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Abstract 
This article details how forest soil moisture content (MC) and subsequent re-
sistances to cone penetration (referred below as Cone Index, CI) vary by daily 
weather, season, topography, site and soil properties across eleven harvest 
blocks in northwestern New Brunswick. The MC- and CI-affecting soil va-
riables refer to density, texture, organic matter content, coarse fragment con-
tent, and topographic position (i.e., elevation, and the seasonally affected 
cartographic depth-to-water (DTW) pattern). The harvest blocks were tran-
sect-sampled inside and outside their wood-forwarding tracks at varying 
times throughout the year. In detail, 61% of the pore-filled moisture content 
(MCPS) determinations inside and outside the tracks could be related to topo-
graphic position, coarse fragments, bulk density, and forest cover type speci-
fications. In addition, 40% of the CI variations could be related to soil depth, 
MCPS, and block-specific cover type. Actual versus model-projected uncer-
tainties amounted to ΔMCPS ≤ ± 15% and ΔCI ≤ ± 0.5 MPa, 8 times out of 10. 
Block-centered MC and CI projections were obtained through: 1) daily hy-
drological modelling using daily precipitation and air temperature weath-
er-station records nearest each block, and 2) digitally mapped variations in 
soil properties, elevation, DTW and forest cover type, done at 10 m resolu-
tion. 
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1. Introduction 

Estimating soil moisture and subsequent resistance to cone penetration is at the 
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base of forecasting potential soil disturbance effects due to off-road machine 
traffic. For example, modern forest harvesting operations including wood for-
warding can lead to substantial soil compaction, rutting and displacements, 
rut-induced water logging and re-direction of flow patterns leading to soil ero-
sion, operation inefficiencies, and increased wear of machinery component, es-
pecially when these operations are not properly timed. Machine-induced soil 
compaction and associated rut-induced soil displacements commonly occur on 
moist to wet ground, are long-lasting, and affect the growth of remaining or 
planted vegetation (Cambi et al., 2015; Solgi et al., 2018). Impacts are strongest 
along trails with multiple wood-forwarding passes, and on wood landing sites 
(Jones et al., 2018). To remain productive, post-harvest soils need to remain well 
drained with soil bulk densities at <1.5 g∙cm−3 (Soane & van Ouwerkerk, 1994; 
Sutherland, 2003; Bassett et al., 2005; Brady & Weil, 2008; Chen & Weil, 2011).  

Forecasting soil compaction and penetrability across time and terrain is, 
however, difficult due to weather-affected soil moisture conditions, and me-
ter-by-meter changes in soil substrates and properties (Elbanna & Witney, 1987; 
Smith et al., 1997; Vaz et al., 2001) pertaining to soil texture, coarse fragment 
content, and organic matter content, with penetrability-affecting soil cohesion in-
creasing with decreasing particle size. The presence of soil organic matter modifies 
this effect due to organically-supported soil aggregation and related pore-space 
stabilization. The presence of coarse fragments reduces soil compaction and pe-
netrability by increasing the force needed to displace these fragments downward 
and laterally (Baetens et al., 2009; Rücknagel et al., 2013). Soil penetrability leads 
to deep rutting on wet soils mainly due to soil displacement and on moist soils 
mainly due to soil compaction. Dry and dense soils are mostly resistant to pene-
tration, compaction and rutting. Across terrains, soil penetrability changes due 
to: 

1) changes in soil moisture content, which generally varies from well to exces-
sively well drained on ridge tops to moist to water saturated soils along streams, 
shorelines, wetlands, in low-lying depressions, and in toe-slope seepage zones; 

2) changes in soil type, depth, texture, coarse fragment and organic matter 
content, and bedrock exposure; 

3) changes in tracked versus non-tracked ground, which in turn depends on 
extent of machine foot print, load, number of passes, and surface conditions as 
affected by the presence of stumps, roots, logging slash, rocks, depth of forest 
litter, and brushmats. 

This article focuses on presenting a framework to model temporal and spatial 
weather-, forest-, terrain-, and machine-induced plot-by-plot changes in volumetric 
soil moisture (MCV) and soil penetrability cone index (CI) for a case study in 
northwestern New Brunswick, Canada. This study involved transect-sampling 
eleven forest blocks that were subject to clear cuts, selection cuts, shelterwood 
cuts, and pre-commercial thinning at different times of the year. The plot-generated 
MCV data were expressed in terms of pore-space filled soil-moisture content 
(MCPS) to serve as a useful CI predictor (Vega-Nieva et al., 2009). The data so 
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obtained were used to model MCV, MCPS and CI spatially and temporally. The 
spatial modelling component addressed emulating the data variations across the 
terrain from ridge tops to valleys as proposed by Vega-Nieva et al. (2009). The 
temporal component involved emulating the data variations by weather and 
season using the Forest Hydrology Model (ForHyM, Jones & Arp, 2017). 

The goodness-of-fit of the resulting best-fitted MC and CI models was eva-
luated in terms of uncertainty, and non-randomness indicators. This was done 
in two ways: 1) focusing on the field-determined data only, and 2) determining 
the extent to which province-wide elevation, cartographic depth-to-water 
(DTW), and soil property data layers (Furze, 2018) could be used for 
block-specific MC and CI projections, and hence, soil trafficability prediction 
purposes. Knowing where and when locations are subject to rutting has become 
a vital component of planning best forest management practices. To that effect, 
rut-avoidance regulations are already in place across many federal and provincial 
jurisdictions. For example, ruts > 15 cm deep are deemed to represent hazardous 
soil disturbances (Alberta Forest Products Association, 1994; Page-Dumroese et al., 
2000; Van Rees, 2002). 

2. Methods 
2.1. Block Descriptions 

The harvest blocks for this study were selected across the mid-western to northwes-
tern sections of New Brunswick (Figure 1). Table 1 informs about block-specific 
attributes pertaining to species composition, harvesting type with and without 
brushmats laid down along tracks, soil type, elevation, slope and aspect. Infor-
mation about soil association, landform, and lithology for each block can be 
found in Table A1 (Appendix).  

