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Abstract 

The polynomial 4 1x +  is irreducible in [ ]x  but is locally reducible, that 

is, it factors modulo p for all primes p. In this paper we investigate this phe-
nomenon and prove that for any composite natural number N there are 
monic irreducible polynomials in [ ]x  which are reducible modulo every 

prime.  
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1. Introduction 

The polynomials of the title of this article have been discussed by Brandl [1], and 
Guralnick et al. [2]. Brandl’s paper excludes those N which are such that 

( )( ), 1N Nϕ = . These are precisely the composite integers N for which there is 
only one abstract group of order N. The paper by Guralnick et al. does show the 
existence of such polynomials for all composite N’s. Our proof of the same is 
different, more elementary, and in some cases even constructive.  

We shall first enumerate the known results which we shall use in this article. 
Several of these results are true more generally but we shall state them as needed 
in this article. 

1) Let ( ) [ ]f x x∈  be a non-constant polynomial. Then the Galois group of 
f(x) over   acts transitively on its roots if and only if f(x) is a power of an ir-
reducible polynomial over  .  

2) Let 1 2,/ /    be finite normal extensions that is, splitting fields of 
some polynomial. Let 1 2   denote the compositum of the fields 1 2,  , that 
is, the smallest subfield of containing 1 2,  . Then   is a normal extension 
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of   and if [ ]1 :  and [ ]2 :  are coprime. Then  

( ) ( ) ( )1 2/ / /Aut Aut Aut= ×      

3) Every finite solvable group can be realized as a Galois group of some poly-
nomials over  . Same is true of the symmetric groups nS  and alternating 
groups nA . We shall only need this result for cyclic groups, Frobenius groups 
and for the groups nS  and nA  [3] [4] and [5]. 

4) Let ( ) [ ]f x x∈  be an irreducible polynomials of degree n. Let 

1 2, , , nα α α  be its roots. Let r be an integer, 1 1r n< < −  and r
nC m= . Let 

( )rf x  denote the polynomial whose roots are all sums of r different 1α . Then 
( ) [ ]rf x x∈  and ( )f x  and ( )rf x  have the same splitting field [6]. 
5) Let ( ) [ ]f x x∈  be a monic irreducible polynomial of degree n and p a 

prime which does not divide the discriminant of f(x). Let ( )G Gal f=  be the 
Galois group of ( )f x  over  . Suppose that modulo p the polynomial ( )f x  
factors into irreducible polynomials of degrees 1 2, , , tn n n  so 1 2  tn n n n+ + + = . 
Then there is Gσ ∈  such that as a permutation on the n roots of ( )f x , 

1 2 tσ σ σ σ=  , where iσ  is acyclic permutation of length in  for 1 i n≤ ≤ . 
See [7]. 

6) Let N be any composite natural number and ( ) [ ]f x x∈  be a monic ir-
reducible polynomial of degree N whose Galois group over   does not have 
any element of order N. Then ( )f x  is reducible modulo every prime. This is 
an immediate consequence of (5) above. 

2. Theorem and Proof 

Theorem: For every composite natural number N there is a monic irreducible 
polynomial ( ) [ ]f x x∈  of degree N which is reducible modulo every prime. 

Case I N is not square-free 
We write tN p m=  where  1t >  and p is a prime which does not divide m. 

Let 1G  be any non-cyclic group of order tp  and 2G  a cyclic group of order 
m. Let ( ) [ ]1f x x∈  be an irreducible polynomial of degree tp  with Galois 
group isomorphic to 1G  and ( ) [ ]2f x x∈  be an irreducible polynomial of 
degree m with Galois group isomorphic to 2G . Let 1  and 2  be splitting 
fields of ( )1f x  and ( )2f x  respectively. Let 1 2=    be the compositum of 
the fields 1  and 2 . Then   is of degree N over   and ( )/G Aut=   
is isomorphic to 1 2G G×  and so it does not have any element of order N. Let α 
be any algebraic integer such that ( )\α=  . Let ( )f x  be the minimum po-
lynomial of α. Then ( ) [ ]f x x∈  is a monic irreducible polynomial of degree 
N and its Galois group does not have any element of order N and therefore 
( )f x  has the desired property. 
Case II N is square-free and gcd(N, φ(N)) > 1 
In this case we can write N pqm=  where p, q are primes, p divides 1q −  

and ( )gcd , 1pq m = . Let 1G  be a non-abelian group of order pq and 2G  a 
cyclic group of order m. Just as in the previous case we get a monic irreducible 
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polynomial in [ ]x  of degree N whose Galois group does not contain an ele-
mentof order N. 

