
Journal of Software Engineering and Applications, 2019, 12, 85-100
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.125007 May 21, 2019 85 Journal of Software Engineering and Applications

Software Defect Prediction Using Supervised
Machine Learning and Ensemble Techniques:
A Comparative Study

Abdullah Alsaeedi, Mohammad Zubair Khan

Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah, KSA

Abstract

An essential objective of software development is to locate and fix defects
ahead of schedule that could be expected under diverse circumstances. Many
software development activities are performed by individuals, which may lead
to different software bugs over the development to occur, causing disap-
pointments in the not-so-distant future. Thus, the prediction of software de-
fects in the first stages has become a primary interest in the field of software
engineering. Various software defect prediction (SDP) approaches that rely
on software metrics have been proposed in the last two decades. Bagging,
support vector machines (SVM), decision tree (DS), and random forest (RF)
classifiers are known to perform well to predict defects. This paper studies
and compares these supervised machine learning and ensemble classifiers on
10 NASA datasets. The experimental results showed that, in the majority of
cases, RF was the best performing classifier compared to the others.

Keywords

Machine Learning, Ensembles, Prediction, Software Metrics, Software Defect

1. Introduction

A software defect is a bug, fault, or error in a program that causes improper
outcomes. Software defects are programming errors that may occur because of
errors in the source code, requirements, or design. Defects negatively affect
software quality and software reliability [1]. Hence, they increase maintenance
costs and efforts to resolve them. Software development teams can detect bugs
by analyzing software testing results, but it is costly and time-consuming by
testing entire software modules. As such, identifying defective modules in early

How to cite this paper: Alsaeedi, A. and
Khan, M.Z. (2019) Software Defect Predic-
tion Using Supervised Machine Learning
and Ensemble Techniques: A Comparative
Study. Journal of Software Engineering and
Applications, 12, 85-100.
https://doi.org/10.4236/jsea.2019.125007

Received: April 10, 2019
Accepted: May 18, 2019
Published: May 21, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.125007
http://www.scirp.org
https://doi.org/10.4236/jsea.2019.125007
http://creativecommons.org/licenses/by/4.0/

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 86 Journal of Software Engineering and Applications

stages is necessary to aid software testers in detecting modules that required in-
tensive testing [2] [3].

In the field of software engineering, software defect prediction (SDP) in early
stages is vital for software reliability and quality [1] [4]. The intention of SDP is
to predict defects before software products are released, as detecting bugs after
release is an exhausting and time-consuming process. In addition, SDP ap-
proaches have been demonstrated to improve software quality, as they help de-
velopers predict the most likely defective modules [5] [6]. SDP is considered a
significant challenge, so various machine learning algorithms have been used to
predict and determine defective modules [7]. With the end goal of expanding the
viability of software testing, SDP is utilized to distinguish defective modules in
current and subsequent versions of a software product. Therefore, SDP ap-
proaches are very helpful in allocating more efforts and resources for testing and
examining likely-defective modules [8].

Commonly-used SDP strategies are regression and classification strategies.
The objective of regression techniques is to predict the number of software de-
fects [5]. In the literature, there are a number of regression models used for SDP
[9] [10] [11] [12]. In contrast, classification approaches aim to decide whether a
software module is faulty or not. Classification models can be trained from the
defect data of the previous version of the same software. The trained models can
then be used to predict further potential software defects. Mining software repo-
sitory becomes a vital topic in research for predicting defects [13] [14].

Supervised machine learning classifiers are commonly employed to predict
software defects such as support vector machines [15] [16] [17], k-nearest
neighbors (KNN) [18] [19], Naive Bayes [19] [20] [21], and so on. In addition,
Bowes [22] suggested the use of classifier ensembles to effectively predict defects.
A number of works have been accomplished in the field of SDP utilizing ensem-
ble methods such as bagging [23] [24] [25], voting [22] [26], boosting [23] [24]
[25], random tree [22], RF [27] [28], and stacking [22]. Neural networks (NN)
can be used to predict defect prone software modules [29] [30] [31] [32].

Clustering algorithms such as k-means, x-means, and expectation maximiza-
tion (EM) have also been applied to predict defects [33] [34] [35]. In addition,
the experiment outcomes in [34] [35] showed that x-means clustering performed
better than fuzzy clustering, EM, and k-means clustering at identifying software
defects. Aside from those, transfer learning is a machine learning approach that
expects to exchange the information learned in one dataset and utilize that
learning to help tackle issues in an alternate dataset [36]. Transfer learning has
also been introduced to the field of SDP [37] [38].

Software engineering data, such as defect prediction datasets, are very imba-
lanced, where the number of samples of a specific class is vastly higher than
another class. To deal with such data, imbalanced learning approaches have been
proposed in SDP to mitigate the data imbalance problem [7]. Imbalanced learn-
ing approaches include re-sampling, cost-sensitive learning, ensemble learning,
and imbalanced ensemble learning (hybrid approaches) [7] [39]. Re-sampling

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 87 Journal of Software Engineering and Applications

approaches can be either oversampling and under-sampling methods, and these
can add or remove instances from the training data only. Several previous stu-
dies [40] [41] [42] in SDP utilized oversampling approaches, especially, Synthet-
ic Minority Over-sampling Technique (SMOTE). Pelayo and Dick [40] com-
bined SMOTE with DS to study the effect of oversampling on the accuracy of
predictive models at detecting software defects. The results showed that SMOTE
led to improvements in the classification accuracy, especially when the percen-
tage of resampling was 300%.

Cost-sensitive learning is another approach to dealing with data imbalance. It
works by adding weight to samples or resampling them by allocating cost to each
class in a predefined matrix. However, the issue with cost-sensitive classifiers is
that there is no intelligent and systematic way to set the cost matrices [39]. En-
semble approaches combine multiple models to obtain better predictions. Three
ensemble methods are widely used in SDP includes: bagging, boosting, and
stacking. The common boosting algorithm for SDP is adaptive boosting (Ada-
Boost). On the other hand, hybrid approaches [39], such as SMOTEBoost and
RUSBoost are known approaches for dealing with the problem of class imbal-
ance. In this paper, we will use the SMOTE oversampling approach to deal with
class imbalance, with the intent to compare the performance of supervised ma-
chine learning and Ensemble techniques in predicting software defects.

