
Journal of Applied Mathematics and Physics, 2019, 7, 702-725 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2019.73049  Mar. 28, 2019 702 Journal of Applied Mathematics and Physics 

 

 
 
 

Multistep Quadrature Based Methods for 
Nonlinear System of Equations with Singular 
Jacobian 

Oghovese Ogbereyivwe1, Kingsley Obiajulu Muka2 

1Department of Mathematics and Statistics, Delta State Polytechnic, Ozoro, Nigeria 
2Department of Mathematics, University of Benin, Benin City, Nigeria 

 
 
 

Abstract 

Methods for the approximation of solution of nonlinear system of equations 
often fail when the Jacobians of the systems are singular at iteration points. In 
this paper, multi-step families of quadrature based iterative methods for ap-
proximating the solution of nonlinear system of equations with singular Ja-
cobian are developed using decomposition technique. The methods proposed 
in this study are of convergence order 4ρ ≤ , and require only the evaluation 
of first-order Frechet derivative per iteration. The approximate solutions 
generated by the proposed iterative methods in this paper compared with 
some existing contemporary methods in literature, show that methods de-
veloped herein are efficient and adequate in approximating the solution of 
nonlinear system of equations whose Jacobians are singular and non-singular 
at iteration points. 
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1. Introduction 

System of equations that is used in describing real life phenomena is often non-
linear in nature. Examples of Mathematical models that are formulated using 
nonlinear system of equations (NLSE) include mathematical models that de-
scribe kinematics, combustion, chemical equilibrium, economic problem and 
neurophysiology problems, [1] [2]; Reactor Steering problem, [3] [4]; transpor-
tation problem, [5]. Indeed most real life problems are best described using 

How to cite this paper: Ogbereyivwe, O. 
and Muka, K.O. (2019) Multistep Quadra-
ture Based Methods for Nonlinear System 
of Equations with Singular Jacobian. Jour-
nal of Applied Mathematics and Physics, 7, 
702-725.  
https://doi.org/10.4236/jamp.2019.73049  
 
Received: January 5, 2019 
Accepted: March 25, 2019 
Published: March 28, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2019.73049
http://www.scirp.org
https://doi.org/10.4236/jamp.2019.73049
http://creativecommons.org/licenses/by/4.0/


O. Ogbereyivwe, K. O. Muka 
 

 

DOI: 10.4236/jamp.2019.73049 703 Journal of Applied Mathematics and Physics 

 

NLSE. 
Consider the NLSE, 

( ) 0G X =                             (1) 

where mX ∈ℜ , 0 is a null vector of dimension m, : m mG D ⊂ ℜ →ℜ  is func-
tional define by  

( ) ( ) T
1 2 1 2, , , , , , ,m i mG X X X G X X X =     

, 1, 2, ,iG i m=   are coordinate functions of G and D is an open domain in 
mℜ . 
The Newton method in m-dimension is a popular iterative method for ap-

proximating the solution of NLSE (1). The sequence of approximations { } 1k k
X

≥
 

generated using the Newton method, converges to the solution Φ  of the NLSE 
(1) with convergence order 2ρ = , under the condition that det ( )( ) 0kG X′ ≠ , 
[6]. One setback of the Newton method is that it fails if at any iteration stage of 
computation, the Jacobian matrix ( )kG X′  is singular [7] [8]. 

The development of new iterative methods for approximating the solution of 
(1) has attracted the attention of researchers in recent years, as evident in the li-
terature such as [9] [10] [11] [12]. One objective of developing iterative methods 
for the approximation of the solutions of NLSE (1) is to obtain methods with 
better convergence rate, computational efficiency or modified to solve certain 
problems. Recently, plethora numbers of iterative methods for approximating 
solution of (1) have been developed via diverse techniques. These techniques in-
clude Taylor series and homotopy [13] [14] [15] [16]; decomposition technique 
in [3] [17] [18] and quadrature formulas technique [19] [20] [21] [22]. 

Quadrature formulas are veritable tools for the evaluation of the integrals, [23] 
[24] [25]. The idea used in developing quadrature based iterative methods is the 
approximation of the integral in the Taylor expansion of vector function using 
quadrature formulas, [26] [27]. The quadrature based iterative functions are im-
plicit-type, [19] [20] [21] [28] [29]. To implement the implicit iterative formula 
derived via quadrature formula, the predictor and corrector technique is utilized 
with the Newton method used often as predictor and the iterative function de-
rived from quadrature formula as corrector. The quadrature based methods 
breakdown in implementation when the Jacobian ( )G X′  of the NLSE (1) is 
singular at iteration points. The presence of singular Jacobian ( )G X′  within 
the domain of evaluation does not suggest in practice the absence of solution to 
(1). In order to circumvent the problem of having singular Jacobian at a point in 
the vicinity of the solution Φ  of (1), the Newton method is modified by intro-
ducing perturbation term (a diagonal matrix) to the Jacobian of its corrector 
factor [30]. In [31], the idea of the perturbation term introduced in [30] is uti-
lized to develop a Two-step iterative method for approximating the solution of 
(1), where the Jacobian ( )G X′  is singular at some iteration points. In [8], sim-
ilar perturbation term was introduced at every step of the corrector factor in the 
three step frozen Jocobian iterative method for approximating the solution of (1). 
Other articles like [32] [33] have also developed several iterative methods for 
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solving (1) with the help of same perturbation term introduced to the target Ja-
cobian of (1). It is worth of note that the diagonal matrix used as the perturba-
tion term in literature has not been significantly modified since introduced in 
[30]. Also, its application has not been extended to quadrature based iterative 
methods in literature. Motivated and inspired by the work in [30] [31] [32] and 
[33], to develop families of multi-step quadrature based iterative methods with 
infused perturbation term to its Jacobian in this paper. It is important to note 
that the perturbation term developed and used in this work is different from the 
diagonal matrix that is formed by the coordinates functions of the target NLSE 
(1) used in literature. To achieve this target, a continuous and differentiable aux-
iliary function is directly infused into (1). The resulting NLSE is thereafter ex-
pressed as coupled equations with generic quadrature formula (1). The decom-
position technique is used to resolve the coupled equation, from which some 
iterative schemes that can be utilized in developing iterative methods for ap-
proximating the solution of (1) whose Jacobian is singular are proposed. 

2. The Proposed Iterative Methods  

Let β  be the initial approximation close to Φ  a solution of the NLSE (1.1.1) 
and ( )XΩ  a function such that  

( ) ( ) ( ) 0X X G XψΩ = =                     (2) 

where ( )Xψ  is a differentiable nonzero scalar function. The notation   is 
component-wise element operator such that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) T
1 2, , , mX G X X G X X G X X G Xψ ψ ψ ψ =      (3) 

The solution of ( ) 0XΩ =  and ( ) 0G X =  are same because ( ) 0Xψ ≠  for 
all values of X. 

