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Abstract 

The fundamental step to get a Statistical Shape Model (SSM) is to align all the training samples to the same 
spatial modality. In this paper, we propose a new 3D alignment method for organic training samples match- 
ing, whose modalities are orientable and surface figures could be recognized. It is a feature based alignment 
method which matches two models depending on the distribution of surface curvature. According to the af- 
fine transformation on 2D Gaussian map, the distances between the corresponding parts on surface could be 
minimized. We applied our proposed method on 5 cases left lung training samples alignment and 4 cases 
liver training samples alignment. The experiment results were performed on the left lung training samples 
and the liver training samples. The availability of proposed method was confirmed. 
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1. Introduction 

Due to utilizing the priori information of shapes, Statis- 
tical Shape Model (SSM) method shows concise and 
robust for segmentation, analyzing and interpreting ana- 
tomical objects from medical datasets [1]. The basic idea 
in model building is to statistic the pattern of legal varia- 
tion in the shapes and spatial relationships of structures 
from a collection of training samples. A key step in 
building a model involves establishing a dense corre- 
spondence between shape boundaries and surface figures. 
It is important to align all training samples in a common 
coordinate frame firstly [2]. 

The training shapes alignment problems can be con- 
cluded that the transformation between the same anat- 
omy images at different modalities or represented by one 
modality at different time [3]. In point sets based align- 
ment method, the set of identified points is sparse com- 
pared with the original image content, which makes for 
relatively fast optimization procedures, but is difficult to 
confirm the corresponding points. Some novel strategies 
are reported to optimize measures such as the average 
distance between each representative point, or iterated 
minimal distances metric [4]. These methods are mostly 
used to find rigid or affine transformations. Feature- 
based alignment is largely founded on the use of differ- 
ential geometry to describe local surface feature. Ac- 

cording to the difference of local feature on parameter- 
ized space, an appropriate transformation could be re- 
quired. The statistical model building would benefit from 
this technology. Because generally the landmarks posi- 
tions always involve the local features of surface. 

In this paper, we propose a feature-based alignment 
method to reconcile the training samples of organs field 
whose shape could be approximated by multi-faces. Bene- 
fit from the Gauss map, the surface Gaussian curvature 
could be reflected on the 2D spherical surface. Due to the 
distributional independence of each face through Gauss 
mapping, we can decide the modality by comparing the 
distributional character.  

In Section 2 we will review the Gauss-Bonnet theorem 
applying to piecewise surface concisely. Based on it, we 
will analyze an approximated Gauss mapping method for 
triangular surface. After that, a mesh filter to eliminate 
the illogical mapped points is introduced. In Section 3, 
we will describe the alignment method on Gauss map. 
Here, the K-means clustering method is used to obtain 
the same quantity of the respective points, which are 
utilized to remark the modalities of the models. And we 
also give a simple solution of the alignment parameters. 
Evaluation method incorporating corresponding land- 
mark points is introduced in the last section. Some ex- 
perimental results will be illustrated after that. 
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2. Surface Generation and Its Gauss Map 

2.1. Organic Polygonal Surface Generation 

The choice of shape representation is the first fundamen- 
tal decision when designing statistical shape models. The 
surface meshes representation is one of the most generic 
methods. As well as it is convenient to general land- 
marks using mesh resample technique. To get polygonal 
surface training samples from body CT images, firstly, 
we should extract the region of interest and represent it 
by binary voxel data. The mesh is extracted by Marching 
Cubes Algorithm introduced by Lorensen and Cline [5]. 
But the smoothness of the surface mesh generated by this 
algorithm is quite rough. The mesh mean filter is op- 
tional for mesh smoothing.  

2.2. Gauss Map of Polygonal Surface 

The Gaussian curvature of a point on a surface is an in- 
trinsic measure of curvature, i.e., its value depends only 
on how distances are measured on the surface. The Gauss- 
Bonnet theorem links total curvature of a surface to its 
topological properties [6,7]. The theorem also has inter- 
esting consequences for triangles. It could be accounted 
as follows: 

Suppose D is a simply connected region on the surface, 
ƏD is a piecewise smooth closed curve, kg is called the 
geodesic curvature of the curve. Assume αj are the outer 
angles of the vertices of ƏD. Then 

d d πp g jD D
j

K A k s 


            (1) 

If the geodesic curvature is smooth, then 

d πp jD
j
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The integral operation will be replaced by the accu- 
mulated sum operation, when we consider the piecewise 
polygonal surface. 