Case III, N is square-free and gcd(N, φ(N)) = 1 
In this case N is necessarily odd. First we assume that N is a product of just 

two primes. So let N pq= , where p and q are distinct primes, p q<  and p 
does not divide 1q − . Let t be the order of p modulo q. So 1t >  is the smallest 
integer such that ( ) 1 modtp q≡ . Let 1G  be an elementary Abelian p-group of 
order tp  and 2G  be a group of order q. We note that ( )1Aut G  is isomor-
phic to ( ),GL t p  and so its order is divisible by q. Let 1 2 G G G= ×  be the 
semi-direct product of 1G  by 2G . Evidently G is not a direct product of 1G  
and 2G . Therefore 2G  is not a normal subgroup of G. We claim that 2G  is its 
own normalizer in G. For otherwisethe index of the normalizer of 2G  in G 
would be rp , for some r, 1 ≤ r < t which would contradict the fact that t is the 
smallest integer satisfying ( ) 1 modtp q≡ . Since 2G  has prime order q it is dis-
joint from its conjugates. Therefore G is a Frobenius group of order ,tp q  and 
every non-identity element of 2G  induces a fixed-point-free automorphism of 

1G . 
Let   be a normal extension of   with Galois group isomorphic to G. 

Then [ ]: tp q=  . Let H be a subgroup of G of order 1tp −  and let ⊆   
be its fixed subfield. 

Then by FTGT ({Fundamental Theorem of Galois Theory}) the field   is of 
degree pq over  . We also note that as H is not a normal subgroup of G,   is 
not a normal extension of  . Let α be an algebraic integer such that ( )α=   
and let ( )f x  be its minimal polynomial over  . Then ( ) [ ]f x x∈  is irre-
ducible of degree pq.  

We claim that   is the splitting field of ( )f x  (i.e. it is the normal closure 
of the field  ) and G is its Galois group over  .  

If the normal closure of   were a proper subfield of   then it would imp-
ly that G has a proper normal subgroup of order rp  where r t< , but this is 
not possible, as G is a Frobenius group. So ( ) [ ]f x x∈  is a monic irreducible 
polynomials of degree N pq=  and its Galois group over   does not have 
any element of order N pq= . 

Finally assume that N and ( )Nϕ  are coprime and N is a product of more 
than two primes. We write N pqm= , where p, q are primes and ( )gcd , 1pq m = . 
Let t = order of p modulo q. As discussed in the previous case let ( ) [ ]1f x x∈  
be a monic irreducible polynomial of degree pq whose Galois group is the 
semi-direct product of an elementary group of order tp  by a cyclic group of 
order q and is a Frobenius group.  

Let 1G  denote this Frobenius group of order tp q  and 1  denote the split-
ting field of ( )1f x . Let 2G  be a cyclic group of order m and  

( ) [ ]2f x x∈  be a monic irreducible polynomialof degree m whose splitting 
field is 2  and Galois group over   is 2G .  

Let 1 2=    be the compositum of the fields 1  and 2 . Let pq n=  
and 
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( ) ( )1 1

n
ii

f x x α
=

= −∏  

( ) ( )2 1

m
jj

f x x β
=

= −∏  

( ) ( )1 1

m n
i jj i

f x x α β
= =

= −∏ ∏  

We note the following: 
1) [ ] [ ] [ ]1 2: , : , :t tp q m p qm= = =     ; 
2) ( )1 1 2, , , nα α α=   ; 
3) ( )2 1 2, , , mβ β β=   ; 
4) ( )1 2 1 2, , , , , , ,n mα α α β β β=    ; 
5) ( )/G Aut=    is a group of order tp qm  isomorphic to the direct 

product of aFrobenius group of order tp q  and a cyclic group of order 𝑚𝑚. 
Therefore it does not have an element of order N pqm= . Note that this Frobe-
nius groupdoes not have any subgroup of order pq. 