Northwestern Uplands (NWU) 
Blocks 1 - 5 are located within the Southern Uplands Ecoregion of New 

Brunswick. Mean annual air temperature is 3.6˚C. Mean monthly temperatures 
vary from −5.3˚C (January) to 12.5˚C (July). The area has a mean precipitation 
of 1140 mm with 310 mm as snow, inclusively (Department of Environment and 
Climate Change Canada, 2016a). The forested vegetation mainly consists of sug-
ar maple (Acer Saccharum Marsh.), balsam fir (Abies balsamea L.), yellow birch 
(Betula alleghaniensis Britt.), and black spruce (Picea mariana Mill.). Blocks 1, 2, 
4, 5 involved white and black spruce plantations, whereas Block 3 involved na-
turally grown birch and maple trees. The bedrock formations of the area consist 
of late Ordovician deep water marine clastics. The topography comprises gently 
rolling till-covered plateaus with steeply incised valleys. 

Midwestern Uplands (MWU) 
Blocks 8, 10 and 11 are located on the Miramichi Caledonia Highlands, which 

are also part of the Southern Uplands Ecoregion of New Brunswick. Mean an-
nual air temperature is 5.2˚C. Mean monthly temperatures vary from −3.5˚C 
(January) to 13.9˚C (July). The area has mean precipitation of 1180 mm with 280  
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Figure 1. Digital elevation model for New Brunswick (10 m resolution) with regional 
upland and lowland delineations, block locations, and weather station locations. 
 

Table 1. Block description by geographical location, forest type, stand properties (elevation, slope, aspect), and soil association 
type, as further described in Table A1. 

Block 
# of Lat./Long. Forest Tree 

Operation3 Sample Date 
Soil  

Association 
Elevation 

(m) 

Slope Aspect 

Plots Coord. Type1 Species2 ˚ ˚ 

14 56 
47˚15'4.071''N 

67˚37' 27.102''W 
SWPL WS CT 27/5/2014 Victoria 267 2.5 158 

24 28 
47˚14'21.825''N 
67˚37'26.918"W 

SWPL WS CT 21/11/2014 Victoria 265 3.4 112 

3 80 
47˚32'23.622''N 
67˚47'46.291"W 

IntHW BI/RM SHW 11/6/2014 Glassville 351 4.6 189 

44 46 
47˚14'59.254''N 
67˚37'18.822"W 

SWPL BS CC 12/6/2014 McGee 280 3.1 127 

54 33 
47˚18'20.725''N 
67˚31'42.636"W 

SWPL WS CT 15/7/2014 Glassville 388 9.1 149 

6 26 
47˚12'15.037''N 
67˚14'17.548"W 

MW EH/YB/M SC 4/6/2014 Jacquet River 210 4.6 148 

7 43 
46˚12'24.987''N 
67˚15'55.0728W 

MW EH/YB/M SC 4/6/2014 Jacquet River 203 5.5 158 

8 54 
46˚42'51.411''N 
67˚3'38.865"W 

TolHW SM/YB SHW 19/6/2014 Juniper 418 4.5 140 

!

!(!(!(
!(

!(

!(!( !(

!(
!(

96
7

8

5

2 4

3

11
10

Blocks
Ecoregion

Elevation (m)
811

0

¯

0 50 10025 km

Continental 
Lowlands

Eastern
Lowlands

Southern
Uplands

Highlands

1

Weather 
Station

Grand Lake

Southern
Uplands

Fundy Coastal

https://doi.org/10.4236/ojf.2019.92005


M.-F. Jones, P. Arp 
 

 

DOI: 10.4236/ojf.2019.92005 113 Open Journal of Forestry 
 

Continued 

9 24 
46˚10'42.560''N 
66˚56'30.534"W 

TolHW SM/YB CC 20/8/2014 
Long 
Lake 

277 2 182 

10 147 
46˚26'23.956''N 
67˚15'24.656"W 

TolHW SM/YB SHW 19/6/2013 
Popple 
Depot 

422 8.9 185 

11 159 
46˚20'44.440''N 
67˚15'1.278"W 

TolHW SM/YB SHW 25/6/2013 Kingston 319 9.6 214 

1SWPL: softwood plantation, IntHW: intolerant hardwood, MW: mixedwood, TolHW: tolerant hardwood; 2BS: black spruce; WS: white spruce, BI: birch, 
YB: yellow birch; RM: red maple; SM: sugar maple; EH: eastern hemlock; 3CT: commercial thinning, CC: clear cut, SHW: Shelterwood, SC: select cut. 
4Tracks brushmatted. 

 
mm as snow (Department of Environment and Climate Change Canada, 2016a). 
Block 8 consisted of a naturally regenerated tolerant hardwood stand, with 
mostly sugar maples and yellow birch trees. The bedrock formations of the area 
consist of early Devonian felsic plutons, generally overlain by loamy lodgment 
tills and sandy glaciofluvial outwash sediments.  

Lowlands (LL)  
Blocks 6, 7 and 9 are located in the midwestern portion of the Continent 

Lowlands Ecoregion of New Brunswick. Mean annual air temperature is 5.5˚C. 
Mean monthly temperatures vary from −2.8˚C (January) to 13.8˚C (July). An-
nual precipitation amounts to 1100 mm, with 250 mm as snow (Department of 
Environment and Climate Change Canada, 2016a). Blocks 6, 7 and 9 supported 
natural mixedwood and tolerant hardwood stands, comprised of Eastern hem-
lock (Tsuga canadensis L. Carrière), yellow birch, sugar maples, beech (Fagus 
grandifolia Ehrh), and some balsam fir, Eastern white cedar (Thuja occidentalis 
L.), and black spruce. The bedrock formations of the area consist of early Devo-
nian mafic volcanic and late Ordovician deep-water marine-clastics, generally 
overlain by ablation and boulder tills, glaciofluvial sediments and eskers.  

