we make a correction from ( )minh rρ  to ( )0h rρ →  by numerical integra-
tion with the same equations and parameters described above. These corrections 
are presented in Table 1. 

3. Measurement of the Adiabatic Invariant ( )hv rms 1  

For each spiral galaxy we obtain the parameter 

( ) ( )
( )2 3

2 2 crit
rms r

3 1
1 3 .

0
hc

h h
h h

kT
v v

m
ρ

ρ
 Ω

≡ ≡  
                

(2) 

( )rms 1hv  is the dark matter particles root-mean-square velocity extrapolated to 
the present time with expansion parameter 1a =  in three dimensions, hence 
the factor 3. ( )1hT  is the temperature of dark matter of a homogeneous Un-
iverse at the present time. The parameter ( )rms 1hv  is invariant with respect to 
adiabatic expansion of the dark matter. Note that for an ideal “noble” gas  

 
Table 1. Corrections from ( )minh rρ  [2] to ( )0h rρ → . The statistical uncertainty is 

from the fit [2]. The systematic uncertainty is from the extrapolation from minr  to 
0r → . 

Galaxy minr   
[kpc] 

( )minh rρ   
2 310 pcM− −  

 

( )0h rρ →   
2 310 pcM− −  

 

NGC 2403 0.5 ( )7.5 1.4 stat±  ( ) ( )10.3 1.4 stat 0.8 syst± ±  

NGC 2841 4.0 ( )9.3 0.7 stat±  ( ) ( )20.8 0.7 stat 6.0 syst± ±  

NGC 2903 1.0 ( )14.6 2.1 stat±  ( ) ( )14.7 2.1 stat 0.7 syst± ±  

NGC 2976 0.1 ( )4.0 2.7 stat±  ( ) ( )4.06 2.70 stat 0.03 syst± ±  

NGC 3198 1.0 ( )4.5 0.8 stat±  ( ) ( )5.3 0.8 stat 1.0 syst± ±  

NGC 3521 1.0 ( )22.9 8.6 stat±  ( ) ( )24.6 8.6 stat 0.7 syst± ±  

NGC 3621 0.5 ( )2.6 0.5 stat±  ( ) ( )2.93 0.50 stat 0.10 syst± ±  

DDO 154 0.25 ( )1.3 0.3 stat±  ( ) ( )1.36 0.30 stat 0.10 syst± ±  

NGC 5055 1.0 ( )28.2 6.8 stat±  ( ) ( )37.3 6.8 stat 9.0 syst± ±  

NGC 7793 0.25 ( )8.0 1.6 stat±  ( ) ( )8.98 1.6 stat 0.5 syst± ±  
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1 constanthT V γ − =  with 5 3γ = . By “noble” we mean that collisions (if any) 
between dark matter particles do not excite internal degrees of freedom (if any) 
of these particles. Alternatively, Equation (2) can be understood as 1hv a∝  for 
non-relativistic particles in an expanding Universe. At expansion parameter a  
when perturbations are still linear, and after dark matter becomes non-relativistic, 
the root-mean-square velocity of dark matter particles is 

( ) ( ) ( ) 1 2
rms

rms

1 3
.h h

h
h

v kT a
v a

a m
 

= ≡  
                   

(3) 

Results are presented in Table 2. The average of ( )rms 1hv  of 10 complete and 
independent measurements is 

( ) ( )rms 1 1.192 0.109 tot km s.hv = ±                  (4) 

This result is noteworthy since the 10 galaxies used for these measurements 
have masses spanning three orders of magnitude, and angular momenta span-
ning five orders of magnitude [2]. Note that the correction in Table 1 has al-
lowed us to include galaxy NGC 2841 in the average (this galaxy was excluded in 
[2] because the first measured point at minr  is at the edge of the galaxy core). 