Section 2 summarizes software metrics that can be used as attributes to iden-
tify software defects. Section 3 presents evaluation metrics that can be used to
measure the performance of SDP models. Sections 4 and 5 detail the experimen-
tal methodology and results, respectively. Section 6 presents the threats to valid-
ity. Related works are described in Section 7.

2. Software Metrics

A software metric is a proportion of quantifiable or countable characteristics
that can be used to measure and predict the quality of software. A metric is an
indicator describing a specific feature of a software [6]. Identifying and measur-
ing software metrics is vital for various reasons, including estimating program-
ming execution, measuring the effectiveness of software processes, estimating
required efforts for processes, deduction of defects during software develop-
ment, and monitoring and controlling software project executions [5].

Various software metrics have been commonly used for defect prediction. The
first group of software metrics is called lines of code (LOC) metrics and is con-
sidered basic software metrics. LOC metrics are typical proportions of software
development. Many studies in SDP have proven a clear correlation between LOC
metrics and defect prediction [43] [44]. One of the most common software me-
trics widely used for SDP are the cyclomatic complexity metrics, which were
proposed by McCabe [45] and are used to represent the complexity of software
products. McCabe’s metrics (cyclomatic metrics) are computed based on the
control flow graphs of a source code by counting the number of nodes, arcs, and

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 88 Journal of Software Engineering and Applications

connected components. Ohlsson and Alberg [46] used McCabe’s cyclomatic
metrics to predict defect-prone modules before starting coding. Many previous
studies have used McCabe’s cyclomatic metrics to build SDP models [47] [48], as
well. Another set of software metrics are the software size metrics proposed by
Halstead [49]. Halstead software size metrics are based on the number of ope-
rands and operators from source codes [49]. In addition, these metrics are re-
lated to program size of program vocabulary, length, volume, difficulty, effort,
and time [49] and have been used in SDP [48] [50].

According to [51], the majority of software fault prediction approaches rely
on object-oriented software metrics. Chidamber and Kemerer [52] proposed
several software metrics called CK object-oriented metrics, which include the
depth of inheritance tree (DIT), weighted method per class (WMC), number of
children (NOC), and so on. Many studies using object-oriented metrics have
been used in SDP [53] [54] [55]. Radjenovic et al. [51] identified effective soft-
ware metrics used in SDP and aimed to enhance software quality by finding de-
fects. The outcome of their study [51] outlined that object-oriented and process
metrics were more effective in finding defects compared to other size and com-
plexity metrics.

3. Evaluation Measures for Software Bugs Prediction

In this section, we will discuss different measurements for software defect pre-
diction such as true positive (TP), true negative (TN), false positive (FP) and
false negative (FN). TP denotes the number of defective software instances that
are correctly classified as defective, while TN is the number of clean software in-
stances that are correctly classified as clean. FP denotes the number of clean
software instances that are wrongly classified as defective, and FN denotes the
number of defective software instances that are mistakenly classified as clean

One of the primary simple metrics to evaluate the performance of predictive
models is classification accuracy, also called the correct classification rate. It is
utilized to quantify the extent of the effectively classified instances to the aggre-
gate instances. Another measure is called precision, and it is calculated by divid-
ing the number of instances correctly classified as defective (TP) by the total
number of instances classified as defective (TP + FP) [16]. In addition, recall
measures the percentage of the number of instances correctly classified as defec-
tive (TP) to the total number of faulty instances (TP + FN) [16]. F-score is a
harmonic mean of precision and recall, and many studies in the literature used
F-score metrics [56] [57]. ROC-AUC calculates the area under the receiver op-
erating characteristic (ROC) curve by computing trade-offs between TPR and
FPR.

() ()Accuracy TP TN TP TN FP FN= + + + + (1)

()Precision TP TP FP= + (2)

()Recall TP TP FN= + (3)

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 89 Journal of Software Engineering and Applications

() ()F-Score 2 Precision Recall Precision Recall= ∗ ∗ + (4)

()TPR TP TP FN= + (5)

()FPR FP TN FP= + (6)

G-measure is another measure used in software defect prediction. It is defined
as a harmonic mean of recall and specificity. Probability of false alarm (PF) is the
ratio of clean instances wrongly classified as defective (FP) among the total clean
instances (FP + TN).

()PF FP FP TN= + (7)

Specificity 1 PF TN FP TN= − = + (8)

G-measure 2 Recall Specificity Recall Specificity= ∗ ∗ + (9)

4. Experimental Methodology

For the experiments, 10 well-known software defect datasets [62] were selected.
The majority of related works used these datasets to evaluate the performance of
their SDP techniques and this is the reason behind selecting the above-mentioned
dataset for further comparisons. Table 1 reports the datasets used in the experi-
ments along with the statistics. RF, DS, Linear SVC SVM, and LR were chosen to
be the base classifiers. Boosting and bagging classifiers for all the base classifiers
were also considered. The experiments were conducted on a Python environ-
ment. The classifiers’ performances in this study were measured using classifica-
tion accuracy, precision, recall, F-score, and ROC-AUC score. It is important to
highlight that these metrics were computed using the weighted average. The in-
tuition behind selecting the weighted average was to calculate metrics for each
class label and take the label imbalance into the account.

Table 1. Dataset summaries.

Dataset Number of Modules
Number of

Defective Modules
Number of Attributes

(Software Metrics)

JM1 7782 1672 21

KC3 194 36 39

MC1 1988 46 38

MC2 125 44 39

MW1 253 27 37

PC1 705 61 37

PC2 745 16 36

PC3 1077 134 37

PC4 1287 177 37

PC5 1711 471 38

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 90 Journal of Software Engineering and Applications

The performance of classifiers was evaluated based on 10-fold cross-validation
to split the datasets into 10 consecutive folds. One of them for testing and the
remaining folds for training. Afterwards, features were standardized and scaled
using the standard Scaler function in Python, which works by removing the
mean and scaling the features into unit variance. Since the datasets were very
imbalanced, the oversampling approach using SMOTE was performed for the
training data only, as it has been widely used in the literature to mitigate imbal-
ance issues in training data for SDP.