With the aid of Taylor series expansion of a multi-dimensional function about 
β  up to the second term and using the generic quadrature formula to approx-
imate ( )G β′ , then (2) can be rewritten as  

( ) ( ) ( )
( ) ( )( ) ( ) ( )

T

1
0

q

i i
i

X
G G G X X H X

X
ψ

β β µ β θ β β
ψ =

  ∇
 ′ + + + − − + =

    
∑ (4) 

where ( )H X  is higher order terms of the Taylor expansion, the division oper-

ator in 
( )
( )

TX
X

ψ
ψ

 ∇
 
 
 

 is element wise, iθ  and , 1, 2, ,i i qµ =   are knots and 

weights respectively such that  

1 1

11, ,
2

q q

i i i
i i
µ µ θ

= =

= =∑ ∑                     (5) 

Equation (5) is consistency conditions, [34]. 
The (4) is expressed into coupled equation given in (6) and (7).  

( ) ( ) ( )
( ) ( )( ) ( ) ( )

T

1
0

q

i i
i

X
G G G X X H X

X
ψ

β β µ β θ β β
ψ =

  ∇
 ′ + + + − − + =

    
∑ (6) 
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( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

T

1

q

i i
i

p X
H X G X G G G X X

p X
β β µ β θ β β

=

  ∇
 ′ = + − + + − −

    
∑ (7) 

In compact form, (6) can be expressed as  

( )X Xβ= +                           (8) 

where  

( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

1T

1

q

i i
i

X
X G G X G H X

X
ψ

β µ β θ β β
ψ

−

=

  ∇
 ′ = − + + − +

    
∑ (9) 

is a nonlinear function. 
Applying the decomposition technique due to [17] to decompose the nonli-

near function (9) as 

( ) ( )
1

0
1 0 0

i i

j j
i j j

X X X X
∞ −

= = =

    
= + −    

     
∑ ∑ ∑                (10) 

where 0X  is initial guess. 
The idea here is to find the solution vector X of the NLSE (1) in series form 

through an iterative scheme, such that the solution X is the sum of the initial 
guess β  and the sum of consecutive differences of successive and preceding 
iterate points approximations of X, that is; 

( )
1

0
0 1 0 0

i i

j j j
i i j j

X X X X Xβ
∞ ∞ −

= = = =

    
= = + + −    

     
∑ ∑ ∑ ∑            (11) 

Hence the following scheme from (11) is obtained:  

( )
0

1 0

1

1
0 0

, 1, 2,
i i

s j j
j j

X
X X

X X X i

β

−

+
= =

=

=

   
= − =   

   
∑ ∑





  

             (12) 

The sum of the respective sides of (12) is  
1

0 0
, 1, 2,

s s

i i
i i

X X iβ
+

= =

 = + = 
 

∑ ∑                  (13) 

From (2) and (12), the solution X of the (1) is approximated as:  
1

0 0
, 1, 2,

s s

i i
i i

X X X iβ β
−

= =

 ≈ + = + = 
 

∑ ∑             (14) 

As s becomes large, the approximations of the solution X gets closer to the 
exact solution of (1). 

From Equation (12)  

0X β=                          (15) 

Since 0X  is initial guess, setting 0X  in (7) yields  
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( )0 0H X =                          (16) 

From (9)and (15),  

( ) ( ) ( )
( ) ( ) ( )

1T

1 0
1

q

i
i

X
X X G G G

X
ψ

β µ β β
ψ

−

=

  ∇   ′ = = − +       
∑      (17) 

For 1s =  in (14), and using (17), the following is obtained.  

( ) ( ) ( )
( ) ( ) ( )

1T

0 1 0

X
X X X X G G G

X
ψ

β β β β β
ψ

−
  ∇
 ′ ≈ + ≈ + ≈ − +

    
   (18) 

Using the formulation in (18), a One-step family of iterative scheme for ap-
proximating the solution of (1) is proposed as in Scheme 1. 

Scheme 1 Assume 0X  is an initial guess, approximate the solution Φ  of 
(1.1.1) using the iterative scheme:  

( ) ( )
( ) ( ) ( )

1T

1 , 0,1, 2,k
k k k k k

k

X
X X G X G X G X k

X
ψ
ψ

−

+

  ∇
   ′= − + =

    
    (19) 

Scheme 1 is a family of One-step iterative scheme that can be used to propose 
iterative methods for solving (1) for some function ( )kXΦ . 

For 2s =  in (14), the solution X of (1) can be approximated as:  

( )

( ) ( )
( ) ( )( )

( )( )

0 1 2 0 0 1

1T

0 1
1

0 1

q

i i
i

X X X X X X X

X
G G X X

X

G H X X

ψ
β β µ β θ β

ψ

β

−

=

≈ + + ≈ + +

  ∇
 ′ ≈ − + + + −

    
× + +

∑



    (20) 

Set 0 1X X X= +  in (7) implies  

( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

0 1 0 1

1T

0 1 0 1
1

q

i i
i

H X X G X X G

X
G G X X X X

X

β

ψ
β µ β θ β β

ψ

−

=

+ = + −

  ∇
 ′ − + + + − + −

    
∑

  (21) 

From (18),  

( ) ( )
( ) ( ) ( )

1T

0 1

X
X X G G G

X
ψ

β β β β
ψ

−
  ∇
 ′ + − = − +

    
          (22) 

substituting (22) into (21) yields  

( ) ( ) ( )

( ) ( )
( ) ( )( )

( ) ( )
( ) ( ) ( )

0 1 0 1

1T

0 1
1

1T

q

i i
i

H X X G X X G

X
G G X X

X

X
G G G

X

β

ψ
β µ β θ β

ψ

ψ
β β β

ψ

−

=

−

+ = + −

  ∇
 ′ − + + + −

    

  ∇
 ′ × +

    

∑         (23) 
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Inserting (23) into (20), gives the equation  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

0 1 0
1T

1T

0 1 0 1
1

q

i i
i

X X X X

X
G G G

X

X
G G X X G X X

X

ψ
β β β β

ψ

ψ
β µ β θ β

ψ

−

−

=

≈ + +

  ∇
 ′ ≈ − +

    

  ∇
 ′ − + + + − +

    
∑

 (24) 

Using (24), a Two-step iterative scheme for the approximation of solution Φ  
of (1) as given in Scheme 2 is proposed.  

Scheme 2 Assume 0X  is an initial guess, approximate the solution Φ  of (1) 
using the iterative scheme:  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

1T

1T

1
1

,

0,1, 2,

k
k k k k k

k

q
k

k k k i k i k k k
ik

X
X G X G X G X

X

X
X G X G X X G

X

k

ψ
ν

ψ

ψ
ν µ θ ν ν

ψ

−

−

+
=

  ∇
   ′= − +

    

  ∇
   ′= − + + −

    
=

∑



(25) 

Scheme 2 is used to propose Two-step iterative methods for approximating 
the solution Φ  of the NLSE (1). 