2.2. Data Sources and Processing 

Data layers needed for the spatial and temporal evaluation and modelling the 
plot-by-plot data involved: 

1) producing region-wide digital elevation models (DEMs, 1 m resolution) 
from GeoNB’s LiDAR elevation point cloud data using LAS tools;  

2) producing the cartographic depth-to-water layer (DTW), for the purpose of 
emulating plot-by-plot changes on soil moisture content as affected by weather 
conditions at the time of field sampling (see below); 

3) using the province-wide 10 m resolution soil property data layers for soil 
bulk density (Db), coarse fragments (CF), organic matter (OM), and texture de-
veloped by Furze (2018); this development used topographic, climatic and geo-
logical data layers to emulate soil drainage, horizon depth, depth, texture, coarse 
fragment content, organic matter content, and bulk density data as specified for 
12,058 geo-referenced soil pedon locations; 

4) obtaining daily weather records for daily rain and snow amounts and 
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snowpack depth from weather station, within or near the NWU, MWU and LL 
regions (Department of Environment and Climate Change Canada, 2016a) for 
block-specific soil moisture emulations; 

5) obtaining daily stream discharge records from hydrometric monitoring sta-
tions representative of stream water flow within or near the NWU, MWU and 
LL regions for hydrological model calibration (Department of Environment and 
Climate Change Canada, 2016b) to ensure that the soil moisture emulations 
were consistent with regional weather and stream discharge events;  

6) acquiring forest inventory and road layers, to navigate to and access harvest 
blocks. 

All raster and shapefile data layers were assembled with ArcMap software, us-
ing the same projection system (NAD 1983 CSRS New Brunswick Stereograph-
ic). The transect plots within blocks were georeferenced. The resulting coordi-
nates were used to extract plot-specific data values from the elevation, DTW, Db, CF, 
OM, and soil texture data layers. The DEM layer was also used to determine mean 
elevation, slope, and aspect for each block (Table 1), needed as block-specific 
soil-moisture modelling input. 

2.3. Field Measurements 

Soil property evaluations were done along 696 geo-referenced transect plots in-
side and outside wood-forwarding tracks 1) for Blocks 1 to 9 intermittently from 
May 27, 2014 through November 21, 2014, and 2) for Blocks 10 and 11 in June 
2013 (Table 1). The plots within blocks were established pairwise, each pair 100 
m apart containing one plot within and one plot adjacent to the track on undis-
turbed soil, 10 m apart (Figure 2). 

Soil samples were retrieved from the top 15 cm of mineral soil. Each sample 
was placed into labeled freezer bags for storage. Samples were dried in a forced-air 
oven at 75˚C for 24 hours, then crushed and passed through a 2 mm sieve to 
separate the fine earth from the CF. The latter was used to determine CF%. The 
former was used to determine 1) sand, silt and clay for each sample (Sand% + 
Silt% + Clay% = 100%), using the hydrometer method (Shelrick & Wang, 1993), 
 

 
Figure 2. Penetrometer being used inside and outside forwarder tracks without brush-
mats. 

Tracked  
Plot

Undisturbed
Plot
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and 2) soil carbon% by oven-dry weight using a LECO CNS-2000 analyzer. The 
resulting soil carbon numbers were converted into soil organic matter via Equa-
tion (1). 

OM = 1.72 × Carbon(%)                      (1) 

Soil density samples were also collected from each plot by tapping and ex-
tracting a metal cup of known volume (85 cm3) into the mineral soil. Following 
frozen storage, these samples were weighed and dried in a forced-air oven at 
75˚C for 24 hours. From this, the non-sieved soil Db also containing roots and 
coarse fragments was determined as per Equation (2). 

( ) ( )
( )b cup 3

Weight of dried soil g Weight of Coarse Fragments g
D

Volume cm
+

=    (2) 

The fine-earth bulk density of the soil between rocks and roots was estimated 
using the oven-dry weight fractions of sand (SandW), organic matter (OMW) and 
mineral soil depth (cm) as predictor variables as per Equation (3) (Balland et al., 
2008). 

( ) ( )
( )

p W
b

W

1.23 D 1.23 0.75 Sand 1 exp 0.0106 Depth
D

1 6.83 OM

 + − − × − − ×   =
+ ×

  (3) 

A Humboldt digital cone penetrometer (cone base = 1.5 cm2; cone angle 60˚) 
was used to determine soil penetrability through recording CI in MPa at 15, 30, 
45, and 60 cm depths within each sampling plot. Similarly, a Delta T HH2 
moisture meter (TDR: a time-domain reflectometer) was used to determine the 
volumetric soil moisture content of the fine-earth fraction between coarse frag-
ments for each plot at 15 cm mineral soil depth. Five CI and MCV readings were 
obtained for each plot: one at the center point (location of GPS coordinates), and 
four arranged at each cardinal direction (north, south, east, and west), 1 m apart 
from center. For blocks 10 and 11, the CI measurements were taken once per 
subplot to the deepest depth reached with the penetrometer. Measurements were 
not recorded if obstructed by surface rocks, roots or logs. The subplots were then 
averaged to provide single numbers per plot for further analysis. 