Figure 1(a) shows a polygonal cell with three faces 
adjacent a vertex Vi. The number of the faces is not lim-
ited by three, we denote it by s. Gj represents one point in 
the unit triangular face ViVi+1Vi+2, and the norm nj joints 
this triangular face at it. The norm nj is given by 
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As the normal direction of each polygonal plane face 
is special, mapping this unit face to a point on the Gaus- 
sian sphere still makes sense. jG  is the corresponding 
point of Gj on Gauss map, in Figure 1(b), and it also 
used to represent the mapping of the face ViVi+1Vi+2. Ac- 
cording to the angular variety of the two vertices Gj, Gj+1,  

 
(a) 

 
(b) 

Figure 1. One polygonal cell around a vertex and its Gauss 
mapping. (a) The norms of triangular faces adjacent this 
vertex; (b) One polygonal face unit on Gauss map. 
 
the line segments GjM, MGj+1 could be projected to the 
spherical segment 1j jG G   . In the same way, mapping of 
the vertex Vi is loaded inside of the simple connection of 
the region 1 1j j j sG G G     , because the original surface 
is smooth and continuous. 

Support αj are the outer angles of the cell. Because the 
Gaussian curvature on the Gauss sphere is one every- 
where, from the Equation (2), the area of this cell Ai 
could be simplified by 

2 (2 )i j
j j

A n j               (4) 

where βj is the intersection angle between two spherical 
segments. Since spherical segments 1j jG G    and 1j j sG G     
are the mapping of the segments 1j j  and  

1

G MG  
j j sG NG     respectively, if denote the projective angle of 

βj as j  , it is not difficult to proof that j   approaches 
to βj. 

As well as 

πi i     

then 

2πi
j

A j                (5) 

The right part of the Equation (5) is the total Gauss 
curvature at vertex Vi. So, this equation illustrates that 
the area of the spherical polygonal cell on Gauss map 
could be applied to estimate the curvature of the original 
piecewise polygonal surface. When we minimized the 
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area Ai, the norm of the vertex Vi could be approximated 
by the sum of the norms of the faces around Vi. 

2.3. Remove the Scattered Mapping Vertices 

At some parts of polygonal surface, such as irregular 
indentation and the boundary of object, the vigorous 
change of curvature induces some vertices scattered after 
gauss mapping. Here, a mesh filter is designed to reduce 
the influence from that. 

Apply the spherical coordinate to express the points on 
Gauss map. Define θi  [0,π] is the inclination angle 
measured form a fixed zenith direction, and φi  [0,2π) is 
the azimuth angle. Then the variance of the spherical 
coordinates could be formulated by Equation (6), which 
describes how dispersive the point Vi to its neighbors, 
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where ,ij j i ij j i          and E is the mean op- 
erator. The “noise point” could be defined as which is 
bigger than threshold. 

3. Alignment on Gauss Map 

3.1. Distribution of Local Surface Feature on 
Gauss Map 

On the Gauss map, we can facilitate to obtain the estima- 
tion of geometric attributes of surface such as curvature 
distribution, uniform continuity and smoothness. To the 
same graphic pattern, this estimation has the similarity in 
some sense. 

In Figure 2(a), we demonstrate mapping a 2D shape to 
Gauss sphere. The cambered surface patches which have 
continuous curvature are mapped continuous regions on 
Gauss map spherical surface. The plane part P0P1 is con- 
centrated into a point n0. The patch P1P2 is convex line 
segment with a low curvature, the mapping is continuous 
from n1 to n2 with a relative dispersive distribution. The 
concave patch P2P3P0 has a bevel near the point P3, is 
reflected region to n2n3n4n5 is seemed separated. Since 
the discontinuity of curvature among the regions of sur- 
face, the mapping points aggregate to some separations. 
The modalities could be inferred from this “texture of 
curvature”. Figure 2(b) shows a Gauss map of one case 
of liver polygonal triangular surface. The mapping dis- 
tribution is distinct. 

