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Abstract 

An essential objective of software development is to locate and fix defects 
ahead of schedule that could be expected under diverse circumstances. Many 
software development activities are performed by individuals, which may lead 
to different software bugs over the development to occur, causing disap-
pointments in the not-so-distant future. Thus, the prediction of software de-
fects in the first stages has become a primary interest in the field of software 
engineering. Various software defect prediction (SDP) approaches that rely 
on software metrics have been proposed in the last two decades. Bagging, 
support vector machines (SVM), decision tree (DS), and random forest (RF) 
classifiers are known to perform well to predict defects. This paper studies 
and compares these supervised machine learning and ensemble classifiers on 
10 NASA datasets. The experimental results showed that, in the majority of 
cases, RF was the best performing classifier compared to the others.  
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1. Introduction 

A software defect is a bug, fault, or error in a program that causes improper 
outcomes. Software defects are programming errors that may occur because of 
errors in the source code, requirements, or design. Defects negatively affect 
software quality and software reliability [1]. Hence, they increase maintenance 
costs and efforts to resolve them. Software development teams can detect bugs 
by analyzing software testing results, but it is costly and time-consuming by 
testing entire software modules. As such, identifying defective modules in early 
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stages is necessary to aid software testers in detecting modules that required in-
tensive testing [2] [3]. 

In the field of software engineering, software defect prediction (SDP) in early 
stages is vital for software reliability and quality [1] [4]. The intention of SDP is 
to predict defects before software products are released, as detecting bugs after 
release is an exhausting and time-consuming process. In addition, SDP ap-
proaches have been demonstrated to improve software quality, as they help de-
velopers predict the most likely defective modules [5] [6]. SDP is considered a 
significant challenge, so various machine learning algorithms have been used to 
predict and determine defective modules [7]. With the end goal of expanding the 
viability of software testing, SDP is utilized to distinguish defective modules in 
current and subsequent versions of a software product. Therefore, SDP ap-
proaches are very helpful in allocating more efforts and resources for testing and 
examining likely-defective modules [8]. 

Commonly-used SDP strategies are regression and classification strategies. 
The objective of regression techniques is to predict the number of software de-
fects [5]. In the literature, there are a number of regression models used for SDP 
[9] [10] [11] [12]. In contrast, classification approaches aim to decide whether a 
software module is faulty or not. Classification models can be trained from the 
defect data of the previous version of the same software. The trained models can 
then be used to predict further potential software defects. Mining software repo-
sitory becomes a vital topic in research for predicting defects [13] [14]. 

Supervised machine learning classifiers are commonly employed to predict 
software defects such as support vector machines [15] [16] [17], k-nearest 
neighbors (KNN) [18] [19], Naive Bayes [19] [20] [21], and so on. In addition, 
Bowes [22] suggested the use of classifier ensembles to effectively predict defects. 
A number of works have been accomplished in the field of SDP utilizing ensem-
ble methods such as bagging [23] [24] [25], voting [22] [26], boosting [23] [24] 
[25], random tree [22], RF [27] [28], and stacking [22]. Neural networks (NN) 
can be used to predict defect prone software modules [29] [30] [31] [32]. 

Clustering algorithms such as k-means, x-means, and expectation maximiza-
tion (EM) have also been applied to predict defects [33] [34] [35]. In addition, 
the experiment outcomes in [34] [35] showed that x-means clustering performed 
better than fuzzy clustering, EM, and k-means clustering at identifying software 
defects. Aside from those, transfer learning is a machine learning approach that 
expects to exchange the information learned in one dataset and utilize that 
learning to help tackle issues in an alternate dataset [36]. Transfer learning has 
also been introduced to the field of SDP [37] [38]. 