The following Algorithm 1 was used for the experiments. It began by provid-
ing a list of datasets and a list of classifiers and then proceeded to iterate over all
datasets, as shown in Line 8. The datasets were split into training and testing da-
ta based on 10-fold cross-validation with shuffling of the data before splitting, as
shown in Line 9. One the dataset was split, the perform Standard Scaler function
was utilized to standardize and scale the features.

Once the features were standardized, the training data for each fold were
re-sampled using the SMOTE technique, as shown in Line 11. As mentioned
above, SMOTE oversampling has been widely used in SDP. The loop in Lines 12
- 25 aimed to train the classifiers, obtain predictions, and compute evaluation
metrics. The average metrics were computed in Lines (27 - 31) as the datasets
were split using 10-folds. The process from Lines 9 - 31 was iterated throughout
all provided datasets.

Algorithm 1. The experimental procedure for software defect perdition.

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 91 Journal of Software Engineering and Applications

5. Experimental Results and Discussion

Table 2 summarizes the performance of the different classifiers based on the
classification accuracy. The RF classifier achieved accuracies of 0.91, 0.84, 0.90,
0.82, 0.97, and 0.83 for the PC1, PC3, PC4, KC2, MC1, and CM1 datasets, re-
spectively. In addition, it is obvious that the RF classifier attained the highest
accuracy scores for the PC1, PC3, PC4, KC2, MC1, and CM1 datasets compared
to other classifiers, indicating better predictions of defective instances performed
by the RF classifiers in these datasets. Moreover, the reported scores in Table 2
show that the bagging classifier with DS as a base learner performed well on the
PC5, KC3, and MC2 datasets as compared to the other classifiers.

In Figure 1, it is clear that the RF classifier obtained the highest accuracy
scores for all datasets, except PC5, JM1, KC3 and MC2. Furthermore, the maxi-
mum accuracy attained for PC1 was 0.91 whereas the minimum value was 0.78

Figure 1. Classification accuracy scores of different classifiers.

Table 2. The accuracy scores obtained using different classifiers.

Dataset
Base Learner AdaBoost Bagging

RF DS SVM LR RF DS SVM LR RF DS SVM LR

PC1 0.91 0.87 0.79 0.81 0.90 0.86 0.79 0.78 0.89 0.89 0.79 0.81

PC3 0.84 0.80 0.74 0.76 0.84 0.81 0.74 0.76 0.82 0.84 0.74 0.75

PC4 0.90 0.85 0.81 0.82 0.89 0.84 0.81 0.82 0.89 0.89 0.81 0.83

PC5 0.76 0.71 0.68 0.68 0.75 0.70 0.68 0.71 0.76 0.77 0.68 0.68

JM1 0.77 0.71 0.69 0.70 0.77 0.78 0.69 0.72 0.77 0.77 0.69 0.69

KC2 0.82 0.78 0.79 0.78 0.81 0.77 0.79 0.80 0.80 0.79 0.79 0.79

KC3 0.81 0.77 0.77 0.77 0.79 0.80 0.77 0.71 0.79 0.82 0.77 0.76

MC1 0.97 0.94 0.81 0.81 0.97 0.94 0.81 0.77 0.97 0.96 0.81 0.81

MC2 0.69 0.67 0.65 0.63 0.71 0.68 0.65 0.65 0.71 0.75 0.65 0.65

CM1 0.83 0.78 0.75 0.73 0.82 0.77 0.75 0.75 0.81 0.83 0.75 0.74

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 92 Journal of Software Engineering and Applications

obtained by LR for the same dataset. Among the base learners, RF was the best
performing classifier for all datasets, while SVM was the worst classifier for all
datasets, except KC2, MC2, and CM1. Besides, Bagging with DS achieves higher
accuracy scores for PC3, PC5, KC3, MC2, CM1 compared to the other bagging
and boosting methods.

Table 3 reports the F-scores attained using different classifiers. In general, it is
apparent that the RF classifier was the best performing for six different datasets,
as illustrated in Table 2 and Table 3. For PC1, PC3, PC4, KC2, MC1, and CM1,
the RF classifier attained the highest F-scores compared to the other classifiers,
indicating better predictions obtained by RF. In addition, the reported F-scores
presented that AdaBoost classifier with RF as a base learner attained similar
scores to RF for the PC3, PC4, KC2, and MC1 datasets. Furthermore, bagging
with DS achieved higher F-scores compared to other classifiers for PC5, KC, and
MC2.

Figure 2 illustrates bar plots of the F-scores attained using classifiers for all
datasets. For the PC3, PC4, PC5, and JM1 datasets, it is obvious that the SVM,

Figure 2. F-scores attained by different classifiers.

Table 3. The F-scores obtained using different classifier.

Dataset
Base Learner AdaBoost Bagging

RF DS SVM LR RF DS SVM LR RF DS SVM LR

PC1 0.91 0.88 0.83 0.85 0.90 0.87 0.83 0.82 0.90 0.89 0.83 0.85

PC3 0.84 0.81 0.78 0.79 0.84 0.82 0.78 0.80 0.83 0.84 0.78 0.79

PC4 0.90 0.86 0.84 0.84 0.90 0.85 0.84 0.84 0.90 0.90 0.84 0.85

PC5 0.76 0.72 0.69 0.70 0.75 0.71 0.69 0.71 0.76 0.77 0.69 0.69

JM1 0.76 0.71 0.71 0.71 0.76 0.76 0.71 0.73 0.77 0.76 0.71 0.71
KC2 0.82 0.78 0.80 0.80 0.82 0.77 0.80 0.81 0.81 0.79 0.80 0.80
KC3 0.81 0.78 0.78 0.79 0.79 0.81 0.78 0.74 0.80 0.82 0.78 0.78
MC1 0.97 0.95 0.88 0.88 0.97 0.95 0.88 0.85 0.97 0.96 0.88 0.88
MC2 0.67 0.66 0.64 0.63 0.69 0.67 0.64 0.64 0.69 0.72 0.64 0.65
CM1 0.83 0.79 0.78 0.77 0.82 0.79 0.78 0.79 0.81 0.83 0.78 0.77

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 93 Journal of Software Engineering and Applications

AdaBoost (SVM), and bagging (SVM) classifiers performed badly, as reported in
Table 3. For JM1, the highest F-score was 0.77, attained by bagging (RF). Addi-
tionally, the lowest score was 0.71, which was attained using six different clas-
sifiers. Furthermore, the F-scores achieved by bagging (LR) were the minimum
for KC3 and MC1. LR was the worst classifier for the MC2 and CM1 datasets.

