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Abstract 
In this paper, a new numerical scheme for solving first-order hyperbolic par-
tial differential equations is proposed and is implemented in the simulation 
study of macroscopic traffic flow model with constant velocity and linear ve-
locity-density relationship. Macroscopic traffic flow model is first developed 
by Lighthill Whitham and Richards (LWR) and used to study traffic flow by 
collective variables such as flow rate, velocity and density. The LWR model is 
treated as an initial value problem and its numerical simulations are presented 
using numerical schemes. A variety of numerical schemes are available in litera-
ture to solve first order hyperbolic equations. Of these the well-known ones in-
clude one-dimensional explicit: Upwind, Downwind, FTCS, and Lax-Friedrichs 
schemes. Having been studied carefully the space and time mesh sizes, and 
the patterns of all these schemes, a new scheme has been developed and 
named as one-dimensional explicit Tolesa numerical scheme. Tolesa numer-
ical scheme is one of the conditionally stable and highest rates of convergence 
schemes. All the said numerical schemes are applied to solve advection equa-
tion pertaining traffic flows. Also the one-dimensional explicit Tolesa nu-
merical scheme is another alternative numerical scheme to solve advection 
equation and apply to traffic flows model like other well-known one-dimensional 
explicit schemes. The effect of density of cars on the overall interactions of 
the vehicles along a given length of the highway and time are investigated. 
Graphical representations of density profile, velocity profile, flux profile, and 
in general the fundamental diagrams of vehicles on the highway with differ-
ent time levels are illustrated. These concepts and results have been arranged 
systematically in this paper. 
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1. Introduction 

Hyperbolic partial differential equation of conservation laws has recently re-
ceived great attention and many books have been published in this area [1] [2] 
[3] [4]. Hyperbolic PDEs describe the time dependent physical systems and can 
be used to model a wide variety of phenomenon including wave motion and ad-
vection transport of substances [5]. Advection equations do form a special class 
of conservative first order hyperbolic PDEs which transport a given property 
across a system at a specified rate. In advecting equations, the temporal and spa-
tial derivatives of the conserved quantity ( ),u x t  are proportional to each other. 
That is ( ) ( )u t u x∂ ∂ ∝ ∂ ∂ . Thus, the advection equation for the function 
( ),u x t  will be 

( ) ( )  0u t v u x∂ ∂ + ∂ ∂ =                      (1) 

In (1), the quantity v is a proportional constant and can be interpreted as the 
velocity along x-direction [6]. However, if 0v >  then the characteristics are di-
rected to the positive direction or to the right and if 0v <  then they are di-
rected to the negative direction or to the left. In other words the sign of v indi-
cates the direction of propagation of information. In fact the advection Equation 
(1) is also called as the one-way wave equation and in this context v represents 
the speed of propagation of the wave. The advection Equation (1) admits general 
analytic solutions ( )u f x vt= −  and ( )u f x vt= +  representing respectively a 
wave motion along positive and negative x-directions. The lines in the ( ),t x  
plane on which x vt±  is constant are called characteristics. The parameter v 
has dimensions of distance divided by time and is called the speed of propaga-
tion along the characteristic. We give ( ),u x t  at the initial time, ( ),0u x  is re-
quired to be equal to a given function ( ) ( ),0u x f x=  or ( ) ( )0u x f x=  for all 

x−∞ < < ∞ . This is called an initial value problem. Advection Equation (1) is 
being numerically solved using various one-dimensional explicit numerical 
schemes, for example Upwind, Downwind, FTCS and Lax-Friedrichs schemes. 
In these one-dimensional explicit schemes the space and time mesh sizes are re-
stricted both by order of accuracy and numerical stability. The said schemes 
have been visualized with the unique schematic diagrams which are illustrated in 
Figures 1-4. 