The expansion parameter NRha  at which dark matter becomes non-relativistic 
can be estimated from (3) as 

 

Table 2. Presented are 
1 22

rhv ′  from Table 1 of [2], and ( )rms 1hv  defined in (2). ( )0hρ  

is taken from Table 1. ( )0.15 0.15 systhκ = ±  [2]. The statistical uncertainties of 

1 22
rhv ′  and ( )0hρ  are correlated [2]. The systematic uncertainty includes contribu-

tions from Table 1 and from hκ . The 2χ  of these 10 measurements is 2 36.4χ = , so 

the total uncertainty of the average has been multiplied by ( ) 1 2
36.4 10 1 2.0 −  =  , as 

recommended in [3]. 

Galaxy 1 22
rhv ′  [km/s] ( )rms 1hv  [km/s] 

NGC 2403 101 3±  ( ) ( )1.103 0.083 stat 0.088 syst± ±  

NGC 2841 220 3±  ( ) ( )1.900 0.047 stat 0.232 syst± ±  

NGC 2903 142 3±  ( ) ( )1.377 0.095 stat 0.106 syst± ±  

NGC 2976 129 177±  ( ) ( )1.921 3.061 stat 0.144 syst± ±  

NGC 3198 104 3±  ( ) ( )1.417 0.112 stat 0.139 syst± ±  

NGC 3521 153 10±  ( ) ( )1.250 0.227 stat 0.095 syst± ±  

NGC 3621 126 5±  ( ) ( )2.092 0.202 stat 0.159 syst± ±  

DDO 154 36.5 3.7±  ( ) ( )0.783 0.137 stat 0.062 syst± ±  

NGC 5055 144 4±  ( ) ( )1.024 0.091 stat 0.113 syst± ±  

NGC 7793 85.5 5.0±  ( ) ( )0.977 0.115 stat 0.076 syst± ±  

Average  ( )1.192 0.109 tot±  
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( )rms
NR

1
.h

h

v
a

c
≈

                        
(5) 

There are threshold factors of O(1) presented in Section 5. 

4. Dark Matter Mass hm  

We consider the scenario with dark matter dominated by a single type of particle 
(plus anti-particle) of mass hm . The mass density of a non-relativistic gas of 
fermions or bosons with chemical potential µ  can be written as [4] 

( )

4
3 2 ,2

r ,3 2 3
,

2π
f b h

h h f b

N m
vρ = Σ

                    
(6) 

where the sums are 
2 3 4

, 3 2 3 2 3 2 3 2 ,
1 2 3 4f b
e e e eµ µ µ µ′ ′ ′ ′

Σ = + +  

                
(7) 

where ( )hkTµ µ′ ≡ , with upper signs for fermions, and lower signs for bosons. 
The sums for fermions and bosons are 0.76515fΣ =  and 2.612bΣ =  for 
chemical potential 0µ = . fN  ( bN ) is the number of fermion (boson) degrees 
of freedom. From (2) and (6) we obtain 

( )
( )

1 43 2 3
crit

3
rms , ,

6π
.

1
c

h
h f b f b

m
v N

ρ Ω
 =
 Σ 



                   

(8) 

Note that the measured hm  is independent of critcρΩ , see (2). From (4) and 
(8) we obtain 

( )( )
1 4

2 0.7651553.5 3.6 tot eV ,h
f f

m
N

 
= ± ⋅  Σ               

(9) 

for fermions, and 

( )( )
1 4

1 2.61246.8 3.2 tot eV ,h
b b

m
N

 
= ± ⋅ Σ               

(10) 

for bosons. Note that we have obtained these results directly from the fits to the 
spiral galaxy rotation curves, with no input from cosmology. The uncertainties 
in (9) and (10) include all statistical and systematic uncertainties listed in Table 
1 and Table 2. 

A non-relativistic non-degenerate ideal gas has 

ln ,
h QkT

µ ν
ν

 
= −   

                         
(11) 

where V Nν ≡  is the volume per particle, and ( )
3 222πQ h hm kTν  ≡    is the 

“quantum volume”. For a non-degenerate ideal gas, 1Qν ν   so the chemical 
potential µ  is negative, and increases logarithmically with particle concentra-
tion. Fermi-Dirac or Bose Einstein degeneracy sets in as 0µ → . Note that in an 
adiabatic expansion ( )hkTµ  is constant. 
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Fitting spiral galaxy rotation curves, we obtain limits 16 eVhm >  for fer-
mions, and 45 eVhm >  for bosons, at 99% confidence [2]. Equivalently, from 
(9) and (10), we obtain 96fΣ   for 2fN = , and 3.1bΣ   for 1bN = . 