The ROC-AUC scores achieved by all participating classifiers are shown in
Table 4. For PC1 and PC3, the LR and bagging with LR classifiers attained the
highest ROC-AUC scores, achieving 0.77 for PC1 and 0.74 for PC3. The bagging
with the RF algorithm as base estimator performed well in terms of ROC-AUC
scores, reaching 0.84, 0.71, and 0.64 for the PC4, PC5, and JM1 datasets, respec-
tively. The ROC-AUC score of AdaBoost with the LR classifier on data set KC2
was the best among all the classifiers, achieving a score of 0.78, while the lowest
value was 0.66 and was attained by the AdaBoost with DS. The SVM, AdaBoost
(SVM), and bagging (SVM) classifiers achieved the highest ROC-AUC scores for
the CM1 and MC1 datasets.

Figure 3 shows the bar plots of ROC-AUC scores attained by all classifiers. It
is clear there is no dominant classifier and this may due to the nature of datasets.
For instance, LR and bagging (LR) classifiers performed well on PC1 and PC3
datasets, while these classifiers did not achieve the highest ROC-AUC scores for
other datasets.

Our findings demonstrate that there was uncertainty in the classifiers’ per-
formances, as some classifiers performed well in specific datasets but worse in
others. Similar to other studies [6] [22] [58], our results recommend using en-
sembles as predictive models to detect software defects. Additionally, their find-
ings [6] [22] [58] agreed with our outcome that RF performed well. However,
the experiments conducted by Hammouri et al. [61] purported that the best
performing algorithm was DS, while our study’s findings confirmed that DS
performed badly, unless it was used as a base learner with bagging classifiers for
some datasets, as reported in Table 2 and Table 3.

Table 4. The ROC-AUC scores obtained using classifiers.

Dataset
Base Learner AdaBoost Bagging

RF DS SVM LR RF DS SVM LR RF DS SVM LR

PC1 0.72 0.70 0.76 0.77 0.68 0.66 0.76 0.74 0.73 0.66 0.76 0.77

PC3 0.64 0.61 0.73 0.74 0.64 0.64 0.73 0.73 0.67 0.65 0.73 0.74

PC4 0.81 0.73 0.82 0.83 0.79 0.73 0.82 0.80 0.84 0.81 0.82 0.83

PC5 0.70 0.66 0.68 0.68 0.69 0.65 0.68 0.67 0.71 0.71 0.68 0.68

JM1 0.62 0.59 0.63 0.63 0.63 0.62 0.63 0.63 0.64 0.62 0.63 0.63

KC2 0.74 0.67 0.77 0.77 0.74 0.66 0.77 0.78 0.75 0.71 0.77 0.77

KC3 0.69 0.69 0.66 0.67 0.65 0.71 0.66 0.63 0.67 0.71 0.66 0.66

MC1 0.66 0.58 0.75 0.71 0.65 0.57 0.75 0.70 0.67 0.61 0.75 0.71

MC2 0.61 0.59 0.59 0.58 0.63 0.61 0.59 0.61 0.63 0.66 0.59 0.61

CM1 0.58 0.56 0.68 0.63 0.56 0.57 0.68 0.68 0.57 0.59 0.68 0.65

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 94 Journal of Software Engineering and Applications

Figure 3. ROC-AUC scores of different classifiers.

6. Threats to Validity

In this section, we list some potential threats in our study and responses to con-
struct validity.

1) The selection of datasets may not be representative. One potential threat to
validity is the selection of datasets where they might not be representative. In our
study, this threat is mitigated by evaluating the performance of the classifiers on
ten well-known datasets that are commonly used in the literature review.

2) The generalization of our results. We have attempted to mitigate this threat
by measuring the performance of the base learners, boosting, and bagging clas-
sifier on diverse datasets that have different sizes.

3) The trained classifiers may over-fitting and bias the results. Instead of split-
ting the datasets randomly using the simple train-test split (70% - 80% for train-
ing and 30% - 20% for testing), we split the dataset into training and testing sets
using the 10-fold cross validation to avoid the over-fitting issue that might be
caused using the random splitting.

7. Related Works

Kalai Magal et al. [28] combined feature selection with RF to improve the accu-
racy of software defect predication. Feature selection was based on correlation
computation and aimed to choose the ideal subset of features. The selected fea-
tures using correlation-based feature selection were then used with RF to predict
software defects. Various experiments were conducted on open NASA datasets
from the PROMISE repository. The outcome showed clear improvements ob-
tained using the improved RF compared to the traditional RF.

Venkata et al. [9] explored various machine learning algorithms for real-time
system defect identification. They investigated the impact of attribute reduction
on the performance of SDP models and attempted to combine PCA with differ-
ent classification models which did not show any improvements. However, the
outcomes of the experimental results demonstrated that combining the correla-

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 95 Journal of Software Engineering and Applications

tion-based feature selection technique with 1-rule classifier led to improvements
in classification accuracy.

Anuradha and Shafali [58] investigated three supervised classifiers: J48, NB,
and RF. Various datasets were selected to assess the classifiers efficiency at de-
tecting defective modules. The conducted experiments demonstrated that the RF
classifier outperformed the others. Moreover, Ge et al. [6] showed that RF per-
formed well compared to LWL, C4.5, SVM, NB, and multilayer feed forward
neural networks. On the other hand, Singh and Chug [59] analyzed five classifi-
ers—ANN, particle swarm optimization (PSO), DS, NB, Linear classifier
(LC)—and compared their performance in terms of detecting software defects.
The experiment results showed that LC outperformed the other classifiers.