Having been studied carefully the space and time mesh sizes and patterns or 
schematic diagrams of all these schemes, another but a new scheme has been 
developed and named as one-dimensional explicit Tolesa numerical scheme. 
This new scheme has been visualized with the unique schematic diagram and is 
illustrated in Figure 5. The implication of the advection Equation (1) together 
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with initial value problem in the context of Lighthill Whitham and Richards 
(LWR) traffic flow model is implemented. The LWR model is the well-known 
model and describes the traffic flow using a partial differential equation based on 
the conservation law of the vehicles in traffic [7] [8] [9] [10]. In this study, the 
single lane traffic flow with constant speed and linear density-speed relationship 
are considered as a test case. The simulations of traffic flow model with constant 
speed will also be done by using the mentioned one-dimensional explicit nu-
merical schemes including Tolesa scheme, and linear density-speed relationship 
will be simulated by using Tolesa scheme. 

In this research work we present and discuss some of the one-dimensional ex-
plicit numerical schemes available in the literature and the newly propose 
scheme. Specifically, the paper is organized in three more sections that follow 
this Introduction. Section 2 is devoted to carry out finite difference method. The 
finite difference approximations of the first order hyperbolic partial differential 
equation using one-dimensional explicit numerical schemes are presented. Sec-
tion 3 reports about macroscopic continuum traffic flow depend mainly on three 
quantities flux, speed and density, and present some cases for speed-density rela-
tionship. Finally section 4 deals with the numerical simulation. In this section, 
we present the discretization of the macroscopic continuum traffic flow model, 
specifically Lighthill-Whitham and Richards Traffic flow model presented in 
section 3, using finite difference schemes presented in Section 2. 

2. Overviews of Finite Difference Method 

In this study, it is mainly focused to carry out finite difference method (FDM). 
The FDM was introduced by Euler in 18th century and has been greatly regarded 
as the easiest method and widely used to solve simple geometrical problems [11]. 
The FDM is classically obtained by approximating the derivatives appearing in 
the partial differential equation by a Taylor expansion up to some given order 
which will give the order of the scheme. The application of FDM in solving a 
PDE is to transform a calculus problem into an algebraic problem by discretizing 
the continuous physical domain into a number of cells or intervals, and ap-
proximating the individual exact partial derivatives in the PDE by algebraic fi-
nite difference approximations. 

Let the spatial and temporal domains be divided into N and M cells respec-
tively. The index ( ), n

jx t  represents a grid point where jx  spatial and nt  
temporal grids intersect. Here 0,1,2, ,j N= 

 and 0,1,2, ,n M= 
. Thus, the 

discretization of space-time domain is assumed as jx j x= ∆  and nt n t= ∆ . The 
quantities 0x∆ >  and 0t∆ >  respectively denote the spatial and temporal 
step sizes. These are also known as the increments between two consecutive spa-
tial and temporal nodes respectively. 

Let the quantity n
ju  denote an approximate value of the function ( ),u x t  at 

the grid point or space-time location ( ), n
jx t . That is ( ),n n

j ju u x t≈ . Thus, the 
function ( ),u x t  can now be replaced with a discrete set of point-wise approx-
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imate values { }n
ju . These approximations are called the finite difference ap-

proximations. The finite difference approximations of the first order hyperbolic 
partial differential Equation (1) using one-dimensional explicit numerical 
schemes are presented in the following subsection. 

One Dimensional Explicit Numerical Schemes 

In this subsection, the one-dimensional explicit numerical schemes with Upwind, 
Downwind, FTCS and Lax-Friedrichs schemes including Tolesa scheme are pre-
sented to approximate the spatial and temporal partial derivatives of the advec-
tion Equation (1) in different views as shown in Figures 1-5. Also the orders of 
accuracy and numerical stability have been determined in which the space and 
time mesh sizes are restricted. The approximations and the schematic diagrams 
of the mentioned schemes are explained sequentially. 

In one-dimensional explicit upwind scheme, the first order spatial and tem-
poral partial derivatives are approximated respectively as  
( ) ( ) ( )1

n n
j ju x u u x O x−

 ∂ ∂ ≈ − ∆ + ∆   and ( ) ( ) ( )1n n
j ju t u u t O t+ ∂ ∂ ≈ − ∆ + ∆  . 

In this view, the stencil is given as shown in Figure 1 and the approximations of 
the finite difference form of Equation (1) can be expressed as 

( )( ) ( )1
1          , , 0n n n n

j j j ju u v t x u u O t x v+
−= − ∆ ∆ − + ∆ ∆ >           (2) 

The scheme (2) is a first order accurate in both space and time, ( ),O t x∆ ∆ . 
This scheme is stable if the condition ( )  1v t x∆ ∆ ≤  is satisfied. 