5. Transition from Ultra-Relativistic to  
Non-Relativistic Dark Matter 

Consider dark matter in statistical equilibrium with chemical potential µ  and 
temperature hT . This assumption is justified by the observed Boltzmann distri-
bution of the dark matter [2]. We apply periodic boundary conditions in an ex-
panding cube of volume 3a V . The comoving number density of dark matter 
particles is [4]: 

( ) ( ) ( )
,3 2

3 0 2 4 2 2 2 2

14π d .
2π exp 1

f b
h

h h h

N
n a p p

m c p c a m c kTµ

∞
=

 + − − ±  

∫


 

(12) 

The last factor is the average number of fermions (upper sign) or bosons 
(lower sign) in an orbital of momentum p a . 

Now let dark matter decouple while ultra-relativistic, and assume no self-annihilation. 
Then 3

hn a  is conserved. In an adiabatic expansion, e.g. collisionless dark mat-
ter, the number of dark matter particles in an orbital is constant so µ  and hT  
adjust accordingly. The problem has one degree of freedom, so we choose, 
without loss of generality, ( )hkTµ µ′ ≡  constant. 1hT a∝  in the ul-
tra-relativistic limit ( 2

hkT mc ), and 21hT a∝  in the non-relativistic limit 
( 2

hkT mc ). (In the transition between these two limits hT  is momentum de-
pendent.) Let us define ( )hx pc akT≡ , and ( )2 2 22 h hy p m a kT≡ . In the ul-
tra-relativistic limit 

[ ]

3 2
3

, , , 2 0

1 d, .
exp 12π

h
h f b f b f b

kaT x xn a A N A
c x µ

∞ = =  ′− ± 
∫

        
(13) 

In the non-relativistic limit 
3 22 2

3
, , ,2 1 2 20

4 d, ,
2π π exp 1
h h

h f b f b f b
m ka T y yn a N

y µ
∞ 

= Σ Σ = 
 ′− ±   

∫


    
(14) 

as in (6). The intercept of these two asymptotes defines NRha  and  
( ) ( ) 2

NR NR NR1h h h h hT T a T a≡ = : 
2 3

,2
NR

,

2π ,f b
h h

f b

A
m c kT

 
=   Σ                     

(15) 

( )
1 31 2

, rms
NR

,

12π .
3

f b h
h

f b

A v
a

c
  =     Σ                    

(16) 

For 0µ = , we obtain for fermions 0.09135fA = , 0.76515fΣ = ,  
2

NR1.523h hm c kT= , and ( )NR rms0.7126 1h ha v c= ; and for bosons 0.1218bA = , 
2.612bΣ = , 2

NR0.8139h hm c kT= , and ( )NR rms0.5209 1h ha v c= . Einstein con-
densation sets in at 0µ = . 
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For ( ) 1.5hkTµ = −  we obtain for fermions 0.0220fA = , 0.2074fΣ = , 
2

NR1.409h hm c kT= , and ( )NR rms0.6852 1h ha v c= ; and for bosons 0.02328bA = , 
0.2432bΣ = , 2

NR1.315h hm c kT= , and ( )NR rms0.6620 1h ha v c= . 
For ( ) 10.0hkTµ = −  we obtain for both fermions and bosons 

6
, 4.6 10f bA −= × , 

5
, 4.5 10f b

−Σ = × , 2
NR1.366h hm c kT= , and ( )NR rms0.6747 1h ha v c= . 

In summary, from the measured adiabatic invariant ( )rms 1hv  we obtain hm  
and NRha  with (8) and (16) respectively. The ratio hT T  of dark mat-
ter-to-photon temperatures, after e e+ −  annihilation while dark matter is still 
ultra-relativistic, is 

2 3 2
, NR

, 0

1 ,
2π

f bh h h

f b

T a m c
T A kT

 Σ
=   

                    
(17) 

where the photon temperature is 0T T a= . Note that hT T  is proportional to 
( )1 4

rms 1hv , and is proportional to 01 T . The intercept of the two asymptotes that 
we implemented allows direct comparison of (17) with hT T  in Table 7 of [2]. 