For 3s =  in (14), the solution of (1) can be approximated as follows:  

( )

( ) ( )
( ) ( )( )

( ) ( )( )

0 1 2 3 0 0 1 2

1T

0 1 2
1

0 1 2

q

i i
i

X X X X X X X X X

X
G G X X X

X

G H X X X

ψ
β β µ β θ β

ψ

β

−

=

≈ + + + ≈ + + +

  ∇
 ′ ≈ − + + + + −

    
× + + +

∑



 (26) 

Set 0 1 2X X X X= + +  in (7) yields  

( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

0 1 2 0 1 2

T

0 1 2 0 1 2
1

q

i i
i

H X X X G X X X G

X
G G X X X X X X

X

β

ψ
β µ β θ β β

ψ =

+ + = + + −

  ∇
 ′ − + + + + − + + −

    
∑

(27) 

From (26), (28) is obtained.  

( ) ( )
( ) ( )( ) ( )

( ) ( )
( ) ( ) ( )

0 1 2
1T

0 1 0 1
1

1T

q

i i
i

X X X

X
G G X X G X X

X

X
G G G

X

β

ψ
β µ β θ β

ψ

ψ
β β β

ψ

−

=

−

+ + −

  ∇
 ′ = − + + + − +

    

  ∇
 ′ − +

    

∑   (28) 

Substituting (28) into (27) yields  
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( ) ( ) ( )

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )

0 1 2 0 1 2

T

0 1 2
1

1
T

0 1 2
1

1T

0 1 2

q

i i
i

q

i i
i

H X X X G X X X G

X
G G X X X

X

X
G G X X X

X

X
G X X X G G G

X

β

ψ
β µ β θ β

ψ

ψ
β µ β θ β

ψ

ψ
β β β

ψ

=

−

=

−

+ + = + + −

  ∇
 ′ − + + + + −

    

   ∇  ′ × + + + + −
    

  ∇  ′ × + + − +       

∑

∑     (29) 

Substitute (29) in (26)  

( )

( ) ( )
( ) ( )( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )

0 1 2 3 0 0 1 2

1T

0 1 2
1

1T

0 1 2 0 1
1

1T

0 1

q

i i
i

q

i i
i

X X X X X X X X X

X
G G X X X

X

X
G X X X G G X X

X

X
G X X G G G

X

ψ
β β µ β θ β

ψ

ψ
β µ β θ β

ψ

ψ
β β β

ψ

−

=

−

=

−

≈ + + + ≈ + + +

  ∇
 ′ ≈ − + + + + −

    

  ∇
 ′ × + + − + + + −

    

  ∇
 ′ × + − +

    

∑

∑



(30) 

The formulation in (30) enable the proposal of the three-step iterative scheme 
for the solution of (1). 

Scheme 3 Assume 0X  is an initial guess, approximate the solution Φ  of (1) 
using the iterative scheme:  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

( ) ( )
( ) ( )( ) ( )

1T

1T

1

1T

1
1

,

,

0,1, 2,

k
k k k k k

q
k

k k k i k i k k k
ik

q
k

k k k i k i k k k
ik

X
X G X G X G X

X

X
W G X G X X G

X

X
X W G X G X W X G W

X

k

ψ
ν

ψ

ψ
ν µ θ ν ν

ψ

ψ
µ θ

ψ

−

−

=

−

+
=

  ∇
   ′= − +

    

  ∇
   ′= − + + −

    

  ∇
   ′= − + + −

    
=

∑

∑



(31) 

Scheme 3 is used to propose Three-step iterative methods for approximating 
the solution Φ  of the NLSE (1). 

A suitable choice of the function ( )kXψ  in the proposed Scheme 1, Scheme 
2 and Scheme 3 yields families of quadrature based iterative methods for ap-
proximation of the solution Φ  of (1). It is worthy of note that for ( ) 1kXψ = , 
Scheme 1 reduces to the classical Newton method, while Scheme 2 and Scheme 3 
reduces to the family of approximation methods in [12]. One major target of 
proposing ( )XΩ  in (2) is to discover the perturbation function ( )kXψ  by 
retaining the solution Φ  of the target NLSE (1). Recall that ( )kXψ  must be 
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chosen such that it is a nonzero scalar function and its first derivative ( )kXψ∇  
does not vanish. This way, the solution of (1) is unperturbed. One function and 
its first derivative that is nonzero is the exponential function, [30] [33] [35]. 
Suppose ( )kXψ  is replace by ( )exp kXψ− , then  

( )
( ) ( )

T
Tk

k
k

X
X

X
ψ

ψ
ψ

∇
= −∇                    (32) 

From (32), a generalization can be made as  

( ) ( )T
k kX Xψ λ∇ =                       (33) 

where ( ) ( ) ( ) ( ) T
1 2, , ,k k k m kX X X Xλ λ λ λ =   . Consequently, the following 

iterative algorithms are obtained from Scheme 1, Scheme 2 and Scheme 3 re-
spectively. 

Algorithm 1 Assume 0X  is an initial guess, approximate the solution Φ  of 
(1) using the iterative method:  

( ) ( ) ( ) ( )1
1 , 0,1, 2,k k k k k kX X G X G X X G X kλ

−

+ ′ = − − =          (34) 

If the parameter ( ) 0kXλ = , Algorithm 1 reduces to the m-dimensional clas-
sical Newton method (1). The major difference between Algorithm 1 and the 
Wu method in [30] is the introduction of a dense matrix ( ) ( )T

k kG X Xψ∇  in 
place of the diagonal matrix ( )( ) , 1, 2, ,i i kdiag g X i mσ =   in the Jacobian 
( )kG X  of the target (1). 
Algorithm 2 Assume 0X  is an initial guess, approximate the solution Φ  of 

(1) using the iterative method:  

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

1

1

1
1

,

,

0,1, 2,

k k k k k k

q

k k i k i k k k k k
i

X G X G X X G X

X G X X G X X G

k

ν λ

ν µ θ ν λ ν

−

−

+
=

′ = − − 

 ′= − + − − 
 

=

∑


    (35) 

The Algorithm 2 is a Two-step family of iterative method for approximating 
the solution of (1). 

Algorithm 3 Assume 0X  is an initial guess, approximate the solution Φ  of 
(1) using the iterative method:  

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

1

1

1

1

1
1

,

,

,

0,1, 2,

k k k k k k

q

k k i k i k k k k k
i

q

k k i k i k k k k k
i

X G X G X X G X

W G X X G X X G

X W G X W X G X X G W

k

ν λ

ν µ θ ν λ ν

µ θ λ

−

−

=

−

+
=

′ = − − 

 ′= − + − − 
 

 ′= − + − − 
 

=

∑

∑


   (36) 

Remark 1  
For numerical implementation, the choice of ( )kXλ  is subjectively chosen, 

however specific values of λ  (for reference purpose, ( )kXλ  is denoted as λ ) 
are used such that the magnitude of their elements is less one in order to achieve 
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better convergence rate and accuracy. Similarly the choice of iθ  is also subjec-
tive but must satisfy the consistency condition in (5). 