In one-dimensional explicit downwind scheme, the first order spatial and 
temporal partial derivative are approximated respectively as 

( ) ( ) ( )1
n n
j ju x u u x O x+

 ∂ ∂ ≈ − ∆ + ∆   and ( ) ( ) ( )1n n
j ju t u u t O t+ ∂ ∂ ≈ − ∆ + ∆  .  

In view of this the finite difference approximations form of Equation (1) can be 
expressed as 

( )( ) ( )1
1  , , 0n n n n

j j j ju u v t x u u O t x v+
+= − ∆ ∆ − + ∆ ∆ <

         
 (3) 

Equation (3) is a first order accurate in both space and time ( ),O t x∆ ∆ . This 
scheme is unconditionally unstable. 

 

 
Figure 1. Stencil of One-dimensional explicit upwind numerical scheme. 

 

 
Figure 2.Stencil of one-dimensional explicit downwind scheme. 
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In one-dimensional explicit FTCS scheme, as its name implies, the first order 
temporal and spatial partial derivatives are obtained respectively by taking a first 
order forward finite differencing in time and a central differencing in space. 
These are approximated respectively as ( ) ( ) ( )1n n

j ju t u u t O t+ ∂ ∂ ≈ − ∆ + ∆   and 
( ) ( ) ( )2

1 1 2n n
j ju x u u x O x+ −

 ∂ ∂ ≈ − ∆ + ∆  . Then, the approximations of the finite 
difference form of Equation (1) can be expressed as in Equation (4) and the 
schematic diagram is given in Figure 3. 

 ( ) ( )1 2
1 1 ,

2
n n n n
j j j j

v tu u u u O t x
x

+
+ −

∆
= − − + ∆ ∆

∆
              (4) 

Equation (4) is a first order accurate in time and second order accurate in 
space, i.e., ( )2,O t x∆ ∆ . This scheme is unconditionally unstable. 

In one-dimensional explicit Lax-Friedrichs scheme, the term n
ju  in FTCS 

scheme is replaced by its average value ( )1 1
1 
2

n n
j ju u+ −+ . In Lax-Friedrich scheme 

the finite difference form of Equation (1) can be expressed as (5) and its stencil is 
viewed as in Figure 4. 

( ) ( )( ) ( )1 2
1 1 1 1

1 2 ,
2

n n n n n
j j j j ju u u v t x u u O t x+

+ − + −= + − ∆ ∆ − + ∆ ∆        (5) 

Equation (5) is a first order accurate in time and second order accurate in 
space, i.e., ( )2,O t x∆ ∆ . This scheme is conditionally stable, if the condition 
( ) 1v t x∆ ∆ ≤  is satisfied. 
Having been studied carefully the space and time mesh sizes, and the patterns 

of all these schemes a new scheme has been developed and named as 
one-dimensional explicit Tolesa numerical scheme. The one-dimensional expli-
cit Tolesa numerical scheme is still another alternative numerical scheme to 
solve advection equation and can be applied to traffic flows model. The sche-
matic diagram of Tolesa evolution scheme is shown in Figure 5 and the applica-
tion of this scheme to the advection Equation (1) is straightforward. In view of 
this, the first order temporal and spatial partial derivatives are approximated re-
spectively as Equations (6) and (7). 

 

 
Figure 3. Stencil of one-dimensional explicit FTCS scheme. 

 

 
Figure 4. Stencil of one-dimensional explicit Lax-Friedrichs scheme. 
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Figure 5. Stencil of one-dimensional explicit Tolesa scheme. 

