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Abstract 
Many mobile robotics applications, especially in industrial environments, re-
quire the robot to perform safe navigation and then reach the goal with a high 
precision. In this research work, the objective is to analyze the appropriate-
ness of autonomous natural navigation strategies for mobile manipulation 
tasks. The system must position itself in a realistic map, follow a path closely 
and then achieve an accurate positioning in the destination point in order to 
be able to perform the manipulation, inspection or pick task efficiently. Au-
tonomous navigation is not able to fulfill the accuracy required by some of 
the jobs so that a second positioning system using vision is proposed in this 
paper. The experiments show that localization systems have, on average, an 
error greater than a decimetre and how an additional positioning system can 
reduce it to a few millimetres.  
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1. Introduction 

Natural navigation aims to design robot systems able to navigate without mod-
ifying the environment, i.e., without adding extra infrastructure to it. Nowadays, 
those robot navigation techniques’ performance changes considerably depend-
ing upon the environment, as their effectiveness directly depends on the features 
placed for the robot to localize. The sensors readings are matched against the 
map, and the pose is estimated based on the resemblance between them. As a 
consequence, the more featured the surroundings, the easier the system localizes 
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itself, increasing its accuracy, robustness and overall behaviour. Shop floors and 
industrial environments are full of repetitive areas or long corridors where the 
system localization critically depends on unreliable odometry data, due to high 
sensor aliasing. Consequently, the accuracy of localization estimation methods 
deteriorates. Moreover, those environments suffer frequent modifications that 
would require a remapping of the environment not always affordable. 

Even though many industrial applications do not require the robot to main-
tain an accurate localization along the whole trajectory, they do need it at some 
specific points [1]. More specifically, industrial mobile manipulators are more 
tolerant to deviations during the navigation between destinations, being enough 
to reach the objective safely. In contrast, they require an excellent positioning in 
the target pose where they have to perform a task of manipulation, inspection or 
picking efficiently. The research described in this paper focuses on giving a solu-
tion for an efficient and flexible assistive robotic inspection task. The robotic 
platform needs to navigate through an industrial plant to reach the inspection 
area where there is an aileron placed in a fixture (see Figure 1). Afterwards, the 
platform must move around stopping at some preset points accurately until the 
robotic arm mounted upon the platform carries out a fast and robust ultrasonic 
scanning of the aileron to precisely follow complex-curvatures of the composite 
parts. As the workspace of the arm is limited, it cannot scan the whole surface at 
once and thus more nearby points are required.  

The goal of the presented work is twofold: 
 

 
Figure 1. The accurate positioning scenario. In the middle, the aileron to be scanned. In 
front of it and in the lower right of the image, the mobile platform aiming one of the 
three vision labels. Behind the aileron there is the robotic arm that will be mounted on 
top of the platform. 
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1) Compare the adequateness of different mapping algorithms for the task in 
hand. The error produced by each approach in the robot localization is meas-
ured using a laser tracker device. 

2) Measure the final positioning accuracy and correct the error by using vi-
sion. Based on the prior expertise in this field and a bibliographical revision [2] 
[3] [4] [5] [6], an additional positioning system is proposed to deal with this 
challenge and correct the error with which the robot has arrived at the desired 
point. 

The paper is structured as follows: Section 2 reviews the literature. Next, the 
taken approach is described in Section 3. Section 4 details the experiments made 
in order to evaluate the different mapping and positioning systems. Section 5 
analyses the obtained results. The paper concludes with Section 6, giving conclu-
sions and pinpointing future work. 

2. Related Work 

Over the last years, autonomous mobile robot navigation probabilistic tech-
niques have successfully been applied to a wide range of tasks. Those techniques 
make explicit the uncertainty in environment perception and robot motion not 
only while mapping the environment, but also while localizing the robot in the 
map and planning the path to the goal, the three subproblems robot navigation 
is divided into [7]. The Simultaneous Localization and Mapping (SLAM) prob-
lem is tackled by applying the uncertainty in the robot localization during the 
mapping process [8]. 

Probabilistic approaches have become popular as they give a robust solution 
to the localization problem, based on algorithms such as Kalman Filters [9], 
Histogram and Particle Filters [10] or Monte Carlo Localization [7]. Probabilis-
tic localization techniques are mainly based on two information sources: motion 
information usually obtained from wheel encoders (odometry) and perception 
information needed to correct the estimated position by matching each obtained 
sensor pattern in the map. 