Since CI tends to be related to pore-filled soil moisture content (MCPS, see 
Vega-Nieva et al., 2009), it was important to infer soil pore space (PS) and MCPS 
from the soil particle and bulk densities as follows (Balland et al., 2008):  

p OM OM

1 OM 1 OM
D D D

−
= −                        (4) 

b

p

D
PS 1

D
= −                           (5) 

V
PS

MC
MC

PS
=                          (6) 

with organic and mineral particle densities set to DOM = 1.3 and DMin = 2.6 
g∙cm−3, respectively. 
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2.4. Temporal MC Variations 

Soil moisture was modelled block-by-block over time using the temporal aspatial 
Forest Hydrology Model (ForHyM) (Arp & Yin, 1992; Yin & Arp, 1994; Jutras, 
2012). This model uses 1) daily weather records for temperature, and precipita-
tion for input (Table 2), 2) block-specific specifications for topography (eleva-
tion, slope, and aspect), 3) soil-surveyed properties (horizon depth, texture, 
depth, OM, CF) as per mapped soil type (Table 3), and 4) vegetation type and % 
canopy closure. These specifications were needed to emulate daily soil moisture, 
temperature, snowpack conditions and stream discharge. In this model, soil 
permeability at saturation was empirically related to Dp, Db, and Sandw by set-
ting 

( )10 sat 10 p b Wlog 0.98 7.94 log D D 1.96 SandK = − + × − + × ; R2 = 0.80   (7) 

In ForHyM, Ksat and snowpack are further calibration-adjusted to quantify the 
extent of inflow (lateral flow) along layers versus downward percolation (vertical 
flow) into layers (Table 2, Figure A1). In soils where soil density increases with 
depth, downward Ksat is general less than the Equation (7) specifications. Also 
of note is the ForHyM formulation for water retention at field saturation (FCW), 
given by  
 
Table 2. ForHyM calibration variables for snowpack and saturated soil permeability by 
block, including weather and hydrometric station locations for primary ForHyM input 
data. 

 
A - NWU B - MWU C - LL 

Blocks 1 - 5 8, 10, 11 6, 7, 9 

Weather Station1 
Leonard Station 

Airport & Edmundston 
Woodstock & 

Juniper 
Fredericton 

CDA 

Hydrometric Station1 
Black Brook 

Watershed Data2 
Narrows  

Mountain Brook 
Nashwaaksis 

Stream 

Model Run Years 1990-2016 1990-2016 1940-2016 

Snowpack 
parameter 

adjustments 

Snow-to-air 
temperature gradient 

0.16 0.2 0.2 

Density of fresh snow 0.16 0.15 0.2 

Saturated Soil 
Permeability 

parameter 
adjustments 

Surface runoff 1 1 1 

Forest floor infiltration 1 1 1 

Forest floor interflow 0.01 1 0.01 

A & B horizon infiltration 1 1 1 

A & B horizon interflow 0.05 0.1 0.01 

C horizon infiltration 1 1 1 

C horizon interflow 0.1 0.8 0.1 

Deep water percolation 1 1 1 

1Department of Environment and Climate Change Canada (2016a); 2Black Brook Watershed Research site 
(2014). 
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Table 3. Soil profile information used to initialize ForHyM each block.  

Region Blocks Vegetation Layer Depth Texture OMW% CF% 

NWU 1, 2, 4, 5 

SW, shallow 
rooted 

LFH 5 Organic 100 0 

  
A 10 SL 1 20 

  
B 75 SL 8 24 

  
C 100 S 1 35 

NWU 3 

IntHW, deep 
rooted 

LFH 5 Organic 100 0 

  
A 10 SL 20 20 

  
B 75 SL 5 24 

  
C 100 S 1 35 

MWU 8 

MW,  
medium 
rooted 

LFH 7 Organic 100 0 

  
A 5 SL 1 20 

  
B 40 SCL 5 20 

  
C 100 L 2 30 

MWU 10, 11 

TolHW, deep 
rooted 

LFH 7 Organic 100 0 

  
A 10 SL 5 20 

  
B 40 SCL 2 20 

  
C 100 L 1 30 

LL 6, 7 

TolHW, deep 
rooted 

LFH 7 Organic 100 0 

  
A 5 SL 5 20 

  
B 40 L 5 20 

  
C 150 L 1 30 

LL 9 

TolHW, deep 
rooted 

LFH 7 Organic 100 0 

  
A 5 SL 5 20 

  
B 40 L 5 20 

  
C 150 L 1 30 

S = sand, SL = sandy loam, SCL = sandy clay loam, L = loam. 
 

( )W
W W

W

0.588 1 Sand 1.73 OM
FC SP 1 exp

SP

   − − − ×   = −      
; R2 = 0.96  (8) 

where FCW, SPW, and SandW all refer to total weight fractions per dried and 
gently crushed fine-earth soil that passes through a 2 mm sieve. In combination, 
any ForHyM generated block-by-block soil moisture output by soil layer is, 
apart from daily weather records for rain, snow and air temperature and topo-
graphy specifications is also a function of and soil bulk density and sand, organic 
matter and coarse fragment content. Specifically, Equation (8) implies that soil 
moisture retention at field capacity increases with increasing organic matter 
content and decreasing bulk density, sand and coarse fragment content (Bal-
land et al., 2008). 
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2.5. MC and CI Variations, Plot-by-Plot 

In general, soil moisture increases from ridges and steep slopes to water-saturated 
wetlands, depressions and hyporheic zones adjacent to streams, rivers, lakes and 
shores. To some extent, this tendency is quantitatively related to the cartograph-
ic depth-to-water index (DTW). This index represents the least elevation rise to 
any point on the land away from the nearest open water locations, where DTW 
= 0. Conceptually, soil moisture levels should therefore decrease as DTW in-
creases. For the changes in volumetric and pore-filled soil moisture content over 
time, this can be expressed as follows (Vega-Nieva et al., 2009):  

[ ] ( )
( )

mcp
V,DTW mc

PS,DTW PS0
mc max

MC 1 exp DTW
MC 100 100 MC

PS 1 exp DTW
k

k
 − − ×

= = − − ×  
− − ×  

(9) 

with MCPS, DWT and MCV, DWT as pore-filled and volumetric soil moisture contents 
at any point in the landscape in relation to DTW, with MCPS0 as pore-filled 
moisture content on top of the ridge, where DTW = DTWmax, and with DTW = 
0 at open-water locations such as stream and lakes. The local flow-channel net-
work was generated by applying the D8 flow-accumulation algorithm to the 1 m 
resolution LiDAR-generated digital elevation model for New Brunswick, as de-
scribed in Figure 3. The seasonality extent of the resulting flow network was 
emulated by varying the minimum upslope flow-accumulation area for flow in-
itiation (termed flow initiation area, or FIA for short) by season and weather, as 
illustrated in Figure 4.  