 

( )
( )

( )

1 21       
1 2

nn
j ju u

u t
t

++ −
∂ ∂ =

∆                     
 (6) 

( ) ( )
( )

( )
( )1 2 1 2

1 2 1 2
1 n n

j ju x u u
x

+ +
+ −

   ∂ ∂ = −   ∆                  
 (7) 

Let the term ( )1 2n
ju +  on the left hand side of (6) be expressed as the average 

value as 

( )
( )
( )

( )
( )1 2 1 21 2

1 2 1 2
1
2

n nn
j j ju u u+ ++

+ −
 = +                    

 (8) 

In (8), the terms on the left hand side can be expanded, as in view of (5), as 

( )
( ) ( ) ( )1 2

1 11 2
1
2 2

n n n n n
j j j jj

tu u u v u u
x

+
+ ++

∆
= + − −

∆
              (9) 

( )
( ) ( )( ) ( )( )1 2

1 11 2 1 2 2n n n n n
j j j jju u u v t x u u+

− −− = + − ∆ ∆ −           (10) 

Using the three expansions (8)-(10) in the two Equations (6)-(7) and on subs-
tituting them in (1), the advection equation reduces to the form as 

( )( ) ( )
( ) ( )

1
1 1 1 1

2 2
1 1

1 4 2

2 ,

n n n n n n
j j j j j j

n n n
j j j

u u u u u u

u u u O t x

α

α

+
+ − + −

+ −

= + + − −

+ − + + ∆ ∆
           (11) 

Here in (11), the notation ( )    2v t xα = ∆ ∆  is used. Thus, (11) is the newly 
proposed one-dimensional explicit Tolesa scheme. Equation (11) is a first order 
accurate in time and second order accurate in space, ( )2,O t x∆ ∆ . 

Local Truncation Error Local truncation error represents the difference be-
tween an exact differential equation and its finite difference representation at a 
point in space and time. Local truncation error provides a basis for comparing 
local accuracies of various difference schemes. Accordingly the local truncation 
error for Tolesa scheme (11) will be 

2 2 2

  0
4 4 6 6t x tt xx ttt xxx
t x t c xu cu u u u u

t
∆ ∆ ∆ ∆

+ + − + + =
∆

 

( )2  , 0t xu cu O t x⇒ + + ∆ ∆ =  

by using Taylor’s expansion. Therefore, Tolesa scheme is first-order in time and 
second-order in space. 

The fundamental properties that every finite difference approximation of a 
partial differential equation should possess are consistency, convergence and 
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stability. 
Consistence: The notion of consistency addresses the problem of whether the 

finite difference approximation is really representing the partial differential equ-
ation. We say that a finite difference approximation is consistent with a differen-
tial equation if the finite difference equations converge to the original equation 
as the time and space grids are refined. Hence, if the truncation error goes to 
zero as time and space grids are refined we conclude that the scheme is consis-
tent. For the explicit solution to the advection equation, the truncation error is, 

2 2 2

Higher order 0
4 4 6 6t x tt xx ttt xxx
t x t v xu vu u u u u

t
∆ ∆ ∆ ∆

+ + − + + + =
∆

 

Higher order 0t x lu vu e+ + + = , 

where 
1 2 2 2

Higher order
4 4 6 6l tt xx ttt xxx
t t x t v xe u u u u

−∆ ∆ ∆ ∆ ∆
= − + + + . 

Thus as 0x∆ →  and 0t∆ → , then 0le = , hence the Tolesa scheme is con-
sistent with partial differential Equation (1) as long as 1 2 0t x−∆ ∆ → . 

Stability Analysis: A finite difference scheme is stable if the scheme do not 
allows the growth of error in the solution with different time level. Stability 
analysis is a useful tool for checking validity of a given numerical scheme [12]. 
There are many approaches to analyze whether a finite difference scheme is sta-
ble or unstable. In this paper, we will consider the Von Neumann stability analy-
sis for presented finite difference schemes. The basic idea of this analysis is given 
by defining the discrete Fourier transform of u as (12). Let it be assumed that the 
solution can be seen as eigenmodes [13] which at each grid point have the form 

en n ipj x
ju ξ ∆=                          (12) 

Here in (12), ( )pξ ξ=  is a complex number dependent on p and it works as 
an amplification factor; p is a real spatial wave number; 1i = −  is an imagi-
nary number. Equation (12) shows the time dependence of a single eigenmode. 
The differential equations are said to be stable if ( ) 1pξ ≤ . 

Also, the Courant-Friedrichs-Lewy CFL criteria for stability say that 1ξ ≤  if 

and only if 1v t
x
∆

≤
∆

. CFL is necessary condition for stability [14]. 