Among the different sensors used for correcting the estimated odometry posi-
tions, LiDAR sensors are preferred nowadays as they are quite reliable in most 
scenarios [11] [12] [13] [14]. LiDARs send out laser pulses and measure the re-
turned wavelength to obtain the distance to the first object in its path. They are 
robust with respect to light effects as shadows or reflections, indeed, they do not 
require daylight to capture the data and, for many applications, point clouds 
captured at night are preferred over the ones captured during the day. Never-
theless, digital cameras have recently been proposed in many solutions as they 
are cheap and light, and coloured representations of the environment are very 
informative for visual detection [15] [16] [17]. That said, many mobile LiDAR 
sensors are commercially sold as a unit in conjunction with a camera. Both sen-
sors collect data simultaneously and in a post-processing the colour attribute is 
added to every point of the point cloud, obtaining a coloured point cloud, which 

https://doi.org/10.4236/jcc.2019.75001


I. Lluvia et al. 
 

 

DOI: 10.4236/jcc.2019.75001 4 Journal of Computer and Communications 
 

can better represent semantic information extracted from pictures. 
Visual information is also used for localization purposes [18]. Visual land-

marks are placed and their positions with respect to the map reference frame are 
located so that the robot can continuously find them [19]. Although this method 
improves the quality of the pose estimation in a relevant way, it has some signif-
icant disadvantages. On the one hand, the environment must be modified, mak-
ing its installation expensive, longer and even impossible in some cases. On the 
other hand, the positioning of the external references should be measured accu-
rately. This task's error will increase the error already produced by odometry. 
Besides, those measurements will only be valid for a particular map. If the map 
changes, the reference frame will also vary, and the coordinates of the landmarks 
would need to be recalculated in order to fit the new map. 

Several strategies designed to work outdoors use global positioning systems 
(GPSs) to solve the localization problem [20] [21]. However, those systems do 
not succeed in common factories due to the bad quality of the signals produced 
by [22]: 1) metal structures in thick walls industrial constructions are built of. 
Those structures prevent signals from being spread properly. Moreover, in some 
cases completely unreachable areas occur. 2) Factories usually have a considera-
ble amount of machines, each provided with its own communication devices. 
Those devices may generate interferences or even loss of information which can 
affect the navigation process itself [23]. These issues can be addressed in differ-
ent ways. Some approaches propose to use signal repeaters or amplifiers to im-
prove the quality of the signals [24] or replace the global positioning system with 
a local positioning system [25]. Both alternatives are based on the same idea of 
receiving the localization information from an external source. 

As mentioned in the introduction, the goal of the work presented here is to 
develop a natural robot navigation system for industrial manipulation purposes 
and thus, no external environmental requirement should be added to success-
fully perform the goal. 

However, it must be taken into account that a proper navigation does not 
necessarily lead to an accurate positioning. As it has been mentioned before, in 
the specific robotic task in hands the overall localization has a higher margin of 
error than the positioning at the destination point. There are some systems that 
do really get accurate positioning results. For instance, a three-dimensional in-
door positioning system using LED lights and detecting the time difference of 
arrival proposed in [26] achieves a mean error as low as 1 mm but in simulation 
and in a relatively small room. Some RGB-D cameras based techniques state an 
accuracy of few centimetres with synthetic datasets [15] [27]. 

Nonetheless, visual odometry systems on their own do not need a map whe-
reby navigate, i.e., they just need a representation of the environment for locali-
zation. Most navigation systems divide the ground of the map in cells getting the 
corresponding grid-map, which allows a more efficient path planning and ob-
stacle avoidance. Accordingly, they operate in the discrete space with the conse-
quent loss of information whilst visual odometry and scan-matching algorithms 
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remain in the continuous. In that vein, Röwekämper et al. [2] report a maximum 
error of 17 mm and 0.53 deg. Other attempts that use scan-matching techniques 
get position errors of decimetres [3] [4]. This work tries to be ambitious in an 
attempt to achieve a better accuracy in the final positioning making use of a 
camera. In addition, Tang et al. [28] have probed that some IMUs can add noise 
in static positioning or when the robot operate in minimal velocities worsening 
the odometry data instead of improving it. 