Aleem et al. [27] compared the performance of 11 machine learning methods
and used 15 NASA datasets from the PROMISE repository. NB, MLP, SVM,
AdaBoost, bagging, DS, RF, J48, KNN, RBF, and k-means were applied in their
study. The results showed that bagging and SVM performed well in the majority
of datasets. Meanwhile, Wang et al. [22] carried out a comparative analysis of
ensemble classifiers for SDP and demonstrated that voting ensemble and RF at-
tained the highest classification accuracy results compared to AdaBoost, NB,
stacking, and bagging. Perreault et al. [19] compared NB, SVM, ANN, LR, and
KNN on five NASA datasets. The outcomes of the conducted experiments did
not show a superior classifier at identifying software defects. Hussain et al. [60]
used the AdaboostM1, Vote and StackingC ensemble classifier with five base
classifiers: NB, LR, J48, Voted-Perceptron and SMO in Weka tool for SDP. The
experimental results showed that StackingC performed well compared to the
other classifiers.

Hammouri et al. [61] assessed NB, ANN, and DS for SDP. Three real debug-
ging datasets were used in their study. Measurements such as accuracy, preci-
sion, recall, F-measure, and RMSE were utilized to analyze the results. The re-
sults of their study showed that DS performed well.

The above-mentioned approaches differ from the proposed approach in this
paper in two ways. Firstly, we compared the performance of different supervised
and Ensemble methods on the oversampled training data, while other works
such as Kalai Magal et al. [28] and Venkata et al. [9] focused on the impact of
feature selection and attribute reduction on the performance of classifiers. Se-
condly, a very similar study to our approach presented in this paper was con-
ducted by Alsawalqah et al. [63], where they studied the impact of SMOTE on
the Adaboost ensemble method with J48 as a base classifier. Their findings
demonstrated that SMOTE can help to boost the performance of the ensemble
method on four NASA datasets. This differs from our study presented in this
paper is that we compared varieties of ensemble methods on the oversampled
training dataset, while Alsawalqah et al. [63] used only Adaboost with J48 as a
base classifier.

The general finding in these related works is that classifiers such as RF, bag-
ging, DS, Adaboost performed well in the SDP problem. Therefore, we have fo-

https://doi.org/10.4236/jsea.2019.125007

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 96 Journal of Software Engineering and Applications

cused on studying the performance of these classifiers on the condition that
SMOTE oversampling techniques were applied to training data only.

8. Conclusions and Future Works

This paper focused on comparing the most well-known machine learning algo-
rithms that are widely used to predict software defects. The performances of dif-
ferent algorithms were evaluated using classification accuracy, F-measure, and
ROC-AUC metrics. The SMOTE resampling strategy was used to mitigate the
data imbalance issues. The outcomes of the conducted experiment showed that
RF, AdaBoost with RF, and bagging with DS generally performed well.

Interesting future extensions could include studying the impact of various
metaheuristic feature selection approaches to select the optimal set of features
for SDP. One future direction is to explore and compare the performance of
deep learning approaches and ensemble classifiers with other resampling tech-
niques, as data imbalance is still an issue that badly affects the performance of
the existing SDP approaches.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References

[1] Rawat, M.S. and Dubey, S.K. (2012) Software Defect Prediction Models for Quality
Improvement: A Literature Study. International Journal of Computer Science Is-
sues, 9, 288-296.

[2] Li, J., He, P., Zhu, J. and Lyu, M.R. (2017) Software Defect Prediction via Convolu-
tional Neural Network. 2017 IEEE International Conference on Software Quality,
Reliability and Security, 25-29 July 2017, Prague, 318-328.
https://doi.org/10.1109/QRS.2017.42

[3] Hassan, F., Farhan, S., Fahiem, M.A. and Tauseef, H. (2018) A Review on Machine
Learning Techniques for Software Defect Prediction. Technical Journal, 23, 63-71.

[4] Punitha, K. and Chitra, S. (2013) Software Defect Prediction Using Software Me-
trics: A Survey. 2013 International Conference on Information Communication and
Embedded Systems, 21-22 February 2013, Chennai, 555-558.
https://doi.org/10.1109/ICICES.2013.6508369

[5] Kalaivani, N. and Beena, R. (2018) Overview of Software Defect Prediction Using
Machine Learning Algorithms. International Journal of Pure and Applied Mathe-
matics, 118, 3863-3873.

[6] Ge, J., Liu, J. and Liu, W. (2018) Comparative Study on Defect Prediction Algo-
rithms of Supervised Learning Software Based on Imbalanced Classification Data
Sets. 2018 19th IEEE/ACIS International Conference on Software Engineering, Ar-
tificial Intelligence, Networking and Parallel/Distributed Computing, 27-29 June
2018, Busan, 399-406. https://doi.org/10.1109/SNPD.2018.8441143

[7] Song, Q., Guo, Y. and Shepperd, M. (2018) A Comprehensive Investigation of the
Role of Imbalanced Learning for Software Defect Prediction. IEEE Transactions on
Software Engineering, 1. https://doi.org/10.1109/TSE.2018.2836442

https://doi.org/10.4236/jsea.2019.125007
https://doi.org/10.1109/QRS.2017.42
https://doi.org/10.1109/ICICES.2013.6508369
https://doi.org/10.1109/SNPD.2018.8441143
https://doi.org/10.1109/TSE.2018.2836442

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 97 Journal of Software Engineering and Applications

[8] Chang, R.H., Mu, X.D. and Zhang, L. (2011) Software Defect Prediction Using
Non-Negative Matrix Factorization. Journal of Software, 6, 2114-2120.
https://doi.org/10.4304/jsw.6.11.2114-2120

[9] Challagulla, V.U.B., Bastani, F.B., Yen, I.L. and Paul, R.A. (2005) Empirical Assess-
ment of Machine Learning Based Software Defect Prediction Techniques. Proceed-
ings of the 10th IEEE International Workshop on Object-Oriented Real-Time De-
pendable Systems, 2-4 February 2005, Sedona, 263-270.
https://doi.org/10.1109/WORDS.2005.32