Software engineering data, such as defect prediction datasets, are very imba-
lanced, where the number of samples of a specific class is vastly higher than 
another class. To deal with such data, imbalanced learning approaches have been 
proposed in SDP to mitigate the data imbalance problem [7]. Imbalanced learn-
ing approaches include re-sampling, cost-sensitive learning, ensemble learning, 
and imbalanced ensemble learning (hybrid approaches) [7] [39]. Re-sampling 
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approaches can be either oversampling and under-sampling methods, and these 
can add or remove instances from the training data only. Several previous stu-
dies [40] [41] [42] in SDP utilized oversampling approaches, especially, Synthet-
ic Minority Over-sampling Technique (SMOTE). Pelayo and Dick [40] com-
bined SMOTE with DS to study the effect of oversampling on the accuracy of 
predictive models at detecting software defects. The results showed that SMOTE 
led to improvements in the classification accuracy, especially when the percen-
tage of resampling was 300%. 

Cost-sensitive learning is another approach to dealing with data imbalance. It 
works by adding weight to samples or resampling them by allocating cost to each 
class in a predefined matrix. However, the issue with cost-sensitive classifiers is 
that there is no intelligent and systematic way to set the cost matrices [39]. En-
semble approaches combine multiple models to obtain better predictions. Three 
ensemble methods are widely used in SDP includes: bagging, boosting, and 
stacking. The common boosting algorithm for SDP is adaptive boosting (Ada-
Boost). On the other hand, hybrid approaches [39], such as SMOTEBoost and 
RUSBoost are known approaches for dealing with the problem of class imbal-
ance. In this paper, we will use the SMOTE oversampling approach to deal with 
class imbalance, with the intent to compare the performance of supervised ma-
chine learning and Ensemble techniques in predicting software defects. 

Section 2 summarizes software metrics that can be used as attributes to iden-
tify software defects. Section 3 presents evaluation metrics that can be used to 
measure the performance of SDP models. Sections 4 and 5 detail the experimen-
tal methodology and results, respectively. Section 6 presents the threats to valid-
ity. Related works are described in Section 7. 

2. Software Metrics 

A software metric is a proportion of quantifiable or countable characteristics 
that can be used to measure and predict the quality of software. A metric is an 
indicator describing a specific feature of a software [6]. Identifying and measur-
ing software metrics is vital for various reasons, including estimating program-
ming execution, measuring the effectiveness of software processes, estimating 
required efforts for processes, deduction of defects during software develop-
ment, and monitoring and controlling software project executions [5]. 

Various software metrics have been commonly used for defect prediction. The 
first group of software metrics is called lines of code (LOC) metrics and is con-
sidered basic software metrics. LOC metrics are typical proportions of software 
development. Many studies in SDP have proven a clear correlation between LOC 
metrics and defect prediction [43] [44]. One of the most common software me-
trics widely used for SDP are the cyclomatic complexity metrics, which were 
proposed by McCabe [45] and are used to represent the complexity of software 
products. McCabe’s metrics (cyclomatic metrics) are computed based on the 
control flow graphs of a source code by counting the number of nodes, arcs, and 
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connected components. Ohlsson and Alberg [46] used McCabe’s cyclomatic 
metrics to predict defect-prone modules before starting coding. Many previous 
studies have used McCabe’s cyclomatic metrics to build SDP models [47] [48], as 
well. Another set of software metrics are the software size metrics proposed by 
Halstead [49]. Halstead software size metrics are based on the number of ope-
rands and operators from source codes [49]. In addition, these metrics are re-
lated to program size of program vocabulary, length, volume, difficulty, effort, 
and time [49] and have been used in SDP [48] [50]. 

According to [51], the majority of software fault prediction approaches rely 
on object-oriented software metrics. Chidamber and Kemerer [52] proposed 
several software metrics called CK object-oriented metrics, which include the 
depth of inheritance tree (DIT), weighted method per class (WMC), number of 
children (NOC), and so on. Many studies using object-oriented metrics have 
been used in SDP [53] [54] [55]. Radjenovic et al. [51] identified effective soft-
ware metrics used in SDP and aimed to enhance software quality by finding de-
fects. The outcome of their study [51] outlined that object-oriented and process 
metrics were more effective in finding defects compared to other size and com-
plexity metrics. 