In the approach proposed here the robot will navigate making use of a LiDAR 
scan together with the wheel encoders odometry rectified with the IMU, and 
only the last position achieved prior to the manipulation task will be corrected 
using vision. So it does not focus just in navigation or in the accurate position-
ing, as many other works do. It goes a step further and combines both processes 
in a unique solution, minimising the error in each of them, and especially in the 
final positioning.  

3. Optimal Positioning Measurement Approach 

As mentioned before, we aim to find the best mapping approach on the one 
hand, and to correct the localization error at the goal position on the other hand. 
Thus, the approach is divided in two main sections, focusing the first one in au-
tonomous navigation techniques, and in accurate positioning at the destination 
point in the second one. 

3.1. Robotic Platform 

The robotic platform is a Segway RMP 440 Flex Omni with four mecanum 
wheels, capable of moving omnidirectionally at 2.2 m/s (5 mph) with a maxi-
mum payload of 450 kg (1000 lbs). Although its velocities are limited to 0.5 m/s 
(1.1 mph) and 1 rad/s during the experiments for control and safety. 

It includes the following main elements (see Figure 2): 
 

 
Figure 2. The Segway RMP 440 Flex Omni navigating through the east half of the 
workshop. 
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 PC with Intel i7 Processor: Core i7-3517UE (1.7 - 2.8 GHz + HD 4000), 16 
GB (2 × 8 GB) DDR3-1333/1600 SDRAM, 128GB high performance SSD.  

 Velodyne VLP-16 LiDAR PUCK: Real-time, 360˚, 3D distance and cali-
brated reflectivity measurements with a 150 m range, 360˚ horizontal field of 
view and a 30˚ vertical field of view. 

 Machine vision camera: Optical format of 1/1.8" and a focal length of 12 
mm.  

 CH-Robotics UM7 IMU: Attitude and Heading Reference System (AHRS) 
for precise pose estimation.  

3.2. Mapping and Localization 

The algorithm used for building the map may make a big difference so it is im-
portant to choose the appropriate one. Regardless of the map building method 
used, the procedure to be followed is nearly the same. The robot should move 
around the environment allowing the sensors to gather information of the area. 
The quality of the map will depend directly on the softness of the platform mo-
tion and thus, movements should be as smooth as possible. Hence, it is highly 
recommended to limit velocities specially rotational ones. Abrupt turns can re-
sult in a much harder scan matching problem. Besides, it is also a good practice 
to repeat the first meters of the trajectory at the end of the process because many 
methods have to perform a loop closure at the end of the mapping. Loop closing 
consists of asserting that the vehicle has returned to a previously visited location 
and correcting the correspondence of the scan matches in the map being built in 
order to overlap the initial and final positions. 

Obviously, the mapping process requires a post-modelling process in which 
undesirable elements must be removed (for instance, dynamic obstacles detected 
during the map construction) and where loop closure is corrected. What ob-
stacles should be mapped remains an open discussion. Theoretically, only static 
and immobile volumes should be part of it but in most cases that is unfeasible 
because, strictly speaking, just walls and pillars fulfil that condition. However, 
much relevant information would be lost and the map would have few similari-
ties with the information the robot collects from the environment while navi-
gating. 

Here, three map building strategies are studied: GMapping, Hector Mapping 
and Cartographer. All of them are available as open source implementations in 
ROS1. GMapping [29] is a Rao-Blackwellized particle filter to learn grid maps 
from laser range data. This approach uses a particle filter in which each particle 
carries an individual map of the environment. It computes an accurate proposal 
distribution taking into account not only the movement of the robot but also the 
most recent observation. On the contrary, the Hector Mapping approach [30] is 
based on an optimization of the alignment of beam endpoints with the map 
learnt so far. The basic idea of using a Gauss-Newton approach is inspired by the 

 

 

1http://www.ros.org/. 
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field of computer vision and it does not perform loop closure. Finally, Carto-
grapher [31] does not employ a particle filter neither. To cope with the accumu-
lative error, it regularly runs a pose optimisation, creating constant submaps that 
take part in scan matching for loop closure. Therefore loops are closed imme-
diately using branch-and-bound when a location is revisited. As neither GMap-
ping nor Hector Mapping have a localization-only mode, the probabilistic Adap-
tive Monte Carlo Localization (AMCL) algorithm has been used for that purpose 
driving the localization tests. 