6) The group G transitively permutes the nm algebraic numbers  
,1 ,1i j i n j mα β ≤ ≤ ≤ ≤ . So ( ) [ ]f x x∈  is an irreducible polynomial of de-

gree N pqm= , whose Galois group does not have any element of order N. This 
completes the proof of our theorem. 

3. Alternate Methods 

As we noticed the construction of irreducible polynomials in [ ]x  of odd 
composite degree N where ( )( )gcd , 1N Nϕ = , and whose Galois group does not 
contain an element of order N is not so straight forward. In some case such as 

15N =  or 35N =  there is another interesting method of construction of such 
polynomials. In fact it works for most N’s (with very few exceptions) which are 
such that r

nC N=  for some n and r such that 1 1r n< < − . The method we are 
about to describe fails in cases where r

nC N=  but the symmetric group nS  
does have an element of order N, as it happens when 15, 2n r= =  and 

105N = .  
As the symmetric group on 15 letters does have an element of order 

2
15105 C= , namely a permutation which is a product of 3, 5 and a 7-cycle. Let 

( ) [ ]f x x∈  be a monic irreducible polynomial of degree 4n >  whose Galois 
group is isomorphic to either nA  or nS . Let r be such that 1 1r n< < −  and 

r
nC N= . Further assume that nS  does not have any element order N. We know 

that nS  is n-transitive and nA  is ( )2n − -transitive on n letters. Let ( )rf x  
denote a polynomial of degree r

nN C=  whose roots are sum of all r different 
roots of ( )f x . Let the roots of ( )rf x  be iβ , where 1 ≤ i ≤ N. The polyno-
mials ( )f x  and let ( )rf x  have the same splitting field. Since both nS . and 

nA  transitively permute the N, roots of Let ( )rf x  this polynomial is irreduci-
ble. So the polynomial let ( )rf x  is the required polynomial of degree N, whose 
Galois group does not have any element of order N. 

4. Examples 

1) The first interesting case is for 15N = . Let ( ) [ ]f x x∈  be an irreducib-
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lemonic polynomial of degree six whose Galois group over   is isomorphic to 
symmetric oralternating group on five or six letters. Then ( ) [ ]2f x x∈  is an 
irreducible monic polynomial whose Galois group is the same as that of ( )f x  
and so does not have any element of order 15. Therefore ( )2f x  is reducible 
modulo every prime. For instance let ( ) 6 24 20f x x x= + −  whose discriminant 
is 16 6 6 2 3 5⋅ ⋅ . We note that 

( ) ( )( )( )5 4 3 23 4 2 4 5 mod 7f x x x x x x x≡ + + + + + +  

( ) ( )( )( )( )( )3 27 12 21 6 13 16 mod 23f x x x x x x x≡ + + + + + +  

( ) ( )( )( )2 4 3 226 10 3 28 25 27 mod 29f x x x x x x x≡ + + + + + +  

It follows that ( )f x  is irreducible over   and its Galois group G over   
is 2-transitive on its roots and has a 3-cycle. Therefore G is isomorphic to 6A  
the alternating group on six letters [8]. We know that 6A  is 4-transitive on six 
letters. Let ( )2f x  represent the polynomial of degree 15 whose 2

615 C=  roots 
are the sumsof the roots of ( )f x  taken two at a time. This polynomial turns 
out to be  

15 10 9 5 4 3240 520 6912 8640 10800 13824x x x x x x− + − − − −  

The Galois group of this polynomial is the same as that of ( )f x  and so is 
isomorphic to 6A . As 6A  has no element of order 15 this polynomial is reduci-
ble modulo every prime. 

2) The second example is for 35N = . As 3
7 35C = , we start with a some 

monic polynomial ( )f x  of degree 7 with Galois group isomorphic to 7S  or 

7A . The polynomial of degree 35 whose roots are the sums of three different 
roots of ( )f x  is the required polynomial whose Galois group (being isomor-
phic to nS  or nA ) does not have any element of order 35. To illustrate this we 
begin with the polynomial ( ) 7 62 2 2f x x x x= − + +  of degree 7. We observe 
that the discriminant of the polynomial is 6 8 250808364 2 3 11⋅ ⋅=  and ( )f x  is 
irreducible modulo 5. Also 

( ) ( )( )( )( )2 2 3 27 1 11 8 6 10 mod13f x x x x x x x x≡ + + + + + + +  

So ( )f x  is an irreducible polynomial of degree 7 whose discriminant is a 
square and Galois group G has a 3-cycle. So G is isomorphic to 7A  [8]. 