[10] Yan, Z., Chen, X. and Guo, P. (2010) Software Defect Prediction Using Fuzzy Sup-
port Vector Regression. In: Zhang, L., Lu, B. and Kwok, J., Eds., Advances in Neural
Networks, Springer, Berlin, 17-24.
https://doi.org/10.1007/978-3-642-13318-3_3

[11] Rathore, S.S. and Kumar, S. (2016) A Decision Tree Regression Based Approach for
the Number of Software Faults Prediction. ACM SIGSOFT Softw Are Engineering
Notes, 41, 1-6. https://doi.org/10.1145/2853073.2853083

[12] Rathore, S.S. and Kumar, S. (2017) An Empirical Study of Some Software Fault Pre-
diction Techniques for the Number of Faults Prediction. Soft Computing, 21,
7417-7434. https://doi.org/10.1007/s00500-016-2284-x

[13] Wang, H. (2014) Software Defects Classification Prediction Based on Mining Soft-
ware Repository. Master’s Thesis, Uppsala University, Department of Information
Technology.

[14] Vandecruys, O., Martens, D., Baesens, B., Mues, C., Backer, M.D. and Haesen, R.
(2008) Mining Software Repositories for Comprehensible Software Fault Prediction
Models. Journal of Systems and Software, 81, 823-839.
https://doi.org/10.1016/j.jss.2007.07.034
http://www.sciencedirect.com/science/article/pii/S0164121207001902

[15] Vapnik, V. (2013) The Nature of Statistical Learning Theory. Springer, Berlin.

[16] Elish, K.O. and Elish, M.O. (2008) Predicting Defect-Prone Software Modules Using
Support Vector Machines. Journal of Systems and Software, 81, 649-660.
https://doi.org/10.1016/j.jss.2007.07.040
http://www.sciencedirect.com/science/article/pii/S016412120700235X

[17] Gray, D., Bowes, D., Davey, N., Sun, Y. and Christianson, B. (2009) Using the Sup-
port Vector Machine as a Classification Method for Software Defect Prediction with
Static Code Metrics. In: Palmer-Brown, D., Draganova, C., Pimenidis, E. and Mou-
ratidis, H., Eds., Engineering Applications of Neural Networks, Springer, Berlin,
223-234. https://doi.org/10.1007/978-3-642-03969-0_21

[18] Wang, H., Khoshgoftaar, T.M. and Seliya, N. (2011) How Many Software Metrics
Should Be Selected for Defect Prediction? 24th International FLAIRS Conference,
18-20 May 2011, Palm Beach, 69-74.

[19] Perreault, L., Berardinelli, S., Izurieta, C. and Sheppard, J. (2017) Using Classifiers
for Software Defect Detection. 26th International Conference on Software Engi-
neering and Data Engineering, 2-4 October 2017, Sydney, 2-4.

[20] Wang, T. and Li, W. (2010) Naive Bayes Software Defect Prediction Model. 2010
International Conference on Computational Intelligence and Software Engineering,
10-12 December 2010, Wuhan, 1-4. https://doi.org/10.1109/CISE.2010.5677057

[21] Jiang, Y., Cukic, B. and Menzies, T. (2007) Fault Prediction Using Early Lifecycle
Data. 18th IEEE International Symposium on Software Reliability, 5-9 November
2007, Trollhättan, 237-246. https://doi.org/10.1109/ISSRE.2007.24

[22] Wang, Tao, Li, W., Shi, H. and Liu, Z. (2011) Software Defect Prediction Based on

https://doi.org/10.4236/jsea.2019.125007
https://doi.org/10.4304/jsw.6.11.2114-2120
https://doi.org/10.1109/WORDS.2005.32
https://doi.org/10.1007/978-3-642-13318-3_3
https://doi.org/10.1145/2853073.2853083
https://doi.org/10.1007/s00500-016-2284-x
https://doi.org/10.1016/j.jss.2007.07.034
http://www.sciencedirect.com/science/article/pii/S0164121207001902
https://doi.org/10.1016/j.jss.2007.07.040
http://www.sciencedirect.com/science/article/pii/S016412120700235X
https://doi.org/10.1007/978-3-642-03969-0_21
https://doi.org/10.1109/CISE.2010.5677057
https://doi.org/10.1109/ISSRE.2007.24

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 98 Journal of Software Engineering and Applications

Classifiers Ensemble. Journal of Information & Computational Science, 8,
4241-4254.

[23] Jiang, Y., Cukic, B. and Menzies, T. (2008) Cost Curve Evaluation of Fault Predic-
tion Models. 2008 19th International Symposium on Software Reliability Engineer-
ing, 10-14 November 2008, Seattle, 197-206.
https://doi.org/10.1109/ISSRE.2008.54

[24] Jiang, Y., Lin, J., Cukic, B. and Menzies, T. (2009) Variance Analysis in Software
Fault Prediction Models. 2009 20th International Symposium on Software Reliabili-
ty Engineering, 16-19 November 2009, San Jose, 99-108.
https://doi.org/10.1109/ISSRE.2009.13

[25] Abdou, A. and Darwish, N. (2018) Early Prediction of Software Defect Using En-
semble Learning: A Comparative Study. International Journal of Computer Appli-
cations, 179, 29-40. https://doi.org/10.5120/ijca2018917185

[26] Moustafa, S., El Nainay, M., El Makky, N. and Abougabal, M.S. (2018) Software Bug
Prediction Using Weighted Majority Voting Techniques. Alexandria Engineering
Journal, 57, 2763-2774. https://doi.org/10.1016/j.aej.2018.01.003
http://www.sciencedirect.com/science/article/pii/S1110016818300747

[27] Aleem, S., Capretz, L. and Ahmed, F. (2015) Benchmarking Machine Learning
Technologies for Software Defect Detection. International Journal of Software En-
gineering & Applications, 6, 11-23. https://doi.org/10.5121/ijsea.2015.6302

[28] Jacob, S.G., et al. (2015) Improved Random Forest Algorithm for Software Defect
Prediction through Data Mining Techniques. International Journal of Computer
Applications, 117, 18-22. https://doi.org/10.5120/20693-3582

[29] Kumar, R. and Gupta, D.L. (2016) Software Bug Prediction System Using Neural
Network. European Journal of Advances in Engineering and Technology, 3, 78-84.

