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Abstract 
 
Momentum balances are used to derive the Kutta-Joukowsky equation for an infinite cascade of aerofoils and 
an isolated aerofoil. These derivations are simpler than those based on the Blasius theorem or more complex 
unsteady control volumes, and show the close relationship between a single aerofoil and an infinite cascade. 
The modification of lift due to the presence of another lifting body is similarly derived for a wing in ground 
effect, a biplane, and tandem aerofoils. The results are identical to those derived from the vector form of the 
Kutta-Joukowsky equation. 
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1. Introduction 
 
The Kutta-Joukowsky (KJ) equation can be viewed as 
the answer to the question: what is the simplest possible 
singularity representation of a lifting body in an inviscid 
fluid flow? It is fundamental to aerofoil theory and sub-
sequent developments in turbomachinery, wind turbines, 
and propellers. The purpose of this note is to provide a 
derivation of the equation using simple techniques of 
conservation of momentum and the Reynolds transport 
theorem, along with a basic knowledge of singularities 
and circulation. The demonstration includes isolated bod- 
ies, infinite cascades with application to rotating fluid 
machines, and pairs of identical or mirror-image bodies 
modeling wings in ground effect and biplanes. 

In the educational literature there are three common 
developments of the KJ equation for an isolated aerofoil: 

1) the demonstration of its validity for a specific body, 
often a rotating circular cylinder, followed by an un-
proved statement of its generality, e.g. White [1], 

2) the derivation using the Blasius theorem combined 
with residue calculus and complex variables, e.g. Panton 
[2], and 

3) the moving and expanding control volume method 
of Batchelor [3], which requires a thorough knowledge 
of the unsteady Bernoulli equation and careful consid-
eration of the decay of induced velocities at large dis-

tances. 
 
2. Cascades and Isolated Aerofoils 
 
The following demonstrations are considerably simpler 
than 2 or 3. Consider an infinite cascade of identical bod-
ies—usually aerofoils—spaced distance s apart along the 
y-axis in Figure 1. Only four bodies are shown. The un-
disturbed velocity of the incompressible fluid is U0. For 
simplicity, one body is located at the origin surrounded 
by a rectangular control volume (CV) with horizontal 
faces at 2y s  . The vertical faces are equidistant 
from the y-axis: the actual distance is not important. The 
faces are labeled in clockwise order from the upstream 
one. Symmetry requires that for faces 2 and 4: 
· the pressures are equal at the same x, 
· there is no net efflux of x- or y-direction momentum, 

and 
· the contribution to, the circulation around the con-

tour, will cancel.  
Γ is positive in the clockwise direction. Only the flow 

through faces 1 and 3 contributes to the momentum bal-
ance. The x-velocity at any point in the flow is U0 + u 
where the latter is due to the singularities, as is the verti-
cal velocity, v. 

Applying the Reynolds transport theorem to the CV 
gives for the vertical force on the body, Fy: 
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Similarly, the x-direction force, Fx, is found from 
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where P is the pressure which can be removed by as-
suming that the Bernoulli constant, C, is the same for all 
streamlines in the flow1: 
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Equation (3) is rewritten as 
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The first term in Equation (2) makes it necessary to 
represent a lifting body by a vortex of strength Γ. This 
representation is now shown to be sufficient as (2) and (5) 
are fully satisfied. If all the bodies in the cascade are 
replaced by vortices of strength Γ, u is an even function 
of y and v is an odd function. Thus uv is odd and the in-
tegral in (2) identically zero. Equi-spacing of the CV 
faces 1 and 3 about the y-axis requires    1 3u y u y  
and  so the integrand in (5) is zero for 
any y. Thus Equations (3) and (5) reduce to 

   1 3–v y v y

0xF  , 0yF U             (6a) 

which is the simplest form of the KJ equation. Note that 
the forces are independent of the spacing s. The vector 
form is 

 F U Γ               (6b) 

for a straight line vortex with no internal structure, e.g. 
Section 11.4 of Saffman [4]. It will be shown that results 
of the momentum balances can be interpreted in terms of 
the general from (6b) by appropriately altering the mag-
nitude of the vector velocity, U, from U0. 