3. Evaluation Measures for Software Bugs Prediction 

In this section, we will discuss different measurements for software defect pre-
diction such as true positive (TP), true negative (TN), false positive (FP) and 
false negative (FN). TP denotes the number of defective software instances that 
are correctly classified as defective, while TN is the number of clean software in-
stances that are correctly classified as clean. FP denotes the number of clean 
software instances that are wrongly classified as defective, and FN denotes the 
number of defective software instances that are mistakenly classified as clean 

One of the primary simple metrics to evaluate the performance of predictive 
models is classification accuracy, also called the correct classification rate. It is 
utilized to quantify the extent of the effectively classified instances to the aggre-
gate instances. Another measure is called precision, and it is calculated by divid-
ing the number of instances correctly classified as defective (TP) by the total 
number of instances classified as defective (TP + FP) [16]. In addition, recall 
measures the percentage of the number of instances correctly classified as defec-
tive (TP) to the total number of faulty instances (TP + FN) [16]. F-score is a 
harmonic mean of precision and recall, and many studies in the literature used 
F-score metrics [56] [57]. ROC-AUC calculates the area under the receiver op-
erating characteristic (ROC) curve by computing trade-offs between TPR and 
FPR.  

( ) ( )Accuracy TP TN TP TN FP FN= + + + +              (1) 

( )Precision TP TP FP= +                      (2) 

( )Recall TP TP FN= +                      (3) 
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( ) ( )F-Score 2 Precision Recall Precision Recall= ∗ ∗ +         (4) 

( )TPR TP TP FN= +                       (5) 

( )FPR FP TN FP= +                       (6) 

G-measure is another measure used in software defect prediction. It is defined 
as a harmonic mean of recall and specificity. Probability of false alarm (PF) is the 
ratio of clean instances wrongly classified as defective (FP) among the total clean 
instances (FP + TN). 

( )PF FP FP TN= +                       (7) 

Specificity 1 PF TN FP TN= − = +                (8) 

G-measure 2 Recall Specificity Recall Specificity= ∗ ∗ +         (9) 

4. Experimental Methodology  

For the experiments, 10 well-known software defect datasets [62] were selected. 
The majority of related works used these datasets to evaluate the performance of 
their SDP techniques and this is the reason behind selecting the above-mentioned 
dataset for further comparisons. Table 1 reports the datasets used in the experi-
ments along with the statistics. RF, DS, Linear SVC SVM, and LR were chosen to 
be the base classifiers. Boosting and bagging classifiers for all the base classifiers 
were also considered. The experiments were conducted on a Python environ-
ment. The classifiers’ performances in this study were measured using classifica-
tion accuracy, precision, recall, F-score, and ROC-AUC score. It is important to 
highlight that these metrics were computed using the weighted average. The in-
tuition behind selecting the weighted average was to calculate metrics for each 
class label and take the label imbalance into the account. 
 
Table 1. Dataset summaries. 

Dataset Number of Modules 
Number of 

Defective Modules 
Number of Attributes 

(Software Metrics) 

JM1 7782 1672 21 

KC3 194 36 39 

MC1 1988 46 38 

MC2 125 44 39 

MW1 253 27 37 

PC1 705 61 37 

PC2 745 16 36 

PC3 1077 134 37 

PC4 1287 177 37 

PC5 1711 471 38 
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The performance of classifiers was evaluated based on 10-fold cross-validation 
to split the datasets into 10 consecutive folds. One of them for testing and the 
remaining folds for training. Afterwards, features were standardized and scaled 
using the standard Scaler function in Python, which works by removing the 
mean and scaling the features into unit variance. Since the datasets were very 
imbalanced, the oversampling approach using SMOTE was performed for the 
training data only, as it has been widely used in the literature to mitigate imbal-
ance issues in training data for SDP. 