2.1. Convergence Analysis of the Proposed Iterative Methods  

In this section, the convergence of the iterative methods (Algorithm 1, Algo-
rithm 2 and Algorithm 3) are established using the Taylor series approach, [11] 
[12] [36]. In all the proofs, it is assumed that the function ( )G ⋅  is thrice Fre-
chet differentiable. 

2.2. Convergence Analysis of Algorithm 1  

To establish the convergence of Algorithm 1, the proof of Theorem 1 is consi-
dered.  

Theorem 1 Suppose the function : m mG D ⊂ ℜ →ℜ  is continuous and 
differentiable in some neighborhood mD ⊂ ℜ  of Φ . If 0X  is an initial 
guess in the neighborhood of Φ , then the sequence of approximations 
{ } ( )0

,k kk
X X D

≥
∈  generated by (34) converges to Φ  with convergence order 

2ρ = .  
Proof. Let k kE X

∞
= −Φ  be the error in the kth iteration point. Using the 

Taylor series expansion of ( )G X  and ( )G X′  about Φ , the following equa-
tions are obtained.  

( ) ( ) ( )( ) ( )( )

( )( )

2

3

1
2!

1
2!

G X G G X G X

G X

′ ′′= Φ + Φ −Φ + Φ −Φ

′′′+ Φ −Φ +
         (37) 

( ) ( ) ( )( ) ( )( )

( )( )

2

3

1
2!

1
3!

G X G G X G X

'G X

′ ′ ′′ ′′′= Φ + Φ −Φ + Φ −Φ

′′′+ Φ −Φ +
        (38) 

Setting kX X=  in (37) and (38), implies  

( ) ( ) ( ) ( )
4

5

2
, 0,1, 2,n

k k k n k k
n

G X G E G E C E O E k
=

 ′= Φ + = Φ + + =  
∑    (39) 

( ) ( ) ( ) ( )
5

1 5

2
, 0,1, 2,n

k k n k k
n

G X G E G I C E O E k−

=

 ′ ′ ′= Φ + = Φ + + =  
∑   (40) 

where I is an m m×  identity matrix and ( )( ) ( )11 , 2
!

n
nC G G n

n
−

∞
′= Φ Φ ≥ . 

Using (39) and (40) 

( ) ( )

( )( ) [ ( ) ( )
( )
(

( ) ( ) ( )

1

1 2 2 2
2 2 3 2

3 2 2 3 3
2 2 3 4 2 3 2

4 2 3 3 2 4
2 3 5 2 2 4 3

2 3 4 5
2 3 2 4 3

2 4 3 3

8 12 4 8 5 4

16 9 5 20 20 7 7

13 36 16 26 5

k k

k k

k

k k

G X G X

G I C E C C C E

C C C C C C C E

C C C C C C C

C C C C C E O E

λ

λ λ λ

λ λ λ

λ λ λ λ

λ λ λ

−

−

′ − 

′= Φ + − + + − − +

− − + + + − + +

+ + − − − − − +

+ − + + − + 

    (41) 
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multiply (41) and (39), yields  

( ) ( ) ( )
( ) ( )

( ) ( )

1

2 2 2 3
2 2 3 2

3 2 2 3 4 5
2 2 3 4 4 2 3 2

2 2 2

4 7 4 3 5 4 3

k k k

k k k

k k

G X G X G X

E C E C C C E

C C C C C C C C E O E

λ

λ λ λ

λ λ λ

−
′ − 

= + − + − − +

− − + + − + − − + +

 (42) 

substituting (42) in (34), the following equation is obtained.  

( ) ( )
( ) ( )

2 2 2 3
1 2 2 3 2

3 2 2 3 4 5
2 2 3 4 4 2 3 2

2 2 2

4 7 4 3 5 4 3

k k k

k k

X C E C C C E

C C C C C C C C E O E

λ λ λ

λ λ λ

+ = Φ + − + − + + −

− − + + − + − − + +
  (43) 

The Equation (45) implies that the sequence of approximations generated by 
the iterative method (34) converges to the solution Φ  of (1) with convergence 
order 2ρ = .  

2.3. Convergence Analysis of the Proposed Algorithm 2  

Similar to the proof of Theorem 1, the convergence of Algorithm 2 is established 
in the proof of Theorem 2. 

Theorem 2 Suppose the function : m mG D ⊂ ℜ →ℜ  is continuously diffe-
rentiable in some neighborhood mD ⊂ ℜ  of Φ . If 0X  is an initial guess in 
the neighborhood of Φ , then for λ  the sequence of approximations 
{ } ( )0

,k kk
X X D

≥
∈  generated by (35) converges to Φ  with convergence order 

3ρ = .  
Proof. From Equation (35), kν  is defined. Setting kX ν=  in (37) lead to 

obtaining the following equation.  

( ) ( ) ( ) ( ) ( )2 2 2 3 4
2 2 3 22 2 2k k k kG G C E C C C E O Eν λ λ λ ′= Φ + + − + + − +    (44) 

Similarly, set ( )k i k kX X Xθ ν= + −  in (38), then  

( )( )

( ) ( ) ( )( ) ( )

( ) ( )( )( )

( )( )
( )

1

2 2
2 3 2 2

1 1

3 2 2 3
3 2 2 3 2 32

1

3 2 2 3
2 2 2 3 4 2 3 2

1

4 2

2 1 3 1 2

4 1 2 2 2 2 6 1

2 4 7 3 5 4 3

12

q

i k i k k
i

q q

i i k i i i k
i i

q

i i i i k
i

q

i i
i

G X X

G I C E C C C E

C C C C C C E

C C C C C C C C

C C

λ

µ θ ν

µ θ µ θ λ θ

µ θ λ λ θ θ

µ λ λ λ λ θ

λ

=

= =

−
=

=

′ + −

   ′= Φ + − + − + −   
  

 
+ − + − + + − + − 
 


+ − + − + + −


+ −

∑

∑ ∑

∑

∑

( )

( )( ) ( )( ) ( )

2

22 2 4 5
3 2 3 2 2

1

3 2 2 2 2 1

i i

i i i k kC C C C C E O E

θ θ

λ λ θ θ λ θ

−


+ − + + − − + − + 



(45) 

Using (39) and (45);  

( )( ) ( )

( ) ( )( )
1

2
1

2 1

q

i k i k k k
i

q

i i i k
i

G X X G X

G I C E

µ θ ν λ

µ λ µ θ

=

=

′ + − −

  ′= Φ + − − −  
 

∑

∑
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( )( ) ( )

( )( ) ( )

( )( )

2 2
2 3 2 2

1

3 2 2
3 4 2 2 3 2

1

3
3 2

3 1 2

4 1 2 2 2 2

6 1

q

i i i k
i

q

i i i
i

i i k

C C C C E

C C C C C C

C C E

λ µ θ λ θ

λ µ θ λ λ θ

λ θ θ

=

=

 
+ − + − + − 
 


+ − + − − − − +



− − − 



∑

∑  

( )(
( )( ) ( )( )