Substituting (12) in (11) and solving the expression for ( )pξ  is obtained: 

( ) ( ) ( )

( )

2 4 2 4 2

2 4 2 2

1 1cos 8 cos 2 4 cos
2 4

1 2 4 4 sin
4

p x p x p x

p x

ξ α α α

α α α 
 
 

  = ∆ − ∆ + + + ∆  
 


+ − + + ∆



 

From Von-Neumann stability analysis, Tolesa method is stable when 2 1ξ ≤ . 

( ) ( )2 4 2 4 2 2 41 1 18 cos 2 4 cos 2 4 1
2 4 4

p x p xξ α α α α α     = − ∆ + − + ∆ + + + ≤     
     
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After some computations, and considering different cases which satisfy equal-
ity and the CFL condition, then we decided that the 1 2α ≤ . 

1 2 1
2
v t tv

x x
α ∆ ∆
= ≤ ⇒ ≤

∆ ∆
                  (13) 

Thus, the explicit Tolesa scheme is conditionally stable (13). 
Convergence: A numerical scheme is convergent if the computed solution of 

the discretized equation leads to the exact solution of the differential equation as 
the time and grid spacing lead to zero. The computed solution n

ju  must ap-
proach the exact solution exactu  of the differential equation at any point

jx j x= ∆  and nt n t= ∆  when x∆  and t∆  lead to zero while keeping jx  
and nt  constant. In other hand, the error 

( )  nn n
j j exact j

e u u= −  

satisfying the following convergence condition. 

, 0lim 0n
x t je∆ ∆ → → , at fixed jx j x= ∆  and nt n t= ∆ . Hence, the explicit To-

lesa scheme is convergent; we can see this from the simulations result. 

3. Lighthill-Whitham and Richards Traffic  
Flow Model (LWR Model) 

In this section, macroscopic continuum traffic flow model is introduced and 
analyzed. Macroscopic continuum traffic flow depends mainly on three quanti-
ties: traffic density, traffic flow or flux and traffic velocity [15]. The number of 
vehicles on a highway per unit length is defined as traffic density and is denoted 
by ( ),x tρ . The traffic flow rate or flux is defined as the number of vehicles 
passing through a given point x at time t and is denoted by ( ),q x t . Here x R∈  
and [ )0,t∈ ∞ . In this study, highway is considered as a unidirectional roadway 
of finite length with no entrances and exits. 

The well-known Lighthill-Whitham and Richards (LWR) model describes the 
traffic flow using a partial differential equation constructed based on the con-
servation law of the vehicles in traffic. In this model the traffic flow is 
represented using a first order hyperbolic partial differential equation and is put 
as 

( ) ( ), ,
0

x t q x t
t x

ρ∂ ∂
+ =

∂ ∂
                    (14) 

The flux can also be expressed in terms of the traffic density and the traffic 
speed as 

( ) ( ) ( ), , ,q x t v x t x tρ=                     (15) 

In view of (15), the traffic flow model (14) with initial condition takes the 
form as 

( )

( ) ( )0 0

0

  ,

v
t x

x t x

ρρ

ρ ρ

 ∂∂
+ =

∂ ∂
 =

                      (16) 
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Equation (16) is called an initial value problem IVP of the macroscopic traffic 
flow model. 

In this study, Equation (16) has been considered in two different cases de-
pending on the speed-density relationship as constant speed, and linear 
speed-density relationship. Also assuming that traffic flux and speed are ex-
pressed as a function of density ( )q q ρ=  and ( )v v ρ=  respectively. 

Case 1: In this case Equation (16) can be expressed as (17) by considering 
constant speed v and the flux as a function of density ( )q ρ . 

( ) ( )0 0

0

  ,

v
t x

x t x

ρ ρ

ρ ρ

∂ ∂ + = ∂ ∂
 =                      

 (17) 

The analytical solution of the form (17) has been calculated using the method 
of characteristics in implicit form [16] as follows. 

( ) ( )0,x t x vtρ ρ= −                       (18) 

Case 2: Linear speed-density function ( ) max
max

1v v ρρ
ρ

 
= − 

 
 in 1935, 

Greenshields [17] proposed what was perhaps the first traffic flow model. Ac-
cording to his observations made using photographic methods, Greenshields 
postulated that there existed a linear relationship between speed and density. 