As mentioned before, industrial environments are full of symmetries and the 
shape of the laser scan is, to a large extent, equal in spite of height variations 
while keeping the same latitude and longitude. For this reason during the map-
ping process (SLAM) only 2D LiDAR information is used instead of the 3D 
pointcloud. Although the three-dimensional data is flattened in one point the 
conversion could also have been done by extracting the data in a range of heights 
and discarding the rest. This downsizing is done in order to be able to extrapo-
late the method to more robots because not many of them can incorporate a 3D 
LiDAR. Moreover, handling a complete point cloud involves a greater degree of 
computational complexity and the extra information does not increase accuracy 
proportionally. 

Once a realistic map is created, the location of the origin is saved with an ex-
ternal measurement unit, which serves as ground truth when comparing the lo-
calization precision using that map. In this case, a laser tracker is used for that 
purpose (Figure 3), a device that measures distances with a micrometric accu-
racy and that serves as ground truth. The robot travels around the environment  
 

 
Figure 3. The laser tracker measures distances with a micrometric accuracy. It serves as 
as ground truth to measure localization errors. 
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making runs with different styles of navigation, varying the lineal and rotational 
speeds and accelerations, the sequence and the visited areas of the map, the 
amount of turns done or the length and duration of the runs. The more realistic 
the simulated scenarios the better the guess of the behaviour of the algorithm, 
and the more meaningful the experiment will be. The pose estimations of the 
algorithms are tracked while the real position of the robot is saved with the laser 
tracker and afterwards both data are associated based on their timestamp. Statis-
tical values are obtained from that analysis which allows to establish a quantita-
tive performance of each algorithm. 

3.3. Positioning 

The error calculated from the comparison between the estimations of the algo-
rithms and the measurements of the laser tracker is the accuracy with which the 
robot arrives to the last phase. The procedure defined to correct the deviation of 
the navigation and achieve an accurate positioning must be capable of absorbing 
that value. In this experiment, that task is done with vision and it takes into ac-
count the error of the navigation at the time of choosing the lens, the label and 
the spatial distances between them. The relation from the label to the target pose 
is also calibrated with the laser tracker, every measurement or calculus must be 
done as precise as possible. There are many links in the transformations chain 
and assuming minor errors in any step can lead to a significant error in the final 
result. Finally, when the robot reaches the destination it corrects the pose based 
on where the robot identifies the label, trying to get as close as possible to the 
ideal pose. 

The vision system requires the spatial relationship between the target and the 
label to be known and measured accurately, as the label is not placed with re-
spect to a known global frame. Consequently, another requisite is that the label 
must be located within the field of view of the sensor that will afterwards be used 
for correcting the final positioning error. Ergo there is a maximum error toler-
ance in natural navigation determined by the features of the camera and lens 
chosen. Aspects like the focus, the depth of field or the angle of view should be 
calculated beforehand as those features mark the boundaries of the region inside 
which the vision system must fall after the navigation. And then the configura-
tion of the navigation system is adjusted based on those margins. Summarising, 
a balance between both systems must be maintained.  

3.4. Ground Truth Generation 

The proposed vision system is validated using the TRITOP photogrammetric 
unit. TRITOP is an optical, mobile, measurement system, which accurately de-
fines the 3D coordinates of object points at quasi-static conditions. Based on this 
information TRITOP is capable of calculating 3D displacements and deforma-
tions of objects and components. It consists of one digital single lens camera 
(DSLR) camera, contrast coded and uncoded bars, scale bars and the correspon-
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dent software (in this case TRITOP v6.2 has been used). As in [32], it is used for 
quality control and validation of the vision system incorporated in the robotic 
platform. This measuring procedure achieves an accuracy of 0.015 mm in an 
area of 1 × 0.5 × 0.5 m3, which fits in the settings defined for the validation. The 
process is as follows. Firstly, the coded plate used in the robot vision system is 
fixed simulating the same conditions there will be in the real use. Afterwards, 
several foils with coded points of the TRITOP system are placed around it, so as 
everything can be seen together. Then, some images are taken with the camera, 
varying the point of view but trying to catch as much markers as possible. The 
relation between the plate and the coded foils must be the same in all the images 
so they must be placed at unmovable locations. In this experiment 14 images 
have been taken. Then, both the TRITOP system and the robot vision system 
find the labels in the images and calculate the pose of the camera with respect to 
a common reference frame. Besides, the TRITOP system computes the intrinsic 
parameters of the camera too. The results estimate an average image point devi-
ation of 0.02 pixels and an average object point deviation of 0.01 mm. Accor-
dingly, the vision positioning system assumes this error at all times, which is 
negligible. 