Suppose that the roots of ( )f x  are ,1 7i iα ≤ ≤ . The polynomial ( )2f x  of 
degree 2

7 21C =  whose roots are ,1 7i j i jα α+ ≤ < ≤ , is 
21 20 19 18 17 16 15 14

13 12 11 10 9 8 7

6 5 4 3 2

12 60 160 240 192 14 282

384 896 3456 4032 1452 936 3348

8208 10800 6912 1944 648 648 216

x x x x x x x x
x x x x x x x
x x x x x x

− + − + − + +

− − + − + + −

+ − + − + − +

 

This polynomial is irreducible over  . As its Galois group is isomorphic to 

7A  which does not have any element of order 21 this polynomial is reducible 
modulo every prime. 

The polynomial ( )3f x  of degree 3
7 35C =  whose roots are  

,1 7i j k i j kα α α+ + ≤ < < ≤ , is 
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35 34 33 32 31 30 29

29 27 26 25 24

23 22 21 20

19 18 17

30 420 3640 21840 96096 320400

824892 1651824 2520656 2467968 1014144

13570744 43939464 97466448 165719040

229091136 279559296 328973632 36917

x x x x x x x
x x x x x

x x x x
x x x

− + − + − +

− + − + +

− + − +

− + − + 165728x

 

15 14 13 12

11 10 9 8

7 6 5 4

3 2

339989856 197554480 25543680 5507328

229676208 582038592 837493056 855433568

666645072 405962976 192746432 69432960

17666304 2572800 58368 18432

x x x x
x x x x
x x x x

x x x

− + − +

− − +

− + − +

− + − −

+
 

This polynomial is irreducible over   and its Galois group is isomorphic to 

7A . As 7A  does not have any element of order 35 this polynomial is reducible 
modulo every prime. Its discriminant is the following 311-digit number  

296 154 20 2 2 62 3 11 2260889 73504388212873 307711591051853⋅ ⋅ ⋅ ⋅ ⋅  

Note: The composite natural numbers N below 100 which are such that 
( )( )gcd , 1N Nϕ =  are 

15,33,35,51,65,69,77,85,91,95.  

Among these numbers the method described above works for N = 15, 35 and 
91. This is so because 2

6 15C = , 3
7 35C = , and 2

14 91C = . As starting with a po-
lynomial of degree 7 with Galois group isomorphic to 7A  or 7S , we con-
structed an irreducible polynomial of degree 35 which is reducible modulo every 
prime, likewise starting with a polynomial of degree14 with Galois group iso-
morphic to 14A  or 14S  we can construct an irreducible polynomial of degree 
91 which is reducible modulo every prime. 

3) The method discussed in the previous examples above does not work for 
33N = . For this we proceed as in the proof of our theorem. As the order of 11 

modulo 3 is 2 we construct a Frobenius group G of order 211 3⋅  which is a 
semi-direct product of 11 11×   by a group of order 3. More specifically we ex-
tend the group 11 11 x y× = ×   by the group ϕ  of order three where 
ϕ  is the automorphism of x y×  given by ( ) ( )6 4,x x y y xyϕ ϕ= = . It is 
easily seen that this automorphism has order three and is fixed-point-free.The 
resulting group, the semi-direct product of 11 11×   by ϕ  is a Frobenius 
group of order 363 having the subgroup 11 11×   as its kernel and the group 
ϕ  as its complement. 

This Frobenius group of order 363 does not have any subgroup of order 33. 
Let /   be a normal extension whose Galois group is isomorphic to G. 