The following Algorithm 1 was used for the experiments. It began by provid-
ing a list of datasets and a list of classifiers and then proceeded to iterate over all 
datasets, as shown in Line 8. The datasets were split into training and testing da-
ta based on 10-fold cross-validation with shuffling of the data before splitting, as 
shown in Line 9. One the dataset was split, the perform Standard Scaler function 
was utilized to standardize and scale the features. 

Once the features were standardized, the training data for each fold were 
re-sampled using the SMOTE technique, as shown in Line 11. As mentioned 
above, SMOTE oversampling has been widely used in SDP. The loop in Lines 12 
- 25 aimed to train the classifiers, obtain predictions, and compute evaluation 
metrics. The average metrics were computed in Lines (27 - 31) as the datasets 
were split using 10-folds. The process from Lines 9 - 31 was iterated throughout 
all provided datasets. 
 

 
Algorithm 1. The experimental procedure for software defect perdition. 
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5. Experimental Results and Discussion 

Table 2 summarizes the performance of the different classifiers based on the 
classification accuracy. The RF classifier achieved accuracies of 0.91, 0.84, 0.90, 
0.82, 0.97, and 0.83 for the PC1, PC3, PC4, KC2, MC1, and CM1 datasets, re-
spectively. In addition, it is obvious that the RF classifier attained the highest 
accuracy scores for the PC1, PC3, PC4, KC2, MC1, and CM1 datasets compared 
to other classifiers, indicating better predictions of defective instances performed 
by the RF classifiers in these datasets. Moreover, the reported scores in Table 2 
show that the bagging classifier with DS as a base learner performed well on the 
PC5, KC3, and MC2 datasets as compared to the other classifiers. 

In Figure 1, it is clear that the RF classifier obtained the highest accuracy 
scores for all datasets, except PC5, JM1, KC3 and MC2. Furthermore, the maxi-
mum accuracy attained for PC1 was 0.91 whereas the minimum value was 0.78  
 

 
Figure 1. Classification accuracy scores of different classifiers. 
 
Table 2. The accuracy scores obtained using different classifiers.  

Dataset 
Base Learner AdaBoost Bagging 

RF DS SVM LR RF DS SVM LR RF DS SVM LR 

PC1 0.91 0.87 0.79 0.81 0.90 0.86 0.79 0.78 0.89 0.89 0.79 0.81 

PC3 0.84 0.80 0.74 0.76 0.84 0.81 0.74 0.76 0.82 0.84 0.74 0.75 

PC4 0.90 0.85 0.81 0.82 0.89 0.84 0.81 0.82 0.89 0.89 0.81 0.83 

PC5 0.76 0.71 0.68 0.68 0.75 0.70 0.68 0.71 0.76 0.77 0.68 0.68 

JM1 0.77 0.71 0.69 0.70 0.77 0.78 0.69 0.72 0.77 0.77 0.69 0.69 

KC2 0.82 0.78 0.79 0.78 0.81 0.77 0.79 0.80 0.80 0.79 0.79 0.79 

KC3 0.81 0.77 0.77 0.77 0.79 0.80 0.77 0.71 0.79 0.82 0.77 0.76 

MC1 0.97 0.94 0.81 0.81 0.97 0.94 0.81 0.77 0.97 0.96 0.81 0.81 

MC2 0.69 0.67 0.65 0.63 0.71 0.68 0.65 0.65 0.71 0.75 0.65 0.65 

CM1 0.83 0.78 0.75 0.73 0.82 0.77 0.75 0.75 0.81 0.83 0.75 0.74 
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obtained by LR for the same dataset. Among the base learners, RF was the best 
performing classifier for all datasets, while SVM was the worst classifier for all 
datasets, except KC2, MC2, and CM1. Besides, Bagging with DS achieves higher 
accuracy scores for PC3, PC5, KC3, MC2, CM1 compared to the other bagging 
and boosting methods.  