In Equation (9), parameters kmc and pmc (0.5 and 1.5, respectively) quantify 
how MCPS,DTW varies with DTW across areas of interest as MCPS0 varies from, for 
example, 20% on ridges to 100% at and near water-filled flow channels. When 
soils become uniformly saturated, MCPS,DTW = 100% everywhere. At other times 
MCPS0 ≤ MCPS,DTW < 1. 
 

 
Figure 3. Cartographic depth-to-water index (DTW) diagram (Murphy et al., 2009a). 

Wet-Areas and Floodplain Mapping Concept

Floodplain
Cartographic

depth-to-water 
(DTW)Flow 

Channel
Floodplain

DEM surface DTW-inferred 
water table surface

https://doi.org/10.4236/ojf.2019.92005


M.-F. Jones, P. Arp 
 

 

DOI: 10.4236/ojf.2019.92005 119 Open Journal of Forestry 
 

 
Figure 4. Cartographic DTW ≤ 1 m pattern by minimum upslope open-channel flow in-
itiation area (FIA), i.e., DTWFIA, to emulate changes in soil moisture content by season 
and weather. For most of New Brunswick and the forested areas across Canada, the DTW 
≤ 1 m pattern for FIA = 4 ha reflects end of the summer soil moisture and drainage con-
ditions from very poor to moderate. 
 

Since soil moisture at any point in the landscape are also affected by 
block-by-block and plot-by-plot variations in soil properties and wood-forwarding 
tracks, MCPS also needed to be evaluated as function forest cover and soil prop-
erties inside and outside wood-forwarding tracks. This was done by setting:  

ps

DTW, elevation, forestcover, soil
MC f

properties, block, track, brushmat
 

=  
 

          (10) 

with Forest Cover (SW, HW, and MW), Block, Track and Brushmat coded 1 
when applicable and 0 when not. The elevation variable accounted for additional 
topographic variations as they existed block-to-block across the NWU, MWU 
and LL regions. The soil properties refer to plot-by plot variations in soil texture 
(sand, silt, clay content), Db, CF, OM, and layer depth. The block-by-block and 
plot-by-plot CI variations were evaluated similarly by setting: 

DTW, elevation, forestcover, soil
CI f

properties, block, track, brushmat
 

=  
 

           (11) 

2.6. Statistical Analysis, Followed by Generalized  
Block-Generated MCPS and CI Projections 

The block- and plot-descriptive, field, laboratory, ForHyM-generated and ras-
ter-extracted data were compiled into a single datasheet, were summarized, and 
were subjected to correlation, factor, multivariate regression analyses in R (R 
Core Team, 2015), using MCV, MCPS and CI as dependent variables. The result-
ing regression models for Equations (9)-(11) were assessed in terms of scatter-
plots for the actual versus modelled values, the best-fitted regression coefficients 
for each independent variable of non-zero significance values (p-values < 0.01), 
and R2 and RMSE goodness-of-fit indicators. In addition, the conformance levels 
between actual and model projected 0 - 10, 10 - 20, 20 - 30, … % MCPS classes 
and 0 - 0.5, 0.5 - 1, 1 - 1.5,… MPa CI classes were evaluated in terms of confu-
sion matrices, non-randomness, and cumulative conformance probabilities to 
determine the uncertainty range of best-fitted model projections. Subsequently, 
the MCV, MCPS and CI regression evaluations were repeated using variables amena-
ble for area-wide projection purposes. These variables referred to 1) DTW, ele-
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vation, digitally-generated province-wide soil property rasters for Sand, CF, OM 
and Db (Figure 5; Furze, 2018), 2) block-, and season- or weather-specific as-
signments for FIA, 3) soil depth, and 4) forest cover type for non-tracked soil 
conditions. The process of doing so by soil depth and season (month) is illu-
strated in Figure 6. 

3. Results and Discussion 
3.1. General Observations and Trends 

The plot-based determinations for sand, silt, and clay, OM, CF, MCPS, and CI are 
summarized per block in Figure 7 by box plots and in terms of number of plots, 
and minimum, maximum, average and standard deviation values in Table A2 
(Appendix). These plots reveal that the MCPS, CI and Db were not always higher 
inside than outside the wood-forwarding tracks, as one would expect (Allen, 
1997; Han et al., 2009; Labelle & Jaeger, 2011; Cambi et al., 2015; Solgi et al., 
2018). Possible reasons for the lack of systematic MCPS, Db, and CI increases re-
fer to 1) the wide range of operational multitrack observations across ground 
conditions comprised of rocks, stumps, and variable forest litter depths includ-
ing brushmats, and 2) differences in MCPS, Db, and CI surveying methodologies, 
e.g., using Db and MC sensors that required no soil displacement (Labelle & 
Jaeger, 2011) and hydraulic cone penetrators (Cambi et al., 2015; Solgi et al., 
2018). The results reported below were obtained through manual soil extraction 
and probe insertions.  

In terms of tracks with and without brushmats, measured values for Db, CI, 
and MCPS for the top mineral soil 15 cm were somewhat lower and less variable  
 

 
Figure 5. Spatial raster examples for DTW (1), DEM (2), Db (3), CF (4) for block-specific 
MCPS projections (Block 3). 
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Figure 6. Digital soil mapping process combining topographic and soil features [1] with 
temporal features (B) to generate best-fitted weather-affected MCPS [2] and CI [3] projec-
tions for each block (e.g., Block 3) by way of best-fitted Equations (9)-(11) models. 
 

 
Figure 7. Boxplots CI, MCPS, CF, Sand and Db within the top 15 cm soil layer inside and 
outside the wood-forwarding tracks, by Block. 
 
under matted than non-matted tracks (Figure 8). Systematic increases for Db 
and CI from the matted and non-matted tracks as reported by Han et al. (2009) 
and Labelle et al. (2015) were therefore not found, likely due to strongly varying 
soil, root and rock conditions along the tracks.  
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Figure 8. Scatterplots pertaining to CI, Db, and MCPS inside and outside matted and non-matted tracks. 