( ) ( )

3 2 2 3
4 2 2 2 3 4 2 3 2

1

2 2 2
4 2 3 2 3 2

2 4 4
2

2 4 7 3 5 4 3

12 1 3 22 2 2 1

q

i
i

i i

i k k

C C C C C C C C C

C C C C C C

C E O E

λ µ λ λ λ λ

λ θ λ λ θ

λ θ

=


+ − + − + − + + −


+ − − + − − + −


+ − + 

 

∑

 (46) 

From (46) and (44),  

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )(
( ) ( )

( ) ( )

1
2

2
1

2 2 3
2 2 2 2 2

1

3 2 2 3
2 2 3 4 2 3 2

2 2
2 3 2 2

1

2

2 2
1

2 2 2 1

5 7 3 7 4 4

2 2 2 1

2 1

q

i k i k k k k k
i

q

i i k
i

q

i i
i

q

i i
i

G X X G X G C E

C C C C C E

C C C C C C C

C C C C

C C

µ θ ν λ ν λ

λ λ λ λ µ θ

λ λ λ λ

λ λ λ λ µ θ

λ λ µ θ

−

=

=

=

=

 ′ + − − = − 
 
  

+ − − − + + − + −  
  

+ − + − + + −

 
+ − + + − + − 

 

 
+ − + − 

 

−

∑

∑

∑

∑

( ) ( ) ( )2 4 4
3 2 2 2

1
3 1 2

q

i i i k k
i

C C C C E O Eλ µ θ λ θ
=

 
+ − + − + 

 
∑

    (47) 

Using (47) in the second step of (35), with the expansion of kν  as in (43), the 
following equation is obtained.  

( ) ( ) ( )3 4
1 2 2

1
2 1

q

k i i k k
i

X C C E O Eλ λ µ θ+
=

  
= Φ + − + − +  

  
∑        (48) 

Equation (48) implies that the sequence of approximations generated by the 
iterative method (35) converges to Φ  with convergence order 3ρ = .  

2.4. Convergence Analysis of the Proposed Algorithm 3  

The convergence of the propose Algorithm 3 is established by the proof of 
Theorem 3. 

Theorem 3 Suppose the function : m mG ℜ →ℜ  is continuously differentia-
ble in some neighborhood mD∈ℜ  of its solution Φ . If 0X  is an initial guess 
in the neighborhood of Φ , then the sequence of approximations 
{ } ( )0

,k kk
X X D

≥
∈  generated by (36) converges to Φ  with convergence order 

4ρ = .  
Proof. Set kX W=  and ( )k i k kX X W Xθ= + −  in (37) and (38) respectively, 
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where kW  is the second step of (35) then,  

( )

( ) ( ) ( ) ( )(

( ) ( )

( ) ( )

( ) ( ) ( )

3 3 2 2 3
2 2 2 2 2

1

2 2
2 3 2 2

1

2

2 2
1

2 4 5
2 3 2 2

1

1 2

2 2 2 1

2 1

3 1 2

k

q

i i k
i

q

i i
i

q

i i
i

q

i i i k k
i

G W

G C C E C C C

C C C C

C C

C C C C E O E

λ λ µ θ λ λ

λ λ λ λ µ θ

λ λ µ θ

λ µ θ λ θ

=

=

=

=

  ′= Φ − + − + − + − +  
   

 
+ − + + − + − 

 

 
+ − + − 

 
 

− + − + − +  
  

∑

∑

∑

∑

 (49) 

and  

( )( ) ( )

( ) ( ) ( )

2 2
2 3

1 1

3 2 3 4
4 2 2 2

1 1

3

14 1 2 2
2

q q

i k i k k k i i k
i i

q q

i i i i k k
i i

G X W X G I C E C E

C C C C E O E

µ θ µ θ

µ θ λ λ µ θ

= =

= =

  ′ ′+ − = Φ + +  
 

   
+ − − − + − +          

∑ ∑

∑ ∑
(50) 

From (50)  

( )( ) ( )

( )( ) ( )

( )

1

1

1 2 2 2
2 2

1

32 2
3 2 4

1 1

2 2 3 2 3
2

1 1 1

14
2

13 4 1
2

1 12 4 2 2 5 2
2 2

q

i k i k k k
i

q

k i i
i

q q

i i k i i
i i

q q q

i i i i i i
i i i

G X W X G X

G I C E C

C C E C

C C

µ θ λ

λ λ µ θ

µ θ λ µ θ

µ θ µ θ µ θ

−

=

−

=

= =

= = =

 ′ + − + 
 

   ′= Φ − − + + −   
  

    
− − − + −    

    
  

+ + + − − − + 
 

∑

∑

∑ ∑

∑ ∑ ∑

( )2 2 3 4
3

1
1 6

q

i i k k
i

C E O Eλ λ µ θ
=


 
 

  
+ + − +   

   
∑

    (51) 

By multiplying (51) by (49), the following equation is obtained.  

( )( ) ( ) ( )

( )

( )

1

1

2 3 3 2 2 2
2 2 2

1 1

2 2
2

1

2 2 4 5
2 3

1

2 8 7 8

3 2 3

8 2 3

q

i k i k k k k
i

q q

k i i i i
i i

q

i i
i

q

i i k k
i

G X W X G X G W

C E C C

C

C C E O E

µ θ λ

λ µ θ λ µ θ

λ λ µ θ

λ µ θ

−

=

= =

=

=

 ′ + − + 
 

    
= − + − − + +    

   
  

+ + − −  
  

  
+ − − + +     

∑

∑ ∑

∑

∑

      (52) 

Using (48) and (50) in the third step of (36), yields  

( )( ) ( )2 4 5
2 2k k kX C C E O Eλ λ= Φ + − − +               (53) 
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Equation (53) implies that the sequence of approximations generated by the 
iterative method (36) converges to the solution Φ  of the (1) with convergence 
order 4ρ = .  

2.5. Particular Forms of the Proposed Iterative Methods  

Here, some particular forms of the iterative methods in Algorithm 2 and Algo-
rithm 3 are developed by assigning arbitrary values to the parameters iµ  and 

, 1, 2,i iθ =   satisfying the conditions given in (5). 

2.6. Particular Forms of Algorithm 2  

For 1 1
11, 1,
2

q µ θ= = = , in Algorithm 2 give rise to the following iterative me-

thod for approximating Φ  of (1). 

Algorithm 4 Assume 0X  is an initial guess, approximate the solution Φ  of 
(1) using the iterative method:  

( ) ( ) ( )

( ) ( )

1

1

1

,

,
2

0,1,2,

k k k k k

k k
k k k k

X G X G X G X

X
X G G X G

k

ν λ

ν
ν λ ν

−

−

+

′ = − − 

 +  ′= − −  
  

= 

         (54) 

Algorithm 4 is an iterative method for approximating the solution Φ  of (1) 
with convergence order 3ρ =  and error equation satisfying  

( ) ( )2 3 4
1 2k k kE C E O Eλ+ = − +                   (55) 

For 1 2 1 2
1 3 22, , , 0,
4 4 3

q µ µ θ θ= = = = = , in Algorithm 2 give rise to the fol-

lowing new iterative method for approximating Φ  of (1) is obtained. 