Figure 1 for a cascade can be replaced by Figure 2 for 
an isolated body. This CV extends to ∞ and it is as-
sumed that no x- or y-direction momentum enters or 
leaves the horizontal faces. The contribution to the cir- 
culation on faces 1 and 3 induced by all the vortices rep-  

 

Figure 1. Control volume for cascade of equi-spaced iden- 
tical bodies. 

 

Figure 2. Control volume for an isolated body. 

resenting the bodies in Figure 1 is the same as that in-
duced by the single vortex over the infinite faces in Fig-
ure 2. Equations (2) and (5) are unaltered by the change 
in CV except that 2s  are replaced by ∞ and the 
argument leading to Equation (6) is the same. This estab-
lishes the KJ equation for an isolated body. 

1This is rarely the case for cascades that model fluid machines; large 
flow deflections can result in much larger (or smaller) exiting y-direc-
tion velocity than the entering one. Since the x-direction velocity is 
constrained by conservation of mass, the pressure and the Bernoulli 
constant will change. It may be useful to distinguish between cascades 
of blades with these changes and cascades of aerofoils, where they do 
not. 

 
3. Aerofoil in Ground Effect and Biplanes 
 
A single lifting body and an infinite cascade of identical 

Copyright © 2011 SciRes.                                                                                OJFD 



D. H. WOOD 14 

bodies are the simplest arrangements in which to estab-
lish the KJ equation because there is no induced velocity 
on any of the bodies. For a finite “stack” of lifting bodies, 
the analysis becomes considerably more complex, e.g. 
Crowdy [5], and momentum balances quickly lose their 
attraction. However, for two lifting bodies, there is bene-
fit in extending the present analysis. The geometry and 
control volume are shown in Figure 3 for two cases of 
vertical separation: in the first the body at –h is a mirror 
image of that at h and so has opposite circulation. This is 
common model for a lifting body in ground effect, GE. 
In the second, the bodies are identical, modeling a bi-
plane, symbolised as B. This case is treated in Chapter 
13 of Glauert [6] who gives the lift in terms of elliptic 
functions. 

The rectangular control volume shown in Figure 3 is 
used for both GE and B. It has height Y, and half width 

2X  and it will be necessary to examine the effect of 
letting both X and Y tend to infinity. At a distance from 
the bodies large compared to h, the biplane acts as a sin-
gle vortex of strength 2Γ, and the GE bodies as having 
no circulation. Thus the interaction between the two 
bodies must be only an exchange of lift for the biplane 
and a mutual increase or decrease in the magnitude of lift 
for GE. 

For the CV in Figure 3, Equation (2) becomes 
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Figure 3. Aerofoil in ground effect. 

 

Figure 4. Aerofoils comprising a biplane. Control volume as 
in Figure 3. 
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and the only immediate simplification is that v4 = 0 for 
GE and u4 = 0 for B. Similarly, (5) becomes 
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where    1 3u y u y , and v2 and v4 must be even in x. It 
is now shown that the first integral in (7) becomes negli-
gible as X, Y  ∞ and the integrand of second reduces to 

2
4u  for GE and  for B as X, Y  ∞. The unchanged 

first term on the right of (7) requires the continued use of 
vortices to represent the bodies. It is trivially easy to 
show that the velocities at any point 
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with , . The + sign 
is for B and the – for GE. All the integrals in (7) and (8) 
can be evaluated exactly. For example,  
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Obviously the integral becomes negligible as X, Y  

∞ for GE and it is easy to show that it does also for B. 
This is because, for example, 
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and 
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(12) tends to zero as X, Y  ∞. Using (7) and results 
like (10) to (12) as X, Y  ∞ shows that 

, , 0x GE x BF F                (13a) 
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Along y = 0, Equation (9) simplifies to 
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Thus 
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and 
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Equation (15) is well known: it is, for example, Equa-
tion (16) of Katz & Plotkin [7] derived from a 
lumped-vortex model, and is equivalent to their (6.113) 
obtained from the Blasius theorem. (15) can be inter-
preted as the modification of (6a) due to the induced ve-
locity of the image vortex,  – 4πh  on the “real” 
vortex in the direction opposite to U0. This causes a lift 
reduction of  2 4πh  according to (6b).  