6. Results for the Case µ 0=  

We now specialize to the case of zero chemical potential 0µ =  corresponding, 
in particular, to equal numbers of dark matter particles and anti-particles, or to 
Majorana sterile neutrinos [5], or to dark matter that was once in diffusive equi-
librium with the Standard Model sector. We obtain from the measured adiabatic 
invariant ( )rms 1hv : 

( )
1 4

253.5 3.6 tot eV,h
f

m
N

 
= ± ⋅      

                 
(18) 

( ) 6
NR 2.83 0.26 tot 10 ,ha −= ± ×                    

(19) 

( )
1 4

20.423 0.010 toth

f

T
T N

 
= ± ⋅      

                 
(20) 

for fermions, or 

( )
1 4

146.8 3.2 tot eV,h
b

m
N

 
= ± ⋅    

                 
(21) 

( ) 6
NR 2.07 0.19 tot 10 ,ha −= ± ×                    

(22) 

( )
1 4

10.507 0.012 toth

b

T
T N

 
= ± ⋅    

                 
(23) 

for bosons. These uncertainties are valid for the considered scenario and include 
statistical uncertainties and all identified systematic uncertainties listed in Table 
1 and Table 2. Systematic uncertainties unknown at present may be needed in 
the future. 

These results can be compared with expectations in Table 7 of [2] (and its ex-
tensions for other fN  and bN ). Note that hT T  is proportional to ( )1 4

rms 1hv , 
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and proportional to 01 T , so it is highly significant that the measured ( )rms 1hv  
obtains 0.4hT T ≈  for 0µ = . A different measured ( )rms 1hv , or a different 

0T , would have lead to the conclusion that 0µ ≠  and/or dark matter was never 
in thermal equilibrium with the Standard Model sector. In conclusion, the 
measured value of ( )rms 1hv  is strong evidence that 0µ =  and that dark matter 
was in thermal equilibrium with the Standard Model sector at some time in the 
early history of the Universe. 

Measurements with individual spiral galaxies for the case of fermions with 
2fN = , e.g. sterile Majorana neutrinos, are presented in Table 3. 

7. Additional Systematic Uncertainties? 

Non-spherical spiral galaxies: Equations (3) to (6) of [2] are valid in general. So 
long as the numerical integration is along a radial direction in the plane of the 
galaxy, with ˆ d dh r hP P r∇ = e  and ( ) ( )2 21 d dh hr r g r∇⋅ =g , and similarly for 
baryons, there is no approximation, and no systematic uncertainty is needed. 

Mixing of dark matter: So long as dark matter is assumed collisionless, the 
adiabatic invariant ( )rms 1hv  should be exactly conserved, so we assign no sys-
tematic uncertainty to Equation (3). 

New studies may require additional systematic uncertainties. However, at 
present we do not identify any. 

 
Table 3. Measurements of the expansion parameter NRha  at which dark matter becomes 

non-relativistic, the dark matter particle mass hm , and the ratio of temperatures hT T  
of dark matter-to-photons after e e+ −  annihilation and before dark matter becomes 
non-relativistic. In this table the particles of dark matter are assumed to be fermions with 

2fN =  and 0µ = . The 1σ  total uncertainties include the statistical and systematic 

uncertainties of ( )rms 1hv  in Table 2. The 2χ 's are 36.4, 40.8, and 40.4 respectively, for 

10 - 1 degrees of freedom, so the uncertainties of the averages have been multiplied by 

( ) 1 22 10 1χ −  , as recommended in [3]. 

