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Abstract

The substitution table (S-Box) of Advanced Encryption Standard (AES) and
its properties are key elements in cryptanalysis ciphering. We aim here to
propose a straightforward method for the non-linear transformation of AES
S-Box construction. The method reduces the steps needed to compute the
multiplicative inverse, and computes the matrices multiplication used in this
transformation, without a need to use the characteristic matrix, and the result
is a modern method constructing the S-Box.
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1. Introduction

The S-Box table of AES is taken as a lookup table to substitute an input byte by
another, this table is constructed using a non-linear transformation depends on
the usual method taking more calculation steps to give the corresponding byte.
The S-Box plays a fundamental role in encryption and decryption processes,
as byte substitution appears in many steps. At the first round of the encryption
process, we add the plaintext matrix to the key matrix, then we substitute each
byte by another byte according to S-Box, for example, to substitute the byte
xy(say), we take the byte in the cell that has x as the column index and y as the
row index, we do this substitute byte step in all rounds of the encryption process,
and in all round of the decryption process, we do the inverse substitute byte step,
to substitute the byte xy(say), we take the index of the column, and the index of
the row of the cell that contains xy; as the left and the right character of the re-
sult byte, respectively. The S-Box (Table 1), involves substitution bytes for all
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bytes from {00} to {#F} in hexdecimal presentation.
The S-Box is constructed using the following operations [1]:
1) Finding the multiplicative inverse of an input byte in the finite field GF (28)
based on the irreducible polynomial P(x)= a1
2) Multiplying this multiplicative inverse by a specific matrix (matrix ).
3) Adding the multiplication result to a specific vector ({63}=01100011).
We convert the hexadecimal presentation of the input byte into binary pres-
entation as (a7a6a5a4a3a2a1a0) and write it as a polynomial
A(x)=a,x" +axx® +ax’ +a,x +ax’ +a,x° +ax +a,, let its multiplicative in-
verse be T (x)=t,x" +1x° + 15" +1,x" + 1, + 1,57 +1,x+1,, we multiply 7 (x)

by the following characteristic matrix:

1000 1 1 11
11000 1 11
11100011

gt L1000 W
11111000
01111100
001 11110
000 1 1 1 1 1]

Then, we add the result to (01100011).
We note that, for the input {00} the output is {63}.

Table 1. The AES S-Box.

2 B7 FD 93 26 3 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 9 05 9A 07 12 8 E2 EB 27 B2 75
4 09 8 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 DI 00 ED 20 FC Bl 5b 6A CB BE 39 4A 4C 58 CF
6 DO EF AA FB 43 4D 33 8 45 F9 02 7f 50 3C O9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

A E0O 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B B8A
D 70 3E B5 66 48 03 F6 OE 61 35 57 B9 8 Cl 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8 Al 8 0D BF E6 42 68 41 99 2D OF BO 54 BB 16
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1.1. Problem Statement

We search for an easier and straightforward method for constructing the AES
S-Box.

1.2. Proposed Solution

The multiplicative inverse of an input byte can be computed in clear steps using
an iterated formula.

Multiplying the multiplicative inverse matrix by the characteristic matrix can
be determined directly from this multiplicative inverse using simple XOR opera-

tions, without a need to use the characteristic matrix.

2. Traditional Way

In cryptography, the extended Euclidean algorithm has wide uses especially for
finding a multiplicative inverse (modular inverse).

Euclidean algorithm is used to find the greatest common divisor of two integ-
ers aand b, (denoted by gcd(a,b) ).

When 5>a,and

b-r=aq (2)
for some integers rand g, we say
r=>b(moda) (3)
andif b(moda)=0 then
ged(a,b)=a (4)

With the polynomials A(x) and P(x), we write gcd(A(x),P(x)) [2].
The algorithm below gives ged(A(x),P(x)), where A(x)<P(x)

Algorithm (1): Buclidean algorithm [3]
Input: Polynomials 4(x),P(x).
Output: ged(4(x),P(x)).
1) While A(x)=0 do

a) r(x)=P(x)mod4(x), P(x)=4(x), 4(x)=r(x).
2) Return  P(x) .