Equations (4) and (13b) show that the second term in 
(15) is due to the non-zero gauge pressure acting on the 
ground plane. The total force (per unit length) on the 
fluid ρU0Γ is shared between the lifting body and the 
surface pressure. Other analyses of ground effect that 
include information about the body geometry usually 
show an increase in lift as the ground is approached but 
only when h is comparable to the chord length c, e.g. 
Thwaites [8, p. 527ff] and Katz & Plotkin [7, Section 
12.3]. Assuming the usual relation between Γ. and aero-
foil lift coefficient, Cl, gives the ratio of the GE lift to the 
aerofoil lift from (15) as  

 1 8πlcC h             (17) 

At Cl  1.0 nand 0.5h c  , the reduction is only 8% 
and can be easily overwhelmed by other effects.  

As far as the author can tell, Equation (16) for the lift 
on the upper body of a biplane, is new but is easily es-
tablished from (6b). The lower vortex induces a velocity 
of  4πh  on the upper vortex in the direction of U0 
which increases the lift by  2 4πh  As with the for- 
mulation of Crowdy [5], the lift is increased and that on 
the lower body reduced by the same amount. Equation 

(16) shows the difference in lift increases with Γ, as 
found by Crowdy [5], but, in contrast, the difference here 
is zero when Γ = 0. 
 
4. Tandem Aerofoils 
 
If two identical lifting bodies are placed at d on the x- 
axis then the analysis of the last Section is easily modi-
fied to show that proximity does not alter the lift but 
causes a force 

 2 4πxF d              (18) 

on the forward aerofoil and an equal and opposite force 
on the rear one. The rear vortex induces a vertical veloc-
ity of  4πd  on the front vortex which now produces 
a thrust (opposite of drag) of  2 4πd ). The argu-
ment is readily reversed to show that the rear vortex ex-
periences an equal and opposite force. 
 
5. Summary and Conclusions 
 
Momentum balances provide a straightforward proof of 
the usual form of the Kutta-Joukowsky Equation, (6a), 
for the fluid forces acting on isolated bodies and infinite 
cascades of equi-spaced identical bodies. The analysis 
implies—but does not assume—that each body is repre-
sented simply as a vortex. These two geometries are 
unique in that there is no induced velocity on any of the 
bodies. Deriving the forces using momentum balances 
shows the close link between cascade flow and that over 
a single aerofoil. 

For pairs of identical or mirror image bodies the 
analysis becomes more complex and it is likely that mo-
mentum balances would become too cumbersome for 
larger numbers. The forces acting on aerofoils in ground 
effect, biplanes, and tandem aerofoils as determined from 
momentum balances are in agreement with the more 
general form of the Kutta-Joukowsky Equation, (6b), 
which includes the effect of the velocity induced by one 
body on the other. This idea is easily generalised, so that, 
for example, three aerofoils spaced equally apart by dis-
tance h in the vertical direction will experience the fol-
lowing vertical forces:  2

0 12πU h     on the up-
per, ρU0Γ on the middle, and  2

0 – 12πU h    on 
the lower. 

In practice, the determination of the forces on multiple 
bodies can be more complex with differences in circula-
tion for geometrically identical bodies, as opposed to the 
assumption of equal circulation made here. For example, 
Section 5.5 of Katz & Plotkin [7] shows that a lumped 
vortex model of tandem aerofoils requires the upstream 
aerofoil to have a greater circulation. Momentum bal-
ances will still give the forces if the circulations differ 
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but they will not fix the magnitudes or the ratios of the 
circulations. 
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