Table 3 reports the F-scores attained using different classifiers. In general, it is 
apparent that the RF classifier was the best performing for six different datasets, 
as illustrated in Table 2 and Table 3. For PC1, PC3, PC4, KC2, MC1, and CM1, 
the RF classifier attained the highest F-scores compared to the other classifiers, 
indicating better predictions obtained by RF. In addition, the reported F-scores 
presented that AdaBoost classifier with RF as a base learner attained similar 
scores to RF for the PC3, PC4, KC2, and MC1 datasets. Furthermore, bagging 
with DS achieved higher F-scores compared to other classifiers for PC5, KC, and 
MC2. 

Figure 2 illustrates bar plots of the F-scores attained using classifiers for all 
datasets. For the PC3, PC4, PC5, and JM1 datasets, it is obvious that the SVM,  
 

 
Figure 2. F-scores attained by different classifiers. 
 
Table 3. The F-scores obtained using different classifier. 

Dataset 
Base Learner AdaBoost Bagging 

RF DS SVM LR RF DS SVM LR RF DS SVM LR 

PC1 0.91 0.88 0.83 0.85 0.90 0.87 0.83 0.82 0.90 0.89 0.83 0.85 

PC3 0.84 0.81 0.78 0.79 0.84 0.82 0.78 0.80 0.83 0.84 0.78 0.79 

PC4 0.90 0.86 0.84 0.84 0.90 0.85 0.84 0.84 0.90 0.90 0.84 0.85 

PC5 0.76 0.72 0.69 0.70 0.75 0.71 0.69 0.71 0.76 0.77 0.69 0.69 

JM1 0.76 0.71 0.71 0.71 0.76 0.76 0.71 0.73 0.77 0.76 0.71 0.71 
KC2 0.82 0.78 0.80 0.80 0.82 0.77 0.80 0.81 0.81 0.79 0.80 0.80 
KC3 0.81 0.78 0.78 0.79 0.79 0.81 0.78 0.74 0.80 0.82 0.78 0.78 
MC1 0.97 0.95 0.88 0.88 0.97 0.95 0.88 0.85 0.97 0.96 0.88 0.88 
MC2 0.67 0.66 0.64 0.63 0.69 0.67 0.64 0.64 0.69 0.72 0.64 0.65 
CM1 0.83 0.79 0.78 0.77 0.82 0.79 0.78 0.79 0.81 0.83 0.78 0.77 
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AdaBoost (SVM), and bagging (SVM) classifiers performed badly, as reported in 
Table 3. For JM1, the highest F-score was 0.77, attained by bagging (RF). Addi-
tionally, the lowest score was 0.71, which was attained using six different clas-
sifiers. Furthermore, the F-scores achieved by bagging (LR) were the minimum 
for KC3 and MC1. LR was the worst classifier for the MC2 and CM1 datasets. 

The ROC-AUC scores achieved by all participating classifiers are shown in 
Table 4. For PC1 and PC3, the LR and bagging with LR classifiers attained the 
highest ROC-AUC scores, achieving 0.77 for PC1 and 0.74 for PC3. The bagging 
with the RF algorithm as base estimator performed well in terms of ROC-AUC 
scores, reaching 0.84, 0.71, and 0.64 for the PC4, PC5, and JM1 datasets, respec-
tively. The ROC-AUC score of AdaBoost with the LR classifier on data set KC2 
was the best among all the classifiers, achieving a score of 0.78, while the lowest 
value was 0.66 and was attained by the AdaBoost with DS. The SVM, AdaBoost 
(SVM), and bagging (SVM) classifiers achieved the highest ROC-AUC scores for 
the CM1 and MC1 datasets.  

Figure 3 shows the bar plots of ROC-AUC scores attained by all classifiers. It 
is clear there is no dominant classifier and this may due to the nature of datasets. 
For instance, LR and bagging (LR) classifiers performed well on PC1 and PC3 
datasets, while these classifiers did not achieve the highest ROC-AUC scores for 
other datasets. 