The step (1.(a)) of the algorithm (1) involves the division algorithm:
P(x):A(x)q(x)+r(x) (5)
where 0< r(x) = P(x)modA(x) < A(x) .
It implies that [4]
gcd(A(x),P(x)):gcd(A(x),r(x)) (6)
If r(x) # 0, the step will be repeated, let us write the repeated application of
the division algorithm as:

P(x) =q, ()C)A()c)+r1 (x), 0<py (x)< A(x)
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Tis (x) =4, (x)r;'—Z (x)‘H”H (x), 0<r, (x)< Tia (x)

2 (%) =g, (x)r () +1(x) 5 0= (x) <y (x) @
When 7 (x)=0,and since
ged (A(x), P(x)) = ged (1, ()7 (x)) (8)
we get
ged(A(x),P(x))=r_(x) ©)

The extended form of the Euclidean algorithm is called Extended Euclidean
algorithm, it gives (besides ged(4(x),P(x)), X(x) and Y(x) such that

ged(A(x),P(x))=A(x) X (x)+P(x)Y(x) (10)
Rewrite the equations of the system (7) as:
i (x)=P(x)=q (x)A(x)
1 (x) = A(x) =5 () (x)
i (x) =1 (x)= g5 (x)n (x)

) (x) =Ty (x)_qi—Z (x)rm (x)
ria (%) =15 (%) = g0 (x)735 (%) (11)
Then, in the last equation of system (11), 7_, (x):r,.f3 (x)—q,.,, (x)r,.,2 (x),
replace 7_,(x) with its value from the above equation (it involves 7_;(x)),

then replace 7_,(x) with its value from the above equation, continue doing

this replacement, we obtain

Tia (x) =Tis (x)_(qi—l (x))(’;‘*4 (x)_(ql'fz (x))(ri*S (x)_(q,>3 (x))

(12)
(10 ()= (s () () (P(x) =4, (x)4(x)))) )
Equation (12) takes the form
1 () = A() X (x)+ P(x)7 () (13)

In our problem 1<i<8, and since the multiplicative inverse only exists when
the gedis 1 [5].

Ty (x) =1 (14)
The multiplicative inverse [2] of A(x) modulo P(x) is A™'(x) such that
A(x)4™(x) = l(modP(x)) (15)

When ged(4(x),P(x))=1,
1=A(x)X (x)+P(x)Y(x) (16)
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1(mod P(x))=(A(x)X (x)+P(x)Y(x))(mod P(x)) (17)
and since
P(x)Y(x)=0(mod P(x)) (18)
we get
X(x)=4"(x) (19)

So, the procedure of the extended Euclidean algorithm finds the greatest
common divisor, also it finds the multiplicative inverse.
Below an algorithm to find A”' (x), we will denote A (x) by T(x).

Algorithm (2): Extended Euclidean algorithm [3]

Input: Polynomials 4 (x),P(x).
Output: The multiplicative inverse of 4(x) .
DSet y,(x)=0, y (x)=1.
2) While A(x)=1 do
a) q(x)=P(x)divA(x), r(x)=P(x)+q(x)4(x).
b) y(x)=r.(x)+x(x)q(x)
Ay (x¥)=x(x), 3(x)=y(x).
d) P(x)=4A(x), A(x)=r(x).
3) Return y,(x).