4. Experimental Setup 

The experiment is proposed to be performed in an industrial rectangular work-
shop of 90 × 30 metres, with a wall in the longitudinal axis that divides it in two 
halves that are communicated by two big sliding doors (they were completely 
opened during the experiment). This structure forms a sort of circuit with a 
width of 4 - 8 metres as there are machines, benches and industrial robots next 
to the walls alongside the route (Figure 4). 

4.1. Tests 

The experimentation is divided in three main sections: mapping, localization  
 

 
Figure 4. West half of the workshop. At the bottom, the mobile platform navigating. 
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and positioning. They are performed in that order as each of them has direct 
impact on the next one. On the one hand, localization estimations may vary de-
pending on the map being used, as it represents how the robot understands the 
environment. On the other hand, how much the final positioning needs to be 
corrected is determined by the error on the localization process at the target 
pose. In these terms, if the map built is mediocre, the whole system will perform 
poorly. Thus, in order to avoid that strict dependency and to enhance the ro-
bustness of the system, the correction of the final pose should not make use of 
the map. 

4.2. Mapping 

The robot needs a map for its navigation and it must be as realistic as possible 
from the point of view of the robot. This means that the map must represent 
the environment according to how the robot sensors capture it, which does not 
necessarily correspond with a human concept of realistic. During this experi-
mentation, firstly, a location is set to be the starting point of the mapping 
process and the origin of the map. With the aid of a joystick, the robot is dri-
ven around the environment smoothly showing it every area of the factory 
floor. The three maps are built simultaneously, during the same teleoperated 
trajectory. 

4.3. Localization 

In order to measure the localization error magnitude that the use of the different 
maps produces, teleoperated trajectories are recorded and afterwards data is re-
produced in each map using AMCL offline for localization purposes. First, we 
set a point with the laser tracker from where all the paths start. This is the origin 
of the map as well to ensure that the poses given by the three estimations and the 
laser tracker are referenced with respect to the same coordinate frame.  

4.4. Positioning 

The last step consists of measuring and correcting the final positioning error 
during navigation. In this case, the robot uses AMCL for localization and A* for 
trajectory planning. The robot starts in a in a big work-floor and navigates to a 
laboratory next to it, passing through a narrow entrance and travelling a distance 
of approximately 20 m to its final destination. To proceed with the correction of 
the positioning using the camera, the robot must fall in an area where it is capa-
ble of detecting the label. If there is not an error in the orientation, the variability 
is in area of 20 cm in radius. In contrast, if there is no translational deviation, a 
maximum error of 16˚ (0.28 rad) is allowed. The error margin can increase or 
decrease if both translation and orientation are not perfect in the last pose of the 
navigation, which is what usually happens. Then, the label is detected and its 
pose estimation is reliable enough to get an accurate positioning as the method is 
validated by the TRITOP system. 
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5. Results 
5.1. Maps 

It is impossible to determine at a glance which of the maps obtained with the 
three algorithms is better without having a real map that serves as ground truth. 
In a sense, this is quantified in the next section but a first comparison is done 
overlapping all the maps in the same image (Figure 5). Apparently, hector_slam 
has a significant deviation in the orientation with respect to gmapping and car-
tographer in the right (north) part of the map of Figure 5, which is the side that 
corresponds to the last phase of the trajectory of the mapping process. It may be 
because hector_slam does not have loop closing ability and therefore it does not 
apply the corresponding transformation in the data to rectify the graph. Besides, 
gmapping and cartographer seem to cover a wider range, i.e., there are elements 
that they add to the map while hector_slam do not, as can be clearly seen in the 
bottom right of Figure 5.  