3.2. Matching Solution by K-Means Clustering 

Unfold the Gauss map according to the spherical coordi- 

nates, as Figure 3(a), cluster of the point sets is obvious. 
The intensive regions correspond to the main faces 
which are relative flat on the original polygonal surface 
of organic model. Following it, if find a metric to meas- 
ure the distances between the main surfaces, the optimi 
zation of alignment method could be performed. 

The cluster method is used to describe the distribution 
of the point sets. In detail, here we use the K-means clus- 
tering algorithm to divide the point sets on 2D Gauss 
map. The centroid of a cluster, denoted as the representa- 
tive point, is the average point in the multidimensional 
space defined by the dimensions. In a sense, it is the 
center of gravity for the respective cluster. In this method, 
the distance between two clusters is determined as the 
difference between centroids. Reference [8] provides a 
boosting algorithm which uses kd-tree structure. The 
number of the classifiers is 21 and the initial seed points’ 
positions are set averagely.  

The solution of the rigid parameters solution is based 
on Berthold K.P. Horn [9]. The author provides a method 
to decompose the effects from the translating, scale and 
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(a)                         (b) 

Figure 2. Gaussian sphere. (a) Gauss mapping of 2D model; 
(b) Gauss mapping of liver triangular surface. 
 

   
(a)                         (b) 

Figure 3. Alignment method illustration. (a) Representative 
points obtained by k-means method. Shown on unfolded 
Gauss map; (b) Rotation parameter optimization. 
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rotation. It is a coarse alignment method and could give a 
simple solution when all the points are coplanar. In that 
case, it has been inferred that to require the translation 
minimize, just align the centers of gravity of two point 
sets. Referring to the scale factor, actually it needn’t be 
considered, for all surface maps are in the unit sphere. 
The remaining task about the rotation is the solution of a 
least squares problem in a plane, as Figure 3(b). The 
vector vl,i points from one representative point to the 
centroid on Gauss map of referent model, Corresponding 
it vr,i is on the sample model. αi represents the angle be- 
tween these two vectors pair. The solution of the rotation 
amounts to minimize the 

2

, ,l i r i
i

v v  

The optimized deviation angle θ could be calculated 
by 

2
sin

S

S C
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i
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i
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4. Experiments Results 

4.1. Similarity Criterion 

Due to the intense variety of organ shapes, seeking for 
corresponding points seems to be a difficult task. There 
is ever lack of reliable measures to quantify model qual- 
ity yet. In this study, the selection of the label points de- 
pending on the anatomical structure drew an easy way of 
implement. There are two steps: the position matching 
that reconciling the center of models and regular the size 
of the samples by mean radius of the whole vertices. 
Then we choose 20 points, we call them label points, on 
the polygonal surface. Evaluate the results by measure 
the Euclidean distances sum of corresponding points. 

4.2. Verification Experiments 

To verify the alignment extent by proposed method, we 
aligned one set of left lung training shapes, which gener- 
ated by one lung polygonal surface model but the mo- 
dalities were changed through rotation in 3D space. Us- 
ing the same model is convenient to the quantitative 
analysis. Map the vertices to the Gauss map and align the 
points set using the method in Section 3.2. The results 
are recorded in Table 1. The rotation volume represents 
the rotation values of the model along the x axis, y axis 
and z axis respectively. The Pre-Alignment is the origi-
nal mean distances of the label points and the Post- 

4.3. Fitness Results 

Alignment corresponds the distances after alignment. 

 were performed on training sam- 
ples of left lung field and liver field. To evaluate the re- 

sion 

lignment evaluation, the relative posi- 
tion of the training samples to the reference model is 

 the Regis- 
tra

method. 
 