[30] Jindal, R., Malhotra, R. and Jain, A. (2014) Software Defect Prediction Using Neural
Networks. Proceedings of 3rd International Conference on Reliability, Infocom
Technologies and Optimization, 8-10 October 2014, Noida, 1-6.
https://doi.org/10.1109/ICRITO.2014.7014673

[31] Sethi, T. (2016) Improved Approach for Software Defect Prediction Using Artificial
Neural Networks. 2016 5th International Conference on Reliability, Infocom Tech-
nologies and Optimization, 7-9 September 2016, Noida, 480-485.
https://doi.org/10.1109/ICRITO.2016.7785003

[32] Jayanthi, R. and Florence, L. (2018) Software Defect Prediction Techniques Using
Metrics Based on Neural Network Classifier. Cluster Computing, 1-12.
https://doi.org/10.1007/s10586-018-1730-1

[33] Bishnu, P.S. and Bhattacherjee, V. (2012) Software Fault Prediction Using Quad
Tree-Based K-Means Clustering Algorithm. IEEE Transactions on Knowledge and
Data Engineering, 24, 1146-1150. https://doi.org/10.1109/TKDE.2011.163

[34] Park, M. and Hong, E. (2014) Software Fault Prediction Model Using Clustering
Algorithms Determining the Number of Clusters Automatically. International
Journal of Software Engineering and Its Applications, 8, 199-204.

[35] Catal, C., Sevim, U. and Diri, B. (2009) Software Fault Prediction of Unlabeled Pro-
gram Modules. Proceedings of the World Congress on Engineering, 1, 1-3.
https://doi.org/10.1109/ITNG.2009.12

[36] Han, J., Pei, J. and Kamber, M. (2011) Data Mining: Concepts and Techniques. The
Morgan Kaufmann Series in Data Management Systems.
https://books.google.com.sa/books?id=pQws07tdpjoC

[37] Ma, Y., Luo, G., Zeng, X. and Chen, A. (2012) Transfer Learning for Cross-Company

https://doi.org/10.4236/jsea.2019.125007
https://doi.org/10.1109/ISSRE.2008.54
https://doi.org/10.1109/ISSRE.2009.13
https://doi.org/10.5120/ijca2018917185
https://doi.org/10.1016/j.aej.2018.01.003
http://www.sciencedirect.com/science/article/pii/S1110016818300747
https://doi.org/10.5121/ijsea.2015.6302
https://doi.org/10.5120/20693-3582
https://doi.org/10.1109/ICRITO.2014.7014673
https://doi.org/10.1109/ICRITO.2016.7785003
https://doi.org/10.1007/s10586-018-1730-1
https://doi.org/10.1109/TKDE.2011.163
https://doi.org/10.1109/ITNG.2009.12
https://books.google.com.sa/books?id=pQws07tdpjoC

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 99 Journal of Software Engineering and Applications

Software Defect Prediction. Information and Software Technology, 54, 248-256.
http://www.sciencedirect.com/science/article/pii/S0950584911001996
https://doi.org/10.1016/j.infsof.2011.09.007

[38] Cao, Q., Sun, Q., Cao, Q. and Tan, H. (2015) Software Defect Prediction via Trans-
fer Learning Based Neural Network. 2015 1st International Conference on Reliabil-
ity Systems Engineering, 21-23 October 2015, Beijing, 1-10.
https://doi.org/10.1109/ICRSE.2015.7366475

[39] Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J. and Riquelme, J.C. (2014) Pre-
liminary Comparison of Techniques for Dealing with Imbalance in Software Defect
Prediction. Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, 13-14 May 2014, London, 1-10.
https://doi.org/10.1145/2601248.2601294

[40] Pelayo, L. and Dick, S. (2007) Applying Novel Resampling Strategies to Software
Defect Prediction. NAFIPS 2007 Annual Meeting of the North American Fuzzy In-
formation Processing Society, 24-27 June 2007, San Diego, 69-72.
https://doi.org/10.1109/NAFIPS.2007.383813

[41] Pak, C., Wang, T. and Su, X.H. (2018) An Empirical Study on Software Defect Pre-
diction Using Over-Sampling by Smote. International Journal of Software Engi-
neering and Knowledge Engineering, 28, 811-830.
https://doi.org/10.1142/S0218194018500237

[42] Shatnawi, R. (2012) Improving Software Fault-Prediction for Imbalanced Data.
2012 International Conference on Innovations in Information Technology, 18-20
March 2012, London, 54-59. https://doi.org/10.1109/INNOVATIONS.2012.6207774

[43] Zhang, H. (2009) An Investigation of the Relationships between Lines of Code and
Defects. 2009 IEEE International Conference on Software Maintenance, 20-26 Sep-
tember 2009, Edmonton, 274-283. https://doi.org/10.1109/ICSM.2009.5306304

[44] Mende, T. and Koschke, R. (2009) Revisiting the Evaluation of Defect Prediction
Models. Proceedings of the 5th International Conference on Predictor Models in
Software Engineering, 18-19 May 2009, Canada, 1-10.
https://doi.org/10.1145/1540438.1540448

[45] McCabe, T.J. (1976) A Complexity Measure. IEEE Transactions on Software Engi-
neering, 2, 308-320. https://doi.org/10.1109/TSE.1976.233837

[46] Ohlsson, N. and Alberg, H. (1996) Predicting Fault-Prone Software Modules in
Telephone Switches. IEEE Transactions on Software Engineering, 22, 886-894.
https://doi.org/10.1109/32.553637

[47] Lessmann, S., Baesens, B., Mues, C. and Pietsch, S. (2008) Benchmarking Classifica-
tion Models for Software Defect Prediction: A Proposed Framework and Novel
Findings. IEEE Transactions on Software Engineering, 34, 485-496.
https://doi.org/10.1109/TSE.2008.35

[48] Song, Q., Jia, Z., Shepperd, M., Ying, S. and Liu, J. (2011) A General Software De-
fect-Proneness Prediction Framework. IEEE Transactions on Software Engineering,
37, 356-370. https://doi.org/10.1109/TSE.2010.90

[49] Halstead, M.H. (1977) Elements of Software Science (Operating and Programming
Systems Series).