 
In terms of the higher trending MC levels on matted versus non-matted plots, 

Roberts et al. (2005) and Moroni et al. (2009) reported lower cumulative soil 
moisture losses under matted than non-matted tracks likely through mulch-related 
shading, insulation, and lowered evaporation benefits.  

The overall trends between MCPS and CI versus CF, sand, OM and Db are pre-
sented in Figure 9. As shown, increasing CF generally lowered MCPS presumably 
due to 1) increasing porosities between the fragments, 2) subsequent increases in 
soil moisture loss due to increased soil permeability, and 3) enhanced evapora-
tion due to fact that CF conduct heat faster than soil (Poesen & Lavee, 1994; 
Chow et al., 2007). 

The increasing MCPS trend with increasing Db relates to decreasing pore space. 
Similarly, decreasing MCPS with increasing OM% relates to increased pore space 
due to OM-facilitated soil granulation (Han et al., 2006). There is also the possi-
bility of decreasing MCPS due to increasing hydrophobicity as OM-containing 
soils dry out (Vogelmann et al., 2013). In contrast, the increasing MCPS trend 
with increasing Sand% may be due to preferential pore space saturation in san-
dier topsoil portions. 

In terms of CI, increasing levels of CF contribute to increasing soil resistance 
to penetration because of skeletal soil stabilization (Manuwa, 2012), and the 
need to push coarse fragments to the side to gain greater penetration depths. In-
creasing Sand% generally decreases soil strength,, due to lower particle-to-particle 
cohesion. The opposite occurs with increasing Clay% (Raven et al., 1999). The 
trend between increasing CI and increasing soil depth (Figure 10) is due to 
depth-related increases in Db (Equation (3); Carter et al., 2007).  

Analyzing the trends among the MCPS and CI affecting variables more closely 
produced the correlation matrix and its factor analysis results in Table 4. The 
bolded Factor 1 - 3 loadings indicate that: 

1) Factor 1 is positively associated with increasing CI, CF, Db, elevation and 
tracks, but negatively associated with increasing soil organic matter content. 

2) Factor 2 is positively associated with higher elevations where tolerant  

0 1 2 3 4 5

CI (MPa)

D
b

(g
/c

m
3

)

0.5

1.0

1.5

2.0

No Tracks
Tracks / Brushmat
Tracks / No-Brushmat

0 20 40 60 80 100

MCps (%)
D

b
(g

/c
m

3
)

0.5

1.0

1.5

2.0

0 20 40 60 80 100

MCps (%)

C
I (

M
Pa

)

1

2

3

4

https://doi.org/10.4236/ojf.2019.92005


M.-F. Jones, P. Arp 
 

 

DOI: 10.4236/ojf.2019.92005 123 Open Journal of Forestry 
 

 
Figure 9. Scatterplots for top 15 cm MCPS (top) and CI (bottom) versus top 15 cm CF, 
sand, OM and Db. 
 

 
Figure 10. Boxplots of field-determined CI versus soil depth for Blocks 1 to 9, including 
significance value of implied trend. Blocks 10 and 11 do not have results by depth. Also 
shown (bottom): summary boxplots of all CI determinations off-track and inside tracks. 
 

Table 4. Pearson’s correlation matrix (below 1,1,1... diagonal) with significance levels (above 1,1,1... diagonal) for each variable 
pair. Also shown: factor analysis results following oblique rotation. 

Variable CI MCPS Db CF Sand OM log10DTW Elevation Brushmat Tracks 
HW 

Blocks 

Factor 

1 2 3 

CI (MPa) 1 0.0327 0.0314 <0.0001 0.0861 0.9226 0.149 0.0004 <0.0001 <0.0001 0.1228 0.65 −0.01 0.35 

MCPS (%) −0.156 1 0.0160 <0.0001 0.3518 0.6240 <0.0001 0.0020 <0.0001 0.0252 0.0036 −0.01 −0.01 −0.83 

Db (g∙cm−3) 0.157 −0.176 1 <0.0001 0.0444 <0.0001 0.6792 0.2314 0.4205 0.0045 0.0090 0.63 0.06 0.22 

CF (%) 0.304 −0.419 0.350 1 0.2348 0.1042 0.0008 0.0001 0.0002 0.0118 0.0040 0.50 0.01 0.64 

Sand (%) −0.126 −0.069 0.147 −0.087 1 0.2299 0.3202 0.0186 <0.0001 0.0256 <0.0001 −0.09 0.58 0.22 
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Continued 

OM (%) 0.007 −0.036 −0.441 −0.119 0.088 1 0.0957 0.3076 0.8362 0.1618 0.7021 −0.54 −0.04 0.12 

log10DTW 0.178 −0.410 0.030 0.243 0.073 0.122 1 0.0003 0.3198 0.3947 0.5117 0.02 0.20 0.75 

Elevation (m) 0.255 −0.224 0.088 0.274 0.172 −0.075 0.259 1 0.0870 0.5479 <0.0001 0.40 0.79 0.60 

Brushmats 0.291 −0.283 0.059 0.265 −0.345 0.015 −0.073 −0.125 1 0.7640 <0.0001 0.04 −0.74 0.24 

Tracks 0.539 0.163 0.206 0.184 −0.163 −0.103 −0.063 0.044 0.022 1 0.7454 0.75 −0.01 −0.12 

HW Blocks −0.113 0.211 −0.190 −0.209 0.301 0.028 0.048 0.618 −0.697 −0.024 1 0.07 0.94 0.01 

 
hardwood forests dominate, where brushmats were rarely used, and where soils 
are somewhat sandier. 