Alignment experiments

sults of alignment, we compared the Euclidean distances 
sum of corresponding label points between training sam- 
ples and reference model. The improvement of distances 
sum of the label points is applied to evaluate the avail- 
ability of proposed method. 4 cases triangular polygonal 
surface samples of left lung field and 3 cases on liver 
were implied. The rotation column records the angle ad- 
justment, discussed in Section 3.2. As well as the im- 
provement rate is shown in Tables 2-3. The Pre-Align-
ment is the original mean distances of label points. The 
Post-Alignment is the corresponding distances after 
alignment. 

4.4. Discus

According to the a

improved. The average improvement of Euclidean dis- 
tances of label points is 1.3% on left lung field alignment 
experiment results and 0.23% on liver field. 

In [10], the author points out that in fact few registra- 
tion papers attempt to follow up on the use of

tion. Many cases the registration problem is just satis- 
fied the visualization requirement. In this research, the 
purpose of the alignment is that force unique points on 
the surface of training samples to their corresponding 
points on referenced model. So the precision rate could 
be improved with the alignment rate improving. 

In this paper, we employed the plane Euclidean dis- 
tance as the evaluate argument of the alignment 

Table 1. Confirmation results on rotated one case of lung 
ainning sample. tr

Case Offset (x, y, z) Pre-Alignment Post-Alignment

1 0, 0, 0.0175 0.0381 0.0346 

2 0, 0.0175, 0 0.1956 0.0191 

3 0.0175, 0, 0 0.0810 0.0799 

4 0.0349,  0 0.0349, 0.4380 0.4424 

 
le  on le trainning samples. 

C

Tab 2. Fitness results ft lung 

ase Rotation Pre-Alignment Post-Alignment Improvement

1 0.0291 0.3214 0.3090 3.9% 

2 0.0707 0.3395 0.3381 0.4% 

3 0.0356 0.2503 0.2481 0.9% 

4 0.0551 0.3340 0.3342 –0% 
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Ta itnes  on live ing sam

C  R Pre- t Post Imp ent

ble 3. F s results r trainn ples. 

ase otation Alignmen -Alignment rovem

1 0.0385 0.3565 0.3543 0.6% 

2 0.0405 0.6078 0.6012 1.1% 

3 –0.0012 0.4422 0.4467 –1% 

 
Bu ss m e distance metric is spherical. 

te evaluation by plane distance w  in- 

proposed a feature based alignment 
set of training shapes for SSM model

olleagues and friends at the 
ogy for their research 

on medical image processing. Especially thank interna-

, “Statistical Shape Mod-
edical Image Segmentation: A review,” 
 Analysis, Vol. 13, No. 4, 2009, pp. 543- 

t on the Gau
proxima

ap, th
Its ap
d

ould
uce the measurement error. Especially when the oriental 

deviate of the training sample is large, as the case 4 in 
Table 1 showed. Another sensible factor to the align- 
ment accuracy is that the representative points generated 
by K-means algorithm could not reflect the distribution 
density of the mapping points. A better way to solve this 
problem is using classifier method to assign the weight to 
each representative point. 

5. Conclusions 

In this paper, we 
method to match a  
building. Considering the shape correspondence proc- 
essing of the model building, we proposed a feature 
based method and transform the 3D object alignment 
problem into 2D Gaussian spherical space. Here, we in- 
troduced the piecewise Gauss map theoretical foundation 
and gave an approximated solution for triangular po- 
lygonal surface. As well, we proposed using representa- 
tive points to reflect the modality of the point sets on 
Gauss map. While the K-means based clustering method 
was employed to obtain these representative points. The 
experimental results on the left lung and liver training 
samples showed the availability of the proposed method. 
However, in theory, this method is not elaborate yet, 
because using Gauss map cannot describe the character 
of surface reliably all the time. 

As the future works, we will improve the surface para- 
meterization method by conformal geometry theory. Ref- 
erence [11] provides a previous works in this area. It is 
undoubtedly a convictive way for the model alignment 
and landmarks registration. As well, we will use sphere- 
cal distance to replace the plane Euclidean distance when 
metric the points on Gauss map. At last but not the least, 
the classifier algorithm is expected to get a better de- 
scription of the distributional regularity of surface points. 
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