Our findings demonstrate that there was uncertainty in the classifiers’ per-
formances, as some classifiers performed well in specific datasets but worse in 
others. Similar to other studies [6] [22] [58], our results recommend using en-
sembles as predictive models to detect software defects. Additionally, their find-
ings [6] [22] [58] agreed with our outcome that RF performed well. However, 
the experiments conducted by Hammouri et al. [61] purported that the best 
performing algorithm was DS, while our study’s findings confirmed that DS 
performed badly, unless it was used as a base learner with bagging classifiers for 
some datasets, as reported in Table 2 and Table 3. 
 
Table 4. The ROC-AUC scores obtained using classifiers. 

Dataset 
Base Learner AdaBoost Bagging 

RF DS SVM LR RF DS SVM LR RF DS SVM LR 

PC1 0.72 0.70 0.76 0.77 0.68 0.66 0.76 0.74 0.73 0.66 0.76 0.77 

PC3 0.64 0.61 0.73 0.74 0.64 0.64 0.73 0.73 0.67 0.65 0.73 0.74 

PC4 0.81 0.73 0.82 0.83 0.79 0.73 0.82 0.80 0.84 0.81 0.82 0.83 

PC5 0.70 0.66 0.68 0.68 0.69 0.65 0.68 0.67 0.71 0.71 0.68 0.68 

JM1 0.62 0.59 0.63 0.63 0.63 0.62 0.63 0.63 0.64 0.62 0.63 0.63 

KC2 0.74 0.67 0.77 0.77 0.74 0.66 0.77 0.78 0.75 0.71 0.77 0.77 

KC3 0.69 0.69 0.66 0.67 0.65 0.71 0.66 0.63 0.67 0.71 0.66 0.66 

MC1 0.66 0.58 0.75 0.71 0.65 0.57 0.75 0.70 0.67 0.61 0.75 0.71 

MC2 0.61 0.59 0.59 0.58 0.63 0.61 0.59 0.61 0.63 0.66 0.59 0.61 

CM1 0.58 0.56 0.68 0.63 0.56 0.57 0.68 0.68 0.57 0.59 0.68 0.65 
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Figure 3. ROC-AUC scores of different classifiers. 

6. Threats to Validity 

In this section, we list some potential threats in our study and responses to con-
struct validity.  

1) The selection of datasets may not be representative. One potential threat to 
validity is the selection of datasets where they might not be representative. In our 
study, this threat is mitigated by evaluating the performance of the classifiers on 
ten well-known datasets that are commonly used in the literature review. 

2) The generalization of our results. We have attempted to mitigate this threat 
by measuring the performance of the base learners, boosting, and bagging clas-
sifier on diverse datasets that have different sizes. 

3) The trained classifiers may over-fitting and bias the results. Instead of split-
ting the datasets randomly using the simple train-test split (70% - 80% for train-
ing and 30% - 20% for testing), we split the dataset into training and testing sets 
using the 10-fold cross validation to avoid the over-fitting issue that might be 
caused using the random splitting.  

7. Related Works 

Kalai Magal et al. [28] combined feature selection with RF to improve the accu-
racy of software defect predication. Feature selection was based on correlation 
computation and aimed to choose the ideal subset of features. The selected fea-
tures using correlation-based feature selection were then used with RF to predict 
software defects. Various experiments were conducted on open NASA datasets 
from the PROMISE repository. The outcome showed clear improvements ob-
tained using the improved RF compared to the traditional RF. 

Venkata et al. [9] explored various machine learning algorithms for real-time 
system defect identification. They investigated the impact of attribute reduction 
on the performance of SDP models and attempted to combine PCA with differ-
ent classification models which did not show any improvements. However, the 
outcomes of the experimental results demonstrated that combining the correla-
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tion-based feature selection technique with 1-rule classifier led to improvements 
in classification accuracy. 