3) Factor 3 is positively associated with increasing MCPS but negatively asso-
ciated with increasing CF, Sand, and decreasing DTW, as to be expected. Also, 
soil pores tend to be drier at higher elevations but fill up more easily and remain 
wet or moist longer inside than outside the tracks.  

3.2. Temporal Soil Moisture Derivations 

The ForHyM-generated results for daily soil moisture, stream discharge, snow-
pack depth and depth of soil frost are illustrated in Figure 11, which also dis-
plays daily weather records (rain, snow snowpack depth, air temperature) for 
Blocks 1 and 9 from 2011 to end of 2014. The daily MCPS0 output so produced 
block-by-block (Table 5) was obtained through calibrating the ForHyM output 
with reported snowpack depth and cumulative stream discharge values for each 
of the three regions (Figure A1). These calibrations involved adjusting the For-
HyM parameters for snowpack depth and lateral versus vertical layer-by-layer 
soil permeability, as detailed in Table 5.  

Fitting the actual plot-specific MCPS determinations for the top 15 cm of min-
eral soil versus the corresponding log10DTW values with FIA = 1 ha across all 
the plots by way of Equation (9) produced the following equation once FIA and 
MCPS0 was specified for each block: 

[ ] ( )
( )

1.5

2
PS,DTW PS0

max

1 exp 0.5DTW
MC 100 100 MC ;  0.29

1 exp 0.5DTW
R

 − −
= − − × = 

− −  
 (12) 

This result improved considerably by using log10DTW1ha in combination with 
MCPS,DTW:  

2
PS 10 PS,DTWMC 48.16 5.80log DTW 0.19MC ; 0.38R= − + =       (13) 

In detail, the inclusion of log10DTW spread the MCPS prediction range from 
about 30% to 75% [Equation (12)] to about 20% to 90% [Equation (13)]. Even 
further improvements were obtained by including the plot determinations for 
Db, Elevation, HW and Track as independent variables. This led to the best-fitted 
MCPS regression results listed in Table 6, and to Equation (14):  

PS 10 PS,DTW b

2

MC 32.18 1.49log DTW 0.27MC 42.56D

0.10Elevation 13.09HW 3.93Track; 0.61R

= − + +

− + + =
      (14) 
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Figure 11. Daily variations in Block 1 (left) and Block 9 (right) for air temperature and precipitation (ForHyM input; top) 
and stream discharge, MCPS for top 15 cm of mineral soil, estimated field capacity, snowpack depth, and frost depth (For-
HyM output; bottom). Regarding ForHym details, see Jones et al. (2018). 

 
Table 5. Mean block-specific soil property values including soil moisture content at ridge 
top (MCPS0) and minimum upslope open-channel flow initiation area FIA. 

Block 
Db 

g∙cm−3 
Sand 

% 
Clay 

% 
OM 
% 

CF 
% 

MCPS0 

% 
FIA 
ha 

1 0.92 27.1 6.5 11.6 42.4 31.9 1 

2 0.91 16.7 6.8 11.4 52.3 34.1 8 

3 0.96 25.5 5.4 10.3 48.2 31.5 1 

4 0.98 25.5 3.4 9.4 52.5 28.9 8 

5 0.91 8.6 2.2 12.5 72.5 29.6 8 

6 0.9 22.5 7.1 14.6 44.8 42.0 1 

7 0.99 30.1 4.7 9 44.7 42.0 1 

8 1.09 32.5 5.3 7.3 44.9 36.2 4 

9 0.79 33.6 4.4 24.1 28.9 44.9 0.25 

10 0.85 10.8 5.5 14.4 60.5 47.4 8 

11 0.85 9.4 4.9 21.2 61.9 40.0 16 

 
The corresponding best-fitted MCV results, also listed in Table 6, led to: 

V 10 PS,DTW b

2

MC 35.25 1.33log DTW 0.19MC 13.37D

0.07Elevation 9.38HW 2.43Track; 0.51R

= − + +

− + + =
      (15) 
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Table 6. Best-fitted MCPS% and MCV% models based on using plot-generated [Equation (14) and (15); top] versus plot-projected 
[Equation (16) and Equation (17); bottom], listing significant regression variables and their coefficients, standard error estimates, 
and t- and p-values, together with R2, RMSE values and sample size (n). 

Regression  
optimization 

Dependent  
variables 

Intercept & predictor 
variables 

Regr. 
Coeff. 

±SE t-value p-value R2 RMSE n 

 
MCPS% Intercept 32.177 4.604 6.99 <0.0001 0.61 10.11 394 

 
Equation (14) MCPS,DTW 0.268 0.062 4.341 <0.0001 

   

  
log10DTW −1.493 0.786 −1.899 0.0583 

   

  
Db 42.561 3.284 12.961 <0.0001 

   

  
Elevation −0.109 0.01 −10.655 <0.0001 

   

  
HW Blocks 13.09 1.552 8.434 <0.0001 

   

Using plot-specific  
determinations for each 

block 

 
Tracks 3.934 1.044 3.769 0.0002 

   
MCV% Intercept 35.254 3.407 10.347 <0.0001 0.51 7.49 394 

Equation (15) MCPS,DTW 0.19 0.046 4.171 <0.0001 
   

  
log10DTW −1.330 0.582 −2.285 0.0229 

   

  
Db 13.378 2.43 5.503 <0.0001 

   

  
Elevation −0.076 0.008 −10.086 <0.0001 

   

  
HW Blocks 9.377 1.148 8.163 <0.0001 

   

  
Tracks 2.437 0.773 3.154 0.0017 

   

 
MCPS% Intercept 70.883 6.326 11.205 <0.0001 0.47 9.45 394 

 
Equation (16) MCPS,DTW 0.262 0.073 3.589 0.0002 

   

  
log10DTW −2.764 0.926 −2.986 0.003 

   

  
OMDSM −0.981 0.278 −3.529 0.0005 

   

Using regionally  
available DEM, DSM, 
DTW layers together 
with forest cover and 
plot/weather-specific 