Then traffic flux ( )
2

max
max

q v ρρ ρ
ρ

  
= −     

. In this case Equation (16) can be 

expressed as 

( ) ( )

2

max
max

0 0

0

,

v
t x

x t x

ρ ρρ
ρ

ρ ρ

   ∂ ∂
+ − =    ∂ ∂   

 =

                 (19) 

The analytical solution of the form (19) has been calculated using the method 
of characteristics in implicit form as follows. 

( ) 0 max
max

, 1 2x t x v tρρ ρ
ρ

  
= − −     

               (20) 

4. Numerical Simulations 

In this subsection, we present the discretization of the traffic flow model (17) 
using finite difference schemes (2)-(5), and (11) as shown in table below: 

4.1. Traffic Flow with Constant Speed 

In order to better understand, methods for highway design, it is necessary to 
discretize the given model using the numerical schemes and perform numerical 
experiments. The numerical discretization of traffic flow model using explicit fi-
nite difference schemes are shown in Table 1. 

The numerical schemes given in Table 1 are implemented using the following  
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Table 1. Discretization of traffic flow model using explicit finite difference schemes, 
where the parameters α  and β  are used to represent the expressions ( )v t xβ = ∆ ∆  

and 2α β= . 

Name of the Explicit scheme Discretization of traffic flow model 

Upwind ( )1
1 n n n n

j j j jρ ρ β ρ ρ+
−= − −  

Downwind ( )1
1

n n n n
j j j jρ ρ β ρ ρ+

+= − −  

FTCS ( )1
1 1 n n n n

j j j jρ ρ α ρ ρ+
+ −= − −  

Lax-Friedrichs ( )( ) ( )1
1 1 1 11 2n n n n n

j j j j jρ ρ ρ α ρ ρ+
+ − + −= + − −  

Tolesa ( )( ) ( ) ( )1 2
1 1 1 1 1 11 4 2 2n n n n n n n n n

j j j j j j j j juρ ρ ρ ρ α ρ α ρ ρ ρ+
+ − + − + −= + + − − + − +  

 

assumptions and values: 
1) Highway is considered as a single lane of length 20 km. Thus [ ]0,10x∈ . 
2) The initial density of vehicles in this study is taken as in [18], 
( ) ( )0 25sin 3 30x xρ = +  and from this the exact solution becomes  
( ) ( ), 25sin 3 30x t x vtρ = − +   . 
3) The boundary condition is considered as constants: ( ) [ ]0, 25sin 3 30t vtρ = − + . 
4) The total time duration is divided into 100 steps: 100N = . 
5) The total spatial distance is divided into 100 steps: 100M = . 
6) Vehicles are considered to flow with constant speed 0.9 km minv = . 
7) The temporal and spatial step lengths are considered as 0.07t∆ =  and 

0.1x∆ = . 
Using these assumptions and the discretization shown in Table 1, we have 

developed computer programs to conduct simulation study of traffic flow model 
with constant velocity (17). Numerical experiments are performed on a time 
scale of 7 minutes and some qualitative behaviors of the schemes are verified. 
The simulation of the exact solution as in Figure 6(a) and numerical approxi-
mations of each schemes are shown in (Figure 6(b), Figures 6(d)-(f) and Fig-
ure 6(h)). The blue colored curves represent the density at 0.7th min; green co-
lored represent the density at 3.5th min; red colors represent the density after 7th 
min. 

In Figure 6, the plots are obtained using the exact solution and the discretized 
one-dimensional explicit numerical schemes in Table 1. All the schemes are 
implemented to show the traffic densitie profiles at 0.7, 3.5, and 7 minutes as 
shown in Figure 6. The Upwind, Lax-Friedrichs, and Tolesa schemes are 
conditionally stable, ( ) 1v t x∆ ∆ ≤ . That is, stable if and only if the physical 
velocity v is not bigger than the spreading velocity x t∆ ∆  of the numerical 
schemes or if the condition ( ) 1v t x∆ ∆ ≤  is satisfied. Equavelently the time step 