5.2. Localization 

The amount of tests done is 12, in which 35 different poses are recorded (see 
Figure 6). Among these, 7 are long routes executing each of them a complete 
loop of the workshop and the other 5 are shorter trajectories that do not visit the 
whole environment, but all of them finish in the origin. Besides, in 6 out of the 
12 navigations the driving is smooth, whereas in other 6 the robot rotates 360?? 
every 10 m. These sudden rotations are done with the aim of adding uncertainty 
to the system and see how each configuration responds to them. As expected, 
jerky navigation does add uncertainty in localization as the errors in translations 
are bigger in those cases (see Table 1 and Table 2). Translational mean errors in 
smooth navigation are 0.19, 0.34 and 0.17 meters for each system, smaller com-
pared with the 0.24, 0.50 and 0.25 meters of the abrupt navigation. Nevertheless, 
although it happens the same with hector_slam (1.61 against 2.20 degrees), the 
opposite occurs in rotation with the two other systems (see Table 3 and Table 
4). In the smooth navigation the rotational mean errors got with gmapping and 
cartographer are, respectively, 1.08 and 0.94 degrees whereas values of 0.24 and 
0.80 degrees are obtained navigating with sudden rotations. 
 

 
Figure 5. Overlapping of the maps obtained with each algorithm: gmapping, blue; 
hector_slam, red; cartographer, green. Although in this first comparison it cannot be 
determined which one is better, hector_slam demonstrates a poorer performance in the 
subsequent tests. 
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Figure 6. Overall translational and rotational error. 
 

Table 1. Smooth navigation: Translational error in metres. 

 gmappig hector_slam cartographer 

Mean 0.191 0.340 0.170 

Min 0.063 0.041 0.001 

Max 0.506 1.099 0.543 

Std dev 0.130 0.317 0.185 

 
Table 2. Abrupt navigation: Translational error in metres. 

 gmappig hector_slam cartographer 

Mean 0.242 0.498 0.254 

Min 0.019 0.019 0.005 

Max 0.544 1.509 0.997 

Std dev 0.176 0.482 0.317 

 
Table 3. Smooth navigation: Rotational error in degrees. 

 gmappig hector_slam cartographer 

Mean 1.088 1.606 0.939 

Min 0.074 0.122 0.037 

Max 3.305 5.467 2.884 

Std dev 1.077 1.847 0.963 

 
Table 4. Abrupt navigation: Rotational error in degrees. 

 gmappig hector_slam cartographer 

Mean 2.048 2.196 0.800 

Min 0.021 0.024 0.028 

Max 10.185 10.423 4.393 

Std dev 2.782 2.700 1.210 
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5.3. Positioning 

In 25 experiments the robot navigates autonomously to the same destination 
point but from different starting points. There, the final pose the navigation sys-
tem leads to is calculated with the vision label, as the location of this marker is 
known with respect to the map. The purpose of this test is to measure the cor-
rection the vision process adds to the system. A total of 25 poses have been rec-
orded, in which an error of 459 mm is corrected in the worst case (see Figure 7). 
P(0,0) is the target location of the navigation where the robot performs the task 
of inspection. Thanks to the vision system the robot can reach the goal accurate-
ly, with a tolerance of 20 mm in x, 3 mm in y and 0.28˚ (0.002 rad) in rotation 
(set by software due to the limitations of the control of the platform itself). In all 
tests, a mean error of 217 mm is amended with a standard deviation of 104 mm 
and a minimum improvement of 68 mm. 

6. Conclusions and Future Work 

The main conclusion this experiment leads to is that relative small differences in 
the generated maps are directly related with the localization procedure accuracy 
in each one. Therefore, using an appropriate environment representation for the 
task in hand is of high importance to obtain good results during pose estimation. 
To determine if a map is good enough, it is mandatory to experimentally test it 
through real situations. Based on the navigation done with the three maps, 
gmapping and cartographer achieve best results. But, in this specific use case, the 
system using gmapping is the preferred one because of its robustness and stabil-
ity. 

As expected, rough movements increase the error in localization, so the robot 
should have both angular and linear velocities and accelerations limited during 
the general usage. Even though navigating smoothly, the accuracy of the posi-
tioning in the destination point is not enough for some operations and a vision  
 

 
Figure 7. Position of the robot after the navigation and before the visual correction. The 
(0,0) represents the destination point, and also where the robot is placed after the 
accurate positioning process. 
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system could solve this problem, as presented in this work. With the proper vi-
sion system, the localization of the mobile platform can be measured and cor-
rected with millimetric accuracy. 

The next step is to test the system with a robotic arm on the platform and to 
analyze how it affects its movements. The arm can generate inertia forces which 
can increase uncertainty in the platform localization. These should be identified 
and taken into account in order for the arm to be able to perform the task effec-
tively. Moreover, the capacity of communicating with a robotic arm mounted on 
the platform opens a wide range of new possibilities for localization, navigation 
and task performance. 
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