Algorithm 5 Assume 0X  is an initial guess, approximate the solution Φ  of 
(1) using the iterative method:  

( ) ( ) ( )

( ) ( ) ( )

1

1

1

,

2
4 3 4 ,

3
0,1,2,

k k k k k

k k
k k k k k

X G X G X G X

X
X G X G G X G

k

ν λ

ν
ν λ ν

−

−

+

′ = − − 

 +  ′ ′= − + −  
  

= 

     (56) 

Algorithm 5 is of convergence order 3ρ =  iterative method for approximat-
ing the solution Φ  of (1) error equation satisfying  

( ) ( )2 3 4
1 2k k kE C E O Eλ+ = − +                    (57) 

For 1 2 3 1 2
1 2 1 13, , , , 0,
6 3 6 2

q µ µ µ θ θ= = = = = = , and 3 1θ =  in Algorithm 2 it 

reduces to the following new iterative method. 

Algorithm 6 Assume 0X  is an initial guess, approximate the solution Φ  of 
(1) using the iterative method:  
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( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

,

6 4 6 ,
2

0,1,2,

k k k k k

k k
k k k k k k

X G X G X G X

X
X G X G G G X G

k

ν λ

ν
ν ν λ ν

−

−

+

′ = − − 

 +  ′ ′ ′= − + + −  
  

= 

(58) 

Algorithm 6 is a convergence order 3ρ =  iterative method for approximat-
ing the solution Φ  of (1) error equation satisfying  

( ) ( )2 3 4
1 2k k kE C E O Eλ+ = − +                  (59) 

For 1 2 3 1 2
1 1 1 13, , , , 0,
4 2 4 2

q µ µ µ θ θ= = = = = = , and 3 1θ =  in Algorithm 2 it 

reduces to the following new iterative method. 
Algorithm 7 Assume 0X  is an initial guess, approximate the solution Φ  of 

(1) using the iterative method:  

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

,

4 4 4 ,
2

0,1,2,

k k k k k

k k
k k k k k k

X G X G X G X

X
X G X G G X G X G

k

ν λ

ν
ν λ ν

−

−

+

′ = − − 

 +  ′ ′ ′= − + + −  
  

= 

(60) 

Algorithm 7 is a convergence order 3ρ =  iterative method for approximat-
ing Φ  of (1) having error equation satisfying  

( ) ( )2 3 4
1 2k k kE C E O Eλ+ = − +                     (61) 

2.7. Particular Forms of Algorithm 3  

Consider some particular forms of Algorithm 3. Set 1 1
11, 1,
2

q µ θ= = = , in Al-

gorithm 3 leads to the iterative method. 
Algorithm 8 Assume 0X  is an initial guess, approximate the solution Φ  of 

(1) using the iterative method:  

( ) ( ) ( )

( ) ( )

( ) ( )

1

1

1

1

,

,
2

, 0,1, 2,
2

k k k k k

k k
k k k k

k k
k k k k

X G X G X G X

X
W G G X G

X W
X W G G X G W k

ν λ

ν
ν λ ν

λ

−

−

−

+

′ = − − 

 +  ′= − −  
  

 +  ′= − − =  
  



      (62) 

Algorithm 8 is an iterative method for approximating the solution Φ  of (1) 
with convergence order 4ρ =  and error equation satisfying  

( ) ( )3 4 5
1 2k k kE C E O Eλ+ = − − +                     (63) 

For 1 2 1 2
1 3 22, , , 0,
4 4 3

q µ µ θ θ= = = = = , in Algorithm 3 leads to the following 

iterative method. 
Algorithm 9 Assume 0X  is an initial guess, approximate the solution Φ  of 

(1) using the iterative method:  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1

1

,

2
4 3 4 ,

3

2
4 3 4 ,

3
0,1, 2,

k k k k k

k k
k k k k k

k k
k k k k k

X G X G X G X

X
W G X G G X G

X W
X W G X G G X G W

k

ν λ

ν
ν λ ν

λ

−

−

−

+

′ = − − 

 +  ′ ′= − + −  
  

 +  ′ ′= − + −  
  

= 

   (64) 

Algorithm 9 is an iterative method for approximating the solution Φ  of (1) 
with convergence order 4ρ = . The error equation of Algorithm 9 is  

( ) ( )2 4 5
1 2k k kE C E O Eλ+ = − − +                 (65) 

For 1 2 3 1 2
1 2 1 13, , , , 0,
6 3 6 2

q µ µ µ θ θ= = = = = = , and 3 1θ =  in Algorithm 3 

the following iterative method is proposed: 
Algorithm 10 Assume 0X  is an initial guess, approximate the solution Φ  

of (1) using the iterative method:  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

1

,

6 4 6 ,
2

6 4 6 ,
2

0,1,2,

k k k k k

k k
k k k k k k

k k
k k k k k k

X G X G X G X

X
W G X G G G X G

X W
X W G X G G G X G W

k

ν λ

ν
ν ν λ ν

λ

−

−

−

+

′ = − − 

 +  ′ ′ ′= − + + −  
  

 +  ′ ′ ′= − + + ϒ −  
  

= 

(66) 

The Algorithm 10 is of convergence order 4ρ =  for approximating the so-
lution Φ  of (1). Its error equation is 

( ) ( )2 4 5
1 2k k kE C E O Eλ+ = − − +                 (67) 

For 1 2 3 1 2
1 1 1 13, , , , 0,
4 2 4 2

q µ µ µ θ θ= = = = = = , and 3 1θ =  in Algorithm 2 it 

reduces to the following new iterative method.  
Algorithm 11 Assume 0X  is an initial guess, approximate the solution Φ  

of (1) using the iterative method:  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

1

,

4 4 4 ,
2

4 4 4 ,
2

0,1,2,

k k k k k

k k
k k k k k k

k k
k k k k k k

X G X G X G X

X
W G X G G G X G

X W
X W G X G G W G X G W

k

ν λ

ν
ν ν λ ν

λ

−

−

−

+

′ = − − 

 +  ′ ′ ′= − + + −  
  

 +  ′ ′ ′= − + + −  
  

= 

(68) 

The Algorithm 11 is a convergence order 3ρ =  for approximating the solu-
tion Φ  of (1). Its error equation is  

( ) ( )2 4 5
1 2k k kE C E O Eλ+ = − +                    (69) 
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3. Efficiency Index  