>
>

Now, we have T (x)= (#1811, ), we multiply it (from the left) by matrix

M
(10 0 0 1 1 1 U][ty| [t,+t,+t +t,+t, ]
1 1000 1 1 1)¢ Lo+t +1,+1, +1;
1 1100 01 1{¢ t,+t +t, +t
M1y 0o o [eeererera] @

4 0 1 2 3 4
01 1 1.1 1 0 0} L+ttt
001 1 1 1 1 0}¢ L+ttt o
100 0 1 1 1 1 1]\t [+t +t+1+1L |

Then, we add the result to ({63} =0110001 1) to obtain the output of the in-

put A(x)=(a,asasa,a;a,a,a,)

[ty +1, +ts +t, +1, |
ty+t +ts+t, +
ty+t +1, +t, +t,
ty+t +t, +1, +1,
ty+t +1, +1, +1,
f+ty i+, L
t b+t L
[ty +1, +1s i+ |

[ty +t, +ts it +1, +1]
fy+1, +t g+t +1
Lo+t +1, +t +t,
to+t +1, +1, +t

— 0 1 2 3 7 (21)
Lo+t +1, +t;+1,
L+ttt s+

t ittt it +]

O == OO O = -

|ttt
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Example

Using the traditional way, we want to find the output byte that corresponding to
the input byte {53} (Table 2).

{53}=01010011, A(x)=x"+x*+x+1, P(x)=x"+x"+x"+x+1.
Iteration 1

yz(x):O, y,(x)zl,

2

q(x)=x2+l, r(x)zx )

Iteration 2

q(x)=x4+x2, r(x)=x+1,
y(x)=x+x*+1, y,(x)=x>+1, p(x)=x"+x>+1,

P(x)zxz, A(x)=x+1.

Iteration 3
g(x)=x+1, r(x)=1,
y(x)=x"+x+x7+x, y(x)=x"+x7+1, y(x)=x"+x"+x+x,

P(x)=x+1, A(x)=l.

T(x)=y (x)=x"+x"+x’+x=11001010.

(1 0 0 01 1 1 1][0o] [0]
1 1000 1 1 11| |1
1110001 1/0f |1
1 11100 0 1|1] |1
= (22)
1 111100 0/l0] |O
01 1 1110 0}[]0] |0
001 1 1 11 0}]1] 10
000 0 1 1 1 1 1)1 [1]
fo] 1] [1]
1| (1] |0
1| |o| |1
1+o=1 23)
0| [0] |0
o [1] |1
ol |1 |1
1] (o] |1

The outputis 11101101=ED.
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Table 2. To find the output of {53}.

3. Modern Way

We use the formula [6] below to find the multiplicative inverse.

3.1. The Iterated Formula
The iterated formula

T, (x) = (g, (x))(T (x))+ T (x), 2<i<8 (24)

where T,(x)=17,(x)=¢,(x), gives the multiplicative inverse 7 =7, when
r=1.

To show that, we use the system (11).

When i=1, 5(x)=1,

i (%) = P(x) = (q,(x))(4(x)) (25)
= P(x)~(a(x))(4(x)) (26)

Weobtain 7'(x)=g,(x)="T,(x). (Equation (24), takes this as given).
When i=2, n(x)=1, r(x)=0,

5 (x)=4(x) = (4,(x)) (5 (x)) (27)
A(x) (2 ())(P(¥) = (@ (1))(4(x)))
(4 ())(4 (2)))(4(x)) = (: (1))(P(x) (28)
(4 ())(4 (2)))(4(x)) = (4 (1))(P(x)
We obtain T (x)=(g,(x))(q,(x
T(x)=Ty(x) =g, (x) 7 (x) + Ty (x) = (4. (x)) (4, (x)) +1 (29)
When i=3, r(x)=1, 5(x)#0, n(x)#0,
i (x) =7 (x) = g5 (x)n (x) (30)
1= P(x) =g, (x) 4(x) = 4, (x)((1 - 02 (x) 4, (x)) A(x) = 0, (x) P())
= (4 ()1 02 (x4, (x)) =, (x)) 4(x) + K (x)P(x)
We obtain
T(x)=(g5(x)(1=(()) (@ (x))) @ (x) =@ (*)L(x)+ T (x) (G2
and from Equation (24)
T(x)=Ty(x)=q;(x) T, (x) + T;(x) (33)
By this way, we can show that Equation (24) gives 7'(x) for 2<i<8, when

1-

(
=(1-
(x)

)+1 From Equation (24)

(31)

r=1.
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Below an algorithm to find 7'(x) using the modern way.