Anuradha and Shafali [58] investigated three supervised classifiers: J48, NB, 
and RF. Various datasets were selected to assess the classifiers efficiency at de-
tecting defective modules. The conducted experiments demonstrated that the RF 
classifier outperformed the others. Moreover, Ge et al. [6] showed that RF per-
formed well compared to LWL, C4.5, SVM, NB, and multilayer feed forward 
neural networks. On the other hand, Singh and Chug [59] analyzed five classifi-
ers—ANN, particle swarm optimization (PSO), DS, NB, Linear classifier 
(LC)—and compared their performance in terms of detecting software defects. 
The experiment results showed that LC outperformed the other classifiers. 

Aleem et al. [27] compared the performance of 11 machine learning methods 
and used 15 NASA datasets from the PROMISE repository. NB, MLP, SVM, 
AdaBoost, bagging, DS, RF, J48, KNN, RBF, and k-means were applied in their 
study. The results showed that bagging and SVM performed well in the majority 
of datasets. Meanwhile, Wang et al. [22] carried out a comparative analysis of 
ensemble classifiers for SDP and demonstrated that voting ensemble and RF at-
tained the highest classification accuracy results compared to AdaBoost, NB, 
stacking, and bagging. Perreault et al. [19] compared NB, SVM, ANN, LR, and 
KNN on five NASA datasets. The outcomes of the conducted experiments did 
not show a superior classifier at identifying software defects. Hussain et al. [60] 
used the AdaboostM1, Vote and StackingC ensemble classifier with five base 
classifiers: NB, LR, J48, Voted-Perceptron and SMO in Weka tool for SDP. The 
experimental results showed that StackingC performed well compared to the 
other classifiers. 

Hammouri et al. [61] assessed NB, ANN, and DS for SDP. Three real debug-
ging datasets were used in their study. Measurements such as accuracy, preci-
sion, recall, F-measure, and RMSE were utilized to analyze the results. The re-
sults of their study showed that DS performed well. 

The above-mentioned approaches differ from the proposed approach in this 
paper in two ways. Firstly, we compared the performance of different supervised 
and Ensemble methods on the oversampled training data, while other works 
such as Kalai Magal et al. [28] and Venkata et al. [9] focused on the impact of 
feature selection and attribute reduction on the performance of classifiers. Se-
condly, a very similar study to our approach presented in this paper was con-
ducted by Alsawalqah et al. [63], where they studied the impact of SMOTE on 
the Adaboost ensemble method with J48 as a base classifier. Their findings 
demonstrated that SMOTE can help to boost the performance of the ensemble 
method on four NASA datasets. This differs from our study presented in this 
paper is that we compared varieties of ensemble methods on the oversampled 
training dataset, while Alsawalqah et al. [63] used only Adaboost with J48 as a 
base classifier. 

The general finding in these related works is that classifiers such as RF, bag-
ging, DS, Adaboost performed well in the SDP problem. Therefore, we have fo-
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cused on studying the performance of these classifiers on the condition that 
SMOTE oversampling techniques were applied to training data only. 

8. Conclusions and Future Works 

This paper focused on comparing the most well-known machine learning algo-
rithms that are widely used to predict software defects. The performances of dif-
ferent algorithms were evaluated using classification accuracy, F-measure, and 
ROC-AUC metrics. The SMOTE resampling strategy was used to mitigate the 
data imbalance issues. The outcomes of the conducted experiment showed that 
RF, AdaBoost with RF, and bagging with DS generally performed well. 

Interesting future extensions could include studying the impact of various 
metaheuristic feature selection approaches to select the optimal set of features 
for SDP. One future direction is to explore and compare the performance of 
deep learning approaches and ensemble classifiers with other resampling tech-
niques, as data imbalance is still an issue that badly affects the performance of 
the existing SDP approaches. 
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