Let H be a subgroup of G of order 11 and   be its fixed subfield. By FTGT 
(Fundamental Theorem of Galois Theory) the field   has degree 33 over  . 
Let α be an algebraic integer such that ( )α=   and let ( ) [ ]f x x∈  be its 
minimum polynomial. As proved in the theorem this polynomial has degree 33 
and its Galois group is a Frobenius group of order 211 3 363× =  which does not 
have any subgroup of order 33 andtherefore the irreducible polynomials ( )f x  
is reducible modulo every prime. 
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5. Construction of the Polynomials ( )rf x  

It remains to be seen that given a degree n polynomial ( ) [ ]f x x∈  how we 
can compute the polynomial ( ) [ ]rf x x∈ , for 1 1r n< < − . This can be done 
with thehelp of the concept of the resultant of two polynomials. Let 

( ) ( )1 1
0 1 0 1 , ,n n m m

n mf x a x a x a g x b x b x b− −+ += + + = + +   

be polynomials of degree 0n >  and 0m >  respectively (so 0 0, 0a b ≠ ) with 
coefficients in a field  . Let ,1 , ,1i ji n j mα β≤ ≤ ≤ ≤  be the zeros of ( )f x  
and ( )g x  in some extension of  . Writing ( )f x  and ( )g x  as simply f 
and g, and resultant simply as Res we have 

( ) ( )0 0 1 1
, n nm n

i jj i
Res f g a b α β

= =
= −∏ ∏  

As this resultant is equal to the following determinant of order m n+ , its 
value can be computed with the help of any symbolic computation package such 
as MATHEMATICA. 

( )

0 1 1

0 1 1

0 1

0 1

0 1

,

n n

n n

n n

m

m

a a a a
a a a a

a a a
Res f g

b b b

b b b

−

−

−

 
 
 
 
 
 =  
 
 
 
 
  

 

 

  





 



 

In this determinant all the missing entries are zeros. The entries in the first m 
rows are the coefficients of ( )f x  and those in the last n rows are the coeffi-
cients of ( )g x . If f and g are polynomials in two variables x and y then we can 
determine their resultant with respect to any of the variable. For the discussion 
of the calculation of ( )rf x  for a given polynomial ( )f x  it will be convenient 
to deal with monic polynomials. Let ( ) 1

1
n n

nf x x a x a−= + + +  be a poly-
nomial of degree n with zeros 1 2, \ , , \ nα α α . The polynomial ( ) ( )1 n f x y− −  
can be regarded as a monic polynomial of degree n in y with coefficientsin the 
polynomial ring [ ]x . As a polynomial in y its n zeros are ,1ix i nα− ≤ ≤ . We 
note that  

( ) ( ) ( ) ( ) ( )( )1 1
1 1 .n n

i ii n i n
f x y x y y xα α

≤ ≤ ≤ ≤
− − = − − − = − −∏ ∏  

This observation and (and similar ones) will be used repeatedly in what fol-
lows. As before we let ( )rf x  denote the monic polynomial of degree r

nC  with 
zeros 

1 2 ri i iα α α+ + + where 1 2 31 ri i i i n≤ < < < < ≤ .  
We shall show how to find ( )rf x  for 2,3r = . The method discussed can be 

easily generalized to larger values of r. 

5.1. Computation of f2(x) 

Let 
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( ) ( ) ( ) ( )( ) ( )2 1 1
1 , n nn

y i jj i
R x Res f x y f y x α α

= =
= − − = − −∏ ∏  

Then ( )2R x  is a polynomial of degree 2n  with zeros i jα α+ . So the 2n  
zeros of ( )2R x  are 2 ,1i i nα ≤ ≤  and ,i j i jα α+ < , each appearing twice. Let 

( )2 2
2

n xA x f  =  
 

 

Then ( )2A x  is a monic polynomial of degree n with zeros 2 ,1i i nα ≤ ≤ . 
Therefore, ( ) ( )2 2R x A x  is a polynomial of degree 2n n− , with zeros 

,i j i jα α+ < , each zeroappearing twice. Therefore, 

( ) ( )
( )

1
2

2
2

2

R x
f x

A x
 

=   
 

 

is a polynomial of degree 
2

2

2 n
n n C−

=  with zeros ,i j i jα α+ < . 