Algorithm (3): Modern way to find a multiplicative inverse
Input: Polynomials 4(x),P(x).
Output: T'(x), the multiplicative inverse of A(x) .
1) Set T,(x)=0, T,(x)=1.
2) q( ) ( )dth( ), r(x) P(x)+q(x)A(x).
3) T(x)=q(x)T(x)+7,(x)
4)If r,(x)=1 thenreturn T(x), stop.
5)Else P(x)=A4(x), A(x)=r(x).
T (x)=T(x), T(x)=T(x).

6) Goto2

X

Now, we want to multiply 7'(x) by the matrix M.
First, write Mas [7]

1 000 1 1 11
1 1 00 01 11
1110 00 11
1 1 11 00 01
M=|_ N Z (34)
1 1 11 1 0 0O
01 11 1 100
00 11 1110
__0 0 0 1) (111 1__
Let
1 0 00 1 1 11
11 00 01 11
M, = , M, = (35)
1110 00 11
11 11 00 01
And write T'(x) as
__to__
4
L
t
T=|""- (36)
I
I
ls
_—t7—_
Let
t t,
A I
n=", 1= (37)
b ls
Ly t;
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Then

tO

t,+t

MT, = o (38)
lo+1 +t,

[ty +t +1, +1 |

I
t,+t

MT, = (39)
t,+t +t,

|1, s+t +t |

L+t +t i
L+t +t
MZYI _ 3 2 1 (40)
t,+1,

t3
b+t + 1+,
t,+1, +t
szvz — 7 6 5 (41)
t, +1,
t7

So, the multiplication of Mand T'(x) gives

M\T, + M,T,
[M L+ M 1Tj
From Equation (38) and Equation (39), we note that the results of these mul-
tiplications give the form
first element
first + second

first + second + third
first + second + third + fourth

of the second matrix, and similarly, Equation (40) and Equation (41), show that
the results give the form

fourth + third + second + first
fourth + third + second
fourth + third
fourth

of the second matrix, so we don’t need to use matrix A4, as the traditional me-
thod.

In the last step, weadd M (T'(x)) to ({63}=01100011).

3.2. Example
Using the modern way, we want to find the output of {53}
{53}201010011, A(x)=x6+x4+x+1, P(x)=x8+x4+x3+x+1‘

First, finding the multiplicative inverse (Table 3).
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Table 3. Finding multiplicative inverse of {53}.

i A(x) q(x) r(x) P(x)

1 X +xt+x+1 x+1 x*+1 X +xt x4l
2 x*+1 xt+x? x+1 xt+xt+x+1
3 x+1 x+1 1 x*+1

1) =1,(0) = (@() B(x) + 1 ()
=(5(x))(( (x))(@ (x)) +1) + g, (x)
:(x+1)[( xz)(x2+1)+1]+x +1

=x +x°+x +x

=11001010
Then, computing the matrices multiplication:
o] [[o] [o]] [o]
1 1 0 1
0 1 0 1
1 0 1 1
->|c o o= (42)
0 0] (O 0
0 0 0 0
1 1 1 0
1] 1] [0]] [1]
Last, adding (01100011)
fo] [1] [1]

1 1 0

1 0 1

1 0 1

+ |= (43)

0] |0 0

0 1 1

0 1 1

1] 0] |1}

So, the outputis 11101101=ED.

4. Conclusions

In this paper, a straightforward method for obtaining the Advanced Encryption
Standard S-Box look-up table without the traditional use of the characteristic
Matrix M is proposed. We have demonstrated that the two methods are equiva-
lent. In addition, the multiplicative inverse of A(x) has been found more ele-
gantly.

In future work, we will investigate the properties and the impact of this tech-

nique on cipher complexity analysis.
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