[50] Menzies, T., Greenwald, J. and Frank, A. (2007) Data Mining Static Code Attributes
to Learn Defect Predictors. IEEE Transactions on Software Engineering, 33, 2-13.
https://doi.org/10.1109/TSE.2007.256941

[51] Radjenovi, D., Heriko, M., Torkar, R. and Radjenovi, A. (2013) Software Fault Pre-
diction Metrics: A Systematic Literature Review. Information and Software Tech-

https://doi.org/10.4236/jsea.2019.125007
http://www.sciencedirect.com/science/article/pii/S0950584911001996
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1109/ICRSE.2015.7366475
https://doi.org/10.1145/2601248.2601294
https://doi.org/10.1109/NAFIPS.2007.383813
https://doi.org/10.1142/S0218194018500237
https://doi.org/10.1109/INNOVATIONS.2012.6207774
https://doi.org/10.1109/ICSM.2009.5306304
https://doi.org/10.1145/1540438.1540448
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/32.553637
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1109/TSE.2010.90
https://doi.org/10.1109/TSE.2007.256941

A. Alsaeedi, M. Z. Khan

DOI: 10.4236/jsea.2019.125007 100 Journal of Software Engineering and Applications

nology, 55, 1397-1418. https://doi.org/10.1016/j.infsof.2013.02.009
http://www.sciencedirect.com/science/article/pii/S0950584913000426

[52] Chidamber, S.R. and Kemerer, C.F. (1994) A Metrics Suite for Object Oriented De-
sign. IEEE Transactions on Software Engineering, 20, 476-493.
https://doi.org/10.1109/32.295895

[53] Jureczko, M. and Spinellis, D.D. (2010) Using Object-Oriented Design Metrics to
Predict Software Defects.

[54] Gupta, D.L. and Saxena, K. (2017) Software Bug Prediction Using Object-Oriented
Metrics. Sadhana, 42, 655-669.

[55] Singh, A., Bhatia, R. and Singhrova, A. (2018) Taxonomy of Machine Learning Al-
gorithms in Software Fault Prediction Using Object Oriented Metrics. Procedia
Computer Science, 132, 993-1001.
http://www.sciencedirect.com/science/article/pii/S1877050918308470

[56] Kim, S., Zhang, H., Wu, R. and Gong, L. (2011) Dealing with Noise in Defect Pre-
diction. 2011 33rd International Conference on Software Engineering, 21-28 May
2011, Waikiki, 481-490. https://doi.org/10.1145/1985793.1985859

[57] Lee, T., Nam, J., Han, D., Kim, S. and In, H. (2011) Micro Interaction Metrics for
Defect Prediction. Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, 5-9 September
2011, Szeged, 311-321. https://doi.org/10.1145/2025113.2025156

[58] Chug, A. and Dhall, S. (2013) Software Defect Prediction Using Supervised Learn-
ing Algorithm and Unsupervised Learning Algorithm. Confluence 2013: The Next
Generation Information Technology Summit, 26-27 September 2013, Uttar Pra-
desh, 173-179. https://doi.org/10.1049/cp.2013.2313

[59] Deep Singh, P. and Chug, A. (2017) Software Defect Prediction Analysis Using
Machine Learning Algorithms. 2017 7th International Conference on Cloud Com-
puting, Data Science Engineering-Confluence, 12-13 January 2017, Noida, 775-781.
https://doi.org/10.1109/CONFLUENCE.2017.7943255

[60] Hussain, S., Keung, J., Khan, A. and Bennin, K. (2015) Performance Evaluation of
Ensemble Methods for Software Fault Prediction: An Experiment. Proceedings of
the ASWEC 2015 24th Australasian Software Engineering Conference, 2, 91-95.
https://doi.org/10.1145/2811681.2811699

[61] Hammouri, A., Hammad, M., Alnabhan, M. and Alsarayra, F. (2018) Software Bug
Prediction Using Machine Learning Approach. International Journal of Advanced
Computer Science and Applications, 9, 78-83.
https://doi.org/10.14569/IJACSA.2018.090212

[62] Tantithamthavorn. An R package of Defect Prediction Datasets for Software Engi-
neering Research.

[63] Alsawalqah, H., Faris, H., Aljarah, I., Alnemer, L. and Alhindawi, N. (2017) Hybrid
Smote-Ensemble Approach for Software Defect Prediction. In: Silhavy, R., Silhavy,
P., Prokopova, Z., Senkerik, R. and Oplatkova, Z., Eds., Software Engineering
Trends and Techniques in Intelligent Systems, Springer, Berlin, 355-366.
https://doi.org/10.1007/978-3-319-57141-6_39

https://doi.org/10.4236/jsea.2019.125007
https://doi.org/10.1016/j.infsof.2013.02.009
http://www.sciencedirect.com/science/article/pii/S0950584913000426
https://doi.org/10.1109/32.295895
http://www.sciencedirect.com/science/article/pii/S1877050918308470
https://doi.org/10.1145/1985793.1985859
https://doi.org/10.1145/2025113.2025156
https://doi.org/10.1049/cp.2013.2313
https://doi.org/10.1109/CONFLUENCE.2017.7943255
https://doi.org/10.1145/2811681.2811699
https://doi.org/10.14569/IJACSA.2018.090212
https://doi.org/10.1007/978-3-319-57141-6_39

	Software Defect Prediction Using Supervised Machine Learning and Ensemble Techniques: A Comparative Study
	Abstract
	Keywords
	1. Introduction
	2. Software Metrics
	3. Evaluation Measures for Software Bugs Prediction
	4. Experimental Methodology
	5. Experimental Results and Discussion
	6. Threats to Validity
	7. Related Works
	8. Conclusions and Future Works
	Conflicts of Interest
	References