In this section, the efficiency index (EI) of the iterative methods proposed are 
established. Let vAρ  represents iterative method v with convergence order ρ . 
For reference purpose, the iterative methods proposed are denoted as indicated  

in Table 1. The formula 
1
TEI ρ= , is adopted to obtain the efficiency index (EI)  

of the iterative methods, [37]. Assume that the cost of evaluation of the function 
( )G ⋅  are equal, for any method the computation of ( )G ⋅  needs m functional 

evaluations of the scalar functions , 1, 2, ,iG i m=  . Similarly, if the cost of 
evaluation of the Jacobian ( )G′ ⋅  are equal, then the computation of ( )G′ ⋅  
requires 2m  evaluations of the scalar functions. For 2

1A  requires m evaluation 
of ( )G ⋅  and 2m  evaluation of ( )G′ ⋅  per iteration and its efficiency index is  

2

1

2 m m
 
 

+  , for 2m ≥ . This is same as the efficiency index (EI) of the classical  
Newton method ( )2

1N  and the Wu method with convergence order 2ρ =  
developed in [30]. The performance with respect to efficiency index (EI) for the 
proposed iterative methods compared with the Wu method in [30] denoted as 

2
1W  is presented in Table 2, for 10m =  and 20. Where m is the dimension of 

the (1). 
The Wu method is given as: 

( ) ( )( ) ( )
12

1 1: k k k i i k kW X X G X diag G X G Xσ
−

+  ′= − −          (70) 

where the parameter [ ]1,1 , 1,2, ,i i mσ ∈ − =  . 
 

Table 1. Algorithms and their denotation. 

lightaqua Iterative methods Denotation Iterative methods Denotation 

Algorithm 1 2
1A  Algorithm 8 3

8A  

Algorithm 4 3
4A  Algorithm 9 3

9A  

Algorithm 5 3
5A  Algorithm 10 3

10A  

Algorithm 6 3
6A  Algorithm 11 3

11A  

Algorithm 7 3
7A  - - 

 
Table 2. Efficiency Index for proposed methods and compared method. 

  Efficiency Index (EI)  

lightaqua Methods m 10m =  20m =  

2 2
1 1,A W  2

1

2 m m
 
 

+   1.0063 1.0017 

3 3
4 5,A A  2

1
2 23 m m

 
 

+   1.0050 1.0013 

3 3
6 7,A A  2

1
2 33 m m

 
 

+   1.0034 1.0009 

4 4
8 9,A A  2

1
3 34 m m

 
 

+   1.0042 1.0011 

4 4
10 11,A A  2

1
3 54 m m

 
 

+   1.0026 1.0007 
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From Table 2, observe that for 2m ≥ , the EI is monotonic decrease with in-
crease in the step of the method and nodes (q) of the quadrature formula in the 
iterative method. 

4. Numerical Experimentation  

The developed iterative methods are tested on three standard problems in the li-
terature, in order to illustrate their performance and confirm the theoretical 
convergence order ( ρ ). The computational performance of the iterative me-
thods developed are compared with the performance of the Wu method in [30] 
and Haijun method proposed in [31]. The Haijun method is given as 

( ) ( )( ) ( ) ( )( )13
2 : k k k i i k k kH X X G X diag G X G X Gσ η

−
 ′= − − +       (71) 

where the parameter [ ]1,1 , 1,2, ,i i mσ ∈ − =   and kη  is approximated using 
2

1W . 
For the implementation, Intel Celeron(R) CPU 1.6 GHz with 2 GB of RAM 

processor is used to execute PYTHON 2.7.12 programs. The stopping criterion 
used for computer programs is ( )1kG X + ∞

<  , where   is error tolerance. 
The Metrics used in comparison are: 

Number of iterations (IT), Central Processing Unit Time or Execution time 
(CPU-Time), Norm function of last iteration ( )( )1kG X + ∞

<  , and Computa-
tional order of convergence ( cocρ ) given in [38] as  

( )( )
( )( )1

ln

ln
k

coc
k

G X

G X
ρ

−

=                     (72) 

To test the performance of proposed methods, the following problems are 
solved. 

Problem 1 [39] 
Consider the NLSE 

( ) 0G X =  

where 

( )
3
1 1 2

1 2 2
2 2

,
X X X

G X X
X X

 +
=  

+ 
 

The solutions of Problem 1 in the domain ( ) ( ): 1.5,1.5 1.5,1.5G − × −  are 
( ) ( )T1 0,0Φ =  and ( ) ( )T2 1, 1Φ = − . The initial approximation used is 

( )T
0 0.5, 0.5X = − . The numerical results obtained for each method using differ-

ent values of the parameters iλ  and iσ  are presented in Tables 3-7. All 
computations are carried out with 200 digit precision and 1510−= . 

Problem 2 [31]  
2
1 2 1 0X X− + = , 

2
1

π
cos 0

2
XX  − = 

 
. 
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Table 3. Computational results for Problem 1 using 1 2i iλ σ= = . 

lightaqua Methods Φ  IT CPU time ( )1kG X + ∞
 cocρ  

1
2W  ( )1Φ  32 0.535 3.1591E−15 1.0378 

1
2A  ( )2Φ  7 0.129 1.1500E−08 2.0757 

1
3H    Fail to converge   

3
4A  ( )2Φ  3 0.107 1.1659E−05 3.3195 

3
5A  ( )2Φ  5 0.177 4.7267E−12 3.1647 

3
6A  ( )2Φ  5 0.176 4.7268E−12 3.1647 

3
7A  ( )2Φ  4 0.148 1.1503E−10 2.9630 

4
8A  ( )2Φ  3 0.148 2.3099E−07 3.7104 

4
9A  ( )2Φ  3 0.164 4.6413E−07 4.5660 

 
Table 4. Computational results for Problem 1 using 1 3i iλ σ= = . 

lightaqua Methods Φ  IT CPU time ( )1kG X + ∞
 cocρ  

1
2W  ( )1Φ  34 0.552 2.2560E−15 1.0374 

1
2A  ( )2Φ  8 0.147 2.4253E−08 2.0634 

1
3H    Fail to converge   

3
4A  ( )2Φ  4 0.139 2.8614E−07 2.8677 

3
5A  ( )2Φ  6 0.210 7.4986E−15 3.1009 

3
6A  ( )2Φ  6 0.211 7.4986E−15 3.1009 

3
7A  ( )2Φ  5 0.184 7.0321E−15 2.9704 

4
8A  ( )2Φ  3 0.197 2.1598E−09 3.7716 

4
9A  ( )2Φ  4 0.217 1.4937E−14 4.2083 

 
Table 5. Computational results for Problem 1 using 1 5i iλ σ= = . 

lightaqua Methods Φ  IT CPU time ( )1kG X + ∞
 cocρ  

1
2W  ( )1Φ  36 0.586 1.8519E−15 1.0372 

1
2A  ( )2Φ  10 0.184 2.6789E−13 2.0302 

1
3H    Fail to converge   

3
4A  ( )2Φ  5 0.165 1.9834E−07 3.0775 

3
5A  ( )2Φ  7 0.235 1.5024E−10 3.1184 

3
6A  ( )2Φ  7 0.239 1.5024E−10 3.1184 

3
7A  ( )2Φ  5 0.188 2.0991E−07 2.9685 

4
8A  ( )2Φ  16 0.675 1.2791E−15 1.0770 

4
9A  ( )2Φ  4 0.208 5.6012E−06 4.6275 
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Table 6. Computational results for Problem 1 using 1 7i iλ σ= = . 