t∆  must be smaller than the time taken for the vehicle to travel the distance of 
the spatial step x∆ . The amplitude of the wave increases as the Courant 
number increseases. But, does not blow up as far as the Courant number is 
satisfied. In all schemes as shown in (Figure 6(b), Figure 6(f), Figure 6(h)) of  
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Figure 6. The plots of density profiles and numerical errors of the traffic flow model with constant speed at different time scales 
using the one-dimensional explicit numerical schemes. (a) The exact solution of the density profile; (b) The density profiles by 
Upwind scheme; (c) Error plot by Upwind scheme; (d) The density profiles by Downwind scheme; (e) The density profiles by 
FTCS scheme; (f) The density profiles by Lax-Friedrichs scheme; (g) Error by Lax-Friedrichs scheme; (h) The density profiles by 
Tolesa scheme; (i) Error plot by Tolesa scheme. 
 

density profiles account lesser densities as time scale increase in comparison 
with those of the exact solution. 

The downwind and FTCS schemes are unconditionally unstable as shown in 
(Figure 6(d), Figure 6(e)). The numerical scheme is unconditionally unstable 
indecating that the numerical solution will be destroyed by numerical errors which 
will be certainly produced and grow exponentially. That means, exponentially 
growing modes appear, rapidly destroying the solution. The amplitude of the 
wave strongly blow up or peak up and violate the numerical solution this is 
unphysical as shown in (Figure 6(d), Figure 6(e)). 

(Figure 6(c), Figure 6(g), Figure 6(i)) indicate the numerical errors. The 
numerical errors increase as time scale increase. That is, the error formed at 7 
min is larger than the error formed at 3.5 min and the error formed at 3.5 min is 
larger than the error formed at 0.7 min. 

4.2. Traffic Flow with Linear Speed-Density Relationship 

Greenshields proposed the first traffic flow model, and he observed that using 
photographic methods. The Greenshields was also able to show that a linear re-
lationship between speed and density, and a quadratic relationship exists be-
tween flux and density, which, over the years, has come to be known as the fun-
damental diagram of traffic flow. In this subsection, we present the application 
of the Tolesa Scheme in the cases of traffic flow model with linear speed-density 
relationship as shown in Table 2. The LWR model (14) has been discretized by 
explicit Tolesa Scheme as follow. 

( )( ) ( ) ( )1 2
1 1 1 1 1 11 4 2 2n n n n n n n n n

j j j j j j j j jq q q q qρ ρ ρ ρ α α+
+ − + − + −= + + − − + − +

 
The Tolesa scheme discretization given in Table 2 can be implemented using 

the same assumptions and values are used as in the case traffic flow model with  
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Table 2. Discretization of traffic flow model using explicit Tolesa schemes. 

Linear speed-density relationship Discretization 

2

max
max

0v
t x
ρ ρρ

ρ
  ∂ ∂

+ − =   ∂ ∂   
 ( ) ( ) ( ) ( ) ( ) ( )2 2 21

1 1 1 1
n n n n n n n
j j j j j j ja b c d e fρ ρ ρ ρ ρ ρ ρ+

− + − += + + + + +  

where 

( ) ( )2

max max1 4 2 2a v t x v t x = + ∆ ∆ + ∆ ∆   

( )2

max1 2 2 2b v t x = − ∆ ∆   

( ) ( )2

max max1 4 2 2c v t x v t x = − ∆ ∆ + ∆ ∆   

( )( ) ( )( )2

max max max max2 2d v t x v t xρ ρ = − ∆ ∆ − ∆ ∆   

( )( )2

max max2 2e v t xρ = ∆ ∆   

( )( ) ( )( )2

max max max max2f v t x v t xρ ρ = ∆ ∆ − ∆ ∆   

 
constant speed. Using these assumptions and the discretization shown in Table 
2, we have developed computer programs to conduct simulation study of traffic 
flow model with linear density-speed relationship (19). 

The exact solutions vary with location but almost the same for time as shown 
in Figure 7(a). The numerical errors increase as time scale increase. The error 
varies with time and location as shown in Figure 7(b). That is, the error formed 
at 7 min is larger than the error formed at 3.5 min and the error formed at 3.5 
min is larger than the error formed at 0.35 min. The density, speed, and flow 
vary with time and location. As shown in Figures 7(c)-(e) Tolesa scheme is the 
correct simulation which express the reality and Mathematical relation between 
density, speed, and flow. An increase in density results in a decrease of vehicle 
speed and vehicle flow. 