Galaxy 6
NR10 ha×  hm  [eV] hT T  

NGC 2403 2.62 0.29±  56.7 4.6±  0.415 0.011±  

NGC 2841 4.52 0.56±  37.7 3.5±  0.476 0.015±  

NGC 2903 3.27 0.34±  48.0 3.7±  0.439 0.011±  

NGC 2976 4.57 7.28±  37.4 44.7±  0.477 0.190±  

NGC 3198 3.37 0.42±  47.0 4.4±  0.442 0.014±  

NGC 3521 2.97 0.59±  51.6 7.6±  0.428 0.021±  

NGC 3621 4.97 0.61±  35.1 3.2±  0.487 0.015±  

DDO 154 1.86 0.36±  73.3 10.5±  0.381 0.018±  

NGC 5055 2.43 0.34±  59.9 6.3±  0.408 0.014±  

NGC 7793 2.32 0.33±  62.1 6.6±  0.403 0.014±  

Average 2.83 0.26±  46.1 3.3±  0.432 0.010±  
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8. Conclusions 

A numerical integration obtains rotation curves for spiral galaxies [2]. This inte-
gration requires four parameters (boundary conditions). These parameters are 
obtained by a fit that minimizes the 2χ  between the observed [1] and calcu-
lated rotation curves. The fits for ten spiral galaxies, as well as the fitted parame-
ters, are presented in Reference [2]. The fits are in agreement with observations 
within observational uncertainties. Two of the measured parameters, that are of  

interest to the present analysis, are ( )minh rρ  and 
1 22

rhv ′ , and are presented in  

Table 1 and Table 2. From these two parameters we calculate the adiabatic in-
variant ( )rms 1hv  defined in (2). Measurements of ( )rms 1hv  for ten spiral galax-
ies are presented in Table 2. We obtain an average 

( ) ( )rms 1 1.192 0.109 tot km s.hv = ±                 (24) 

This result is remarkable considering that the ten galaxies span three orders of 
magnitude in mass, and five orders of magnitude in angular momenta [2]. 

We consider dark matter that is dominated by a single type of particle of mass 

hm . We assume that dark matter decoupled from the Standard Model sector and 
from self-annihilation while still ultra-relativistic. Then from ( )rms 1hv  we obtain 
directly the expansion parameter at which dark matter becomes non-relativistic: 

( )rms
NR

1
,h

h

v
a

c
≈

                       
(25) 

up to a threshold factor of O(1) presented in Section 5. From the adiabatic inva-
riant ( )rms 1hv  we also obtain the mass hm  of dark matter particles, as a func-
tion of the chemical potential µ , with no input from cosmology, see (8). 

The fits to spiral galaxy rotation curves allow us to set lower bounds to the 
dark matter particle mass hm  [2], and upper bounds to the dark matter chem-
ical potential µ , that are not much greater than zero. 

To proceed, we need to know the chemical potential µ  of dark matter. We 
consider the scenario with 0µ =  which is appropriate for equal numbers of 
dark matter particles and anti-particles, or Majorana sterile neutrinos [5], or 
dark matter that was once in diffusive equilibrium with the Standard Model sec-
tor. The upper bound to µ , obtained from the spiral galaxy rotation curves, is 
close to zero. A negative chemical potential would imply a dark matter temper-
ature while ultra-relativistic higher than the temperature of the Standard Model 
sector, which seems implausible. In any case we proceed assuming 0µ = , and 
obtain the results (18) to (23). 

The ratio hT T  is proportional to ( )1 4
rms 1hv , and proportional to 01 T , so 

the result 0.4hT T ≈  is highly significant. A different measured adiabatic inva-
riant ( )rms 1hv , or a different 0T , could have obtained hT T  orders of magni-
tude different from unity, so the measurement 0.4hT T ≈  is strong evidence 
that dark matter was once in thermal equilibrium with the Standard Model sec-
tor, and gives added support to the scenario 0µ ≈ . 
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We compare the measured hT T  and hm  with expectations, see Table 7 of 
[2] (and extensions with other fN  and bN ), and find one very good match: 
fermion dark matter with 2fN =  that decoupled in the approximate tempera-
ture range from the confinement-deconfinement transition to sm , that suggests 
Majorana sterile neutrino dark matter [2]; and one marginal match for a boson 
with 3bN =  that decoupled in the temperature range from mπ  to cm . 
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