5.2. Computation of f3(x) 

We first note that, as a polynomial in y, ( )2f x y−  has degree 
( )1

2
n n −

 and 

has roots  i jx α α− −  for 1 i j n≤ < ≤ . In other words we can write 

( ) ( )( )
( )

( )
( )

2 1

1
2

1
 1

i ji j n

n n

i ji j n

f x y x y

y x

α α

α α

≤ < ≤

−

≤ < ≤

− = − − +

= − − + +

∏

∏
 

Let 

( ) ( )
( )

( ) ( ) ( )
1

1
23 2  

1 , .
n n

k n
y i j ki j

R x Res f x y f y x α α α
−

≤ ≤

<

 
= − − = − − − 

 
∏  

Then ( )3R x  is a polynomial of degree ( )2
2 1

2n

n n
C n

−
=⋅  whose zeros are of 

following types. 
,i j k i j kα α α+ + < < , each appearing three times. 

2 , .i j i jα α+ ≠  

We check that the total number adds up to the right degree, namely 

( )( ) ( ) ( )2
3 2 1 2 1

3 2 1
2 2n n

n n n n n
C C n n

− − −
⋅ + ⋅ + − ==  

We shall now find a polynomial with zeros 2 ,i j i jα α+ ≠ . Let 

( ) ( ) ( )3 1 2 ,
2

n n
y

x yA x Res f f y −  = −  
  

 

Here as before we have multiplied by ( )1 n−  to ensure that the first poly-
nomial in the argument of yRes  is monic. We note that as a polynomial in y  

the roots of 
2

x yf − 
 
 

 are 2 ix α− , for 1 i n≤ ≤ . Also ( )3A x  is a polynomial 

of degree 2n . In fact 

https://doi.org/10.4236/ojdm.2019.92006


S. Gupta 
 

 

DOI: 10.4236/ojdm.2019.92006 60 Open Journal of Discrete Mathematics 
 

( ) ( )3 1 1
2n n

i jj i
A x x α α

= =
= − −∏ ∏  

So the zeros of ( )3A x  are 3 ,1i i nα ≤ ≤  and 2 ,i j i jα α+ ≠ . Let 

( ) ( ) ( )
( )

33 ,
3

n A xxB x f C x
B x

 = = 
 

 

So ( )B x  is a monic polynomial with zeros 3 ,1i i nα ≤ ≤  and ( )C x  is a 
monic polynomial of degree 2n n−  with zeros 2 ,i j i jα α+ ≠ , 1 ,i j n≤ ≤ . 
We also note that 

( )
( )

( ) ( )
( )

3

3

R x R x B x
C x A x

⋅
=  

is a polynomial of degree ( ) ( ) ( )( )2
21 1 2

2 2
n n n n n

n n
− − −

− − =  with zeros 

,i j k i j kα α α+ + < < , each repeated three times. Therefore 

( ) ( )
( )

1
3

3
3

R x
f x

C x
 

=   
 

 

is the required polynomial of degree 3
nC . 

6. Addendum 

Bernard Dominique [9] sent us a list of following eighteen irreducible polyno-
mials of degree 33 and informed us that these are reducible for all primes 

500000p < . 
33 3 33 6 33 6 32 1, 1, 2 1,x x x x x x x+ + + + + + +  
33 6 33 6 3 33 91& 1, 1,x x x x x x x+ + + + + + +  

33 9 3 33 9 3 33 9 6 31, 2 1, 1,x x x x x x x x x x+ + + + +++ + + +  
33 9 6 33 9 6 3 33 92 1 2 2 1 2 1,x x x x x x x x x+ + + + + + + + +  

33 9 3 33 9 6 33 9 6 32 2 1 2 1 2 1,x x x x x x x x x x+ + + + + + + + + +  
33 9 6 3 33 9 6 3 33 9 6 32 2 1, 2 2 1, 2 2 2 1.x x x x x x x x x x x x+ + + + + + + + + + + +  

If the Galois group of any of these polynomials regarded as a permutation on 
its 33 roots had a 33-cycle then according to Cebotarev Density Theorem the 
density of primes p for which any of these polynomials is irreducible should be  

1
13

≥  [10]. As there is no such prime 500000p <  we believe that these  

polynomials are reducible for all primes. However, in the absence of any infor-
mation about their Galois group we do not have a proof that any of these poly-
nomials is locally reducible for all primes. 

7. Conclusion 

In this paper we have shown that for any composite natural number N there are 
polynomials of degree N with integer coefficients which are irreducible in [ ]x  
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but which are reducible modulo p for every prime p and we have given method 
of construction of such polynomials for various values of N.  
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