Fundamental Diagrams of Traffic Flow: Traffic flow theory involves the 
development of mathematical relationships among the primary elements of a 
traffic stream flow, density and speed. These relationships help traffic engineer 
in planning, designing, and evaluating the effectiveness of implementing traffic 
engineering measures on a highway system. Mathematical algorithms are used to 
study the complex interrelationship between elements of traffic stream. The 
diagrams shown in the relationship between speed-flow, speed-density, and 
flow-density are called the fundamental diagrams of traffic flow. These are as 
shown in Figure 10. The fundamental diagrams of traffic flow are vital tools 
which enables analysis of fundamental relationships. There are three diagrams: 
speed-density, speed-flow and flow-density. 

1) Speed vs. Density: The variation of speed with density is linear as shown 
by the solid line in Figure 8. When there are no vehicles on the highway, the 
density is zero. When density is zero there will be little or no interaction between 
vehicles, therefore drivers are free to travel at max possible speed. Further con-
tinuous increase in density will then result in continuous reduction of speed,  
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Figure 7. The plots of density profiles and numerical errors of the traffic flow modeat different time scales using the 
one-dimensional explicit numerical schemes. (a) Exact solution of the density profiles; (b) Error plot for linear density-speed rela-
tionship by Tolesa scheme; (c) Density profiles by Tolesa scheme; (d) Speed profiles by Tolesa scheme; (e) Flux profiles by Tolesa 
scheme. 
 

 
Figure 8. Speed-density linear relationship by Tolesa scheme. 

 
which will be zero when density is equal to the jam density. The maximum speed 
will be referred to as the free flow speed, and when the density is maximum, the 
speed will be zero. 

2) Flow vs. Density: At zero density, the flow is obviously zero, because there 
are no vehicles on the road. As the density begins to rise, so does the flow, until a 
maximum flow is achieved at a critical density. Up to this point the movement of 
vehicles is relatively free and there is little interaction between the vehicles. An 
increase in density results in a decrease of vehicle speed and vehicle flow; this 
continues up to jam density, when traffic comes to a standstill. The flow and 
density varies with time and location. The relation between the density and the 
corresponding flow on a given stretch of road is referred to as one of the funda-
mental diagram of traffic flow and shown in Figure 9. 
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3) Speed vs. Flow: When flow is very low, there is little interaction between 
vehicles, therefore drivers are free to travel at max possible speed. The absolute 
max speed is obtained as the flow tends to zero. A point will be reached when 
further addition of vehicles will result in the reduction in the actual number of 
vehicles that pass a point on the highway (reduction of flow). At this point con-
gestion is reached and eventually both speed and flow become zero. The flow is 
zero either because there are no vehicles or there are too many vehicles so that 
they cannot move. At maximum flow, the speed will be in between zero and free 
flow speed. The maximum flow occurs at critical speed. It is possible to have two 
different speeds for a given flow. The relationship between the speed and flow is 
referred to as one of the fundamental diagram of traffic flow and shown in Fig-
ure 10. 

5. Conclusion 

In the present work, one-dimensional explicit Tolesa scheme is developed for 
solving advection Equation (1) and is successfully applied on macroscopic traffic 
flow model with constant velocity (17). The one-dimensional explicit Tolesa  

 

 
Figure 9. Density-flux nonlinear relationship by Tolesa scheme. 

 

 
Figure 10. Flux-speed nonlinear relationship by Tolesa scheme. 
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numerical scheme is another alternative numerical scheme to solve advection equ-
ation and apply to traffic flows model like other well-known one-dimensional ex-
plicit schemes such as Upwind, Downwind, FTCS, and Lax-Friedrichs schemes. 
The one-dimensional explicit Tolesa Scheme has unique schematic diagram as 
others one-dimensional explicit Schemes. One-dimensional explicit Tolesa 
scheme is conditionally stable by Von Neumann stability analysis. Although the 
Tolesa scheme has been developed to find a numerical solution of advection eq-
uation, traffic flow with constant speed, and linear density-speed relationship, it 
can also be extended for first and second order traffic flow models with 
non-linear velocity-density relationships. The further applications of Tolesa 
scheme will be taken up in the further study. 
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