lightaqua Methods Φ  IT CPU time ( )1kG X + ∞
 cocρ  

1
2W  ( )1Φ  37 0.632 2.0416E−15 1.0373 

1
2A  ( )2Φ  11 0.212 8.4523E−15 2.0242 

1
3H    Fail to converge   

3
4A  ( )2Φ  6 0.198 4.5660E−09 3.0642 

3
5A  ( )2Φ  8 0.276 1.9972E−08 3.1347 

3
6A  ( )2Φ  8 0.277 1.9972E−08 3.1347 

3
7A  ( )2Φ  6 0.211 1.6872E−13 2.9838 

4
8A  ( )2Φ  4 0.191 1.0284E−06 4.4246 

4
9A  ( )2Φ  5 0.253 1.0022E−12 4.1769 

 
Table 7. Computational results for Problem 1 using 1 9i iλ σ= = . 

lightaqua Methods ( )1Φ  IT CPU time ( )1kG X + ∞
 cocρ  

1
2W  ( )1Φ  38 0.621 1.5247E−15 1.0370 
1
2A  ( )2Φ  11 0.214 8.4523E−15 2.0242 
1
3H    Fail to converge   
3
4A  ( )2Φ  7 0.229 1.0329E−14 3.0409 
3
5A  ( )2Φ  9 0.311 3.0272E−13 3.0778 
3
6A  ( )2Φ  9 0.312 3.0272E−13 3.0778 
3
7A  ( )2Φ  6 0.222 4.8002E−10 2.9919 
4
8A  ( )2Φ  4 0.188 1.0284E−06 4.4246 
4
9A  ( )2Φ  5 0.255 1.5505E−08 4.2787 

 
The solutions of Problem 2 within the domain ( ) ( )1,0 0,2D = − ×  are  

( ) ( ) ( )
T

T1 22 ,1.5 , 1, 2
2

 
Φ = Φ = −  

 
 and ( ) ( )T3 0,1Φ = . The numerical solutions 

to Problem 2 are presented in Table 8 for methods of orders 2,3ρ =  and 4. 

Problem 3 [40]  
Consider the chemical equilibrium system modeled in NLSE (1) with  

1 2 1 53 0X X X X+ − =  

2 2
1 2 1 2 3 8 2 5 10 2 7 1 3 9 2 42 0X X X X X R X RX R X R X X R X X+ + + − + + + =  

2 2
2 3 5 3 5 6 3 7 2 32 2 8 0X X R X X R X R X X+ − + + =  

2
9 2 4 4 52 4 0R X X X R+ − =  

( ) 2 2 2 2
1 2 10 2 2 3 8 2 5 3 4

6 3 7 2 3 9 2 4

1 1
0

X X R X X X R X R X X
R X R X X R X X

+ + + + + + −

+ + + =
 

where 
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10 6 7

8 9 10

0.002597 0.00344810, 0.193, , ,
40 40

0.00001799 0.0002155 0.00003846, ,
40 4040

R R R R

R R R

= = = =

= = =
 

Using ( )T
0 0.6,33.2,0.6,1.5, 0.7X = −  as initial starting point, 200 digits 

floating point arithmetics and ( ) 5010kG X −≤  as stopping criteria, the solution 
Φ  in ( ) ( ) ( ) ( ) ( )1,1 33.5,35.5 1,1 0.8,1.8 1,1D = × × − × − × −  approximated to 20 
decimal places is 

0.00311410226598496012
34.59792453029012391022
0.06504177869743799154
0.85937805057794058144
0.03695185914804602454

 
 
 
 Φ =
 
 
  

 

The computational results obtained for different methods are presented in 
Table 9. 

 
Table 8. Computational results for Problem 2 using 1 8i iλ σ= = . 

lightaqua Methods  IT CPU time ( )1kG X + ∞
 cocρ  

1
2W  ( )2Φ  8 0.119 1.7603E−11 1.9083 
1
2A  ( )1Φ  7 0.116 2.3202E−10 2.0382 
1
3H    Fail to converge   
3
4A  ( )3Φ  4 0.126 1.0466E−08 3.2031 
3
5A  ( )3Φ  10 0.316 9.2320E−14 2.0501 
3
6A  ( )3Φ  4 0.135 2.0072E−06 5.5442 
4
8A  ( )1Φ  5 0.213 3.9010E−09 3.2580 
4

10A  ( )2Φ  6 0.286 1.3913E−11 2.6142 

 
Table 9. Computational results for Problem 3. 

lightaqua Methods i iλ σ=  IT CPU time ( )1kG X + ∞
 cocρ  

1
2W  1/7 10 0.69 8.3642E−32 1.7416 
1
2A  1/7 9 0.67 1.2446E−33 2.6476 
1
3H  1/7 7 0.87 3.4193E−25 3.0227 
3
4A  1/7 6 0.81 3.7103E−44 3.0243 
3
5A  1/7 6 0.86 3.7103E−44 3.0243 
3
6A  1/7 6 1.08 3.7103E−44 3.0243 
4
7A  1/7 6 1.10 3.7103E−44 3.1114 
4
8A  1/7 4 0.82 2.4234E−16 4.4022 
4
9A  1/7 4 1.09 2.2924E−16 4.4599 
4

10A  1/7 4 1.19 2.2924E−16 4.4599 
4

11A  1/7 4 1.20 2.2924E−16 4.4888 
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Results Discussion  

The numerical results obtained on Tables 3-9, leads to the following observa-
tions about the effectiveness of the proposed methods in approximation of the 
solution of (1). 
• The numerical results obtained in Tables 3-9, clearly implies that the pro-

posed methods are effective in approximation of solution of (1).  
• Most of the computational order of convergence cocρ  of the proposed me-

thods agrees with theoretical value.  
• It is observed that the proposed convergence order 2ρ =  method ( 2

1A ) 
produce better precision compared with Wu method ( 2

1W ) for small system. 
The reason is justifiable since ( )G X λ  is a dense matrix, more computation 
cost is incurred as the system become large.  

• Observe from Tables 3-8, Haijun method ( 3
1H ) failed in Problem 1 and 2 

while the proposed methods converged to solutions in few number of itera-
tions.  

• The choice of λ , its magnitude should be less 1 to get better precision and 
convergence.  

5. Conclusion  

In this paper, multistep quadrature based methods for approximation of the so-
lution of NLSE are proposed. The proposed methods require only first order 
Frechet derivative to attain convergence order 4ρ ≤  and effectively approx-
imate solution of NLSE with singular Jacobian. The proposed methods are ap-
plied on three standard problems in literature so as to describe their effective-
ness. Judging from the computational results obtained and presented in tables, 
the proposed methods are competent compared to some existing methods. 
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