FIA assignments 

 
Elevation −0.091 0.013 −6.937 <0.0001 

   

 
HW Blocks 10.224 2.136 4.788 <0.0001 

   

 
Tracks 4.09 1.233 3.316 0.001 

   
MCV% Intercept 49.018 4.096 11.968 <0.0001 0.48 7.72 394 

Equation (17) MCPS,DTW 0.186 0.047 3.932 <0.0001 
   

 
log10DTW −1.665 0.599 −2.927 0.0057 

   

  
OMDSM −0.421 0.180 −2.338 0.0199 

   

  
Elevation −0.073 0.008 −8.650 <0.0001 

   

  
HW Blocks 9.000 1.383 6.509 <0.0001 

   

  
Tracks 2.449 0.798 3.067 0.0023 

   
Units: MCPS, DTW and OMDSM in %; DTW and Elevation in m; Db in g/cm3; HW Blocks and Tracks: 1 when present, and 0 otherwise. 

 
Based on the t-value entries in Table 6, one determines that the significance 

contributions of all the MCPS and MCV predictor variables follow these se-
quences:  

for MCPS: Db ≈ MCPS,DWT ≈ Elevation ≈ HW > log10DTW > Tracks > Sand > 
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CF; 
for MCV: MCPS,DWT ≈ Elevation ≈ HW > log10DTW > Sand > Tracks > Db ≈ 

CF. 
As to be noted, there is a high to low Db regression coefficient and significance 

change from MCPS [Equation (14)] to MCV [Equation (15)] due to the greater 
dependence of MCPS on Db via Equation (5) and Equation (6) while the signific-
ance levels for the predictor variables remain about the same. Also note that the 
best-fitted R2 and RMSE values drop from MCPS to MV due to the narrower MCV 
data range.  

The + and − signs for the regression coefficients in Equation (14) and Equa-
tion (15) follow the expected trends for MC, namely: 

1) MC decreases with increasing DTW but increases as MCPS0 (and therefore 
MCPS,DWT) increase, as to be expected.  

2) MC decreases towards higher and generally steeper elevations.  
3) MC is higher inside than outside soil tracks.  
4) Soils under hardwood cover tend have higher MC values than elsewhere, in 

part due to deeper rooting and higher top-soil OM accumulation. 
5) The contributions of Sand and CF (both negative) to MC were also found 

to be significant, but only marginally so. Excluding these from the analysis 
changed R2 for MCV from 0.51 to 0.50, and for MCPS from 0.63 to 0.60 (details 
not shown). 

The best-fitted MCPS and MCV equations—obtained from substituting the 
plot-generated values for MCPS,DWT with the block-assessed FIA values and with 
plot-level Equation (3) estimates for OM generated from the digital soil layers 
for OM% (labelled OMDSM)—are as follows (Table 6):  

PS PS,DTW 10 DSM

2

MC 70.88 0.26MC 1.84log DTW 0.98OM

0.10Elevation 9.96HW 4.32Track; 0.47R

= + − +

− + + =      
 (16) 

V PS,DTW 10 DSM

2

MC 45.22 0.19MC 1.75log DTW 0.13OM

0.07Elevation 8.48HW 2.53Track; 0.48R

= + − +

− + + =
      (17) 

The corresponding actual versus best-fitted scatterplots associated with MCPS 
via Equations (12)-(14) and Equation (16) are shown in Figure 12.  

Using Equation (14) produced the block-by- block presentation in Figure 13, 
which also shows the field-determined MCPS plot values for the top 15 cm of soil 
outside and inside the tracks. Visually, there is a general agreement between the 
off-track field determinations and the corresponding projections, with off-track 
MCPS generally higher than inside track. 

Grouping the off- and in-track projections and corresponding field determi-
nations into 10% MCPS classes produced the MCPS confusion matrix and asso-
ciated MCPS cumulative conformance plots in Figure 14. In summary, the ±5% 
MCPS conformance level so found amounts to 34% across the 20 < MCPS < 100% 
range, but increases to 81% and 96% as the conformance uncertainty increases 
to ΔMCPS ≤ ±15 and ±25%, respectively. The possibility of randomly achieving  
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Figure 12. Scatterplots of actual versus best-fitted MCPS regression results. Using Equa-
tion (12) and (13) demonstrates the extent of block-specific DTW projections on MCPS. 
Using Equation (14) demonstrates the improvements obtained by adding field-determined 
soil density, elevation, forest cover type, and track versus non-tracked specifications to 
the MCPS regression analysis. Using Equation (16) demonstrates that reasonable MCPS 
can also be generated from digitally mapped variables (DTW, OMDSM) and block-specific 
assignments. 
 
these conformance levels have kappa values of 0.26, 0.73 and 0.92, respectively. 
The kappa value for random chance agreements equals zero, by definition. 

3.3. CI Derivation 

The best-fitted CI results using plot-determined and plot-projected data are 
listed in Table 7 and led to the following equations:  

( ) PS

2

CI plot-determined 1.60 0.01MC 0.03Depth

0.76Track 0.40SW; 0.41R

= − +

+ + =
       (18) 

( ) 10 PS0

2

CI plot-projected 1.60 0.03log DTW 0.02MC 0.02Depth

0.64Track 0.32SW; 0.39R

= + − +

+ + =
 (19) 

where 0.03 log10DTW − 0.02 MCPS0 in Equation (19) replaced −0.01 MCPS in 
Equation (18). These results affirm that the plot-determined CI values, as to be 
expected, increase with decreasing soil depth, are higher inside that than outside 
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Figure 13. Overlay of field- determined MCPS values inside and outside tracks on the Eq-
uation (16) generated MCPS projections for Blocks 1 to 11. Note: Blocks 9 - 11 have out-
side-track MCPSvalues only.  
 

 
Figure 14. Confusion matrix for actual versus Equation (13) projected MCPS (left) and 
best-fitted cumulative conformance probabilities for Equations (12)-(14), and Equation 
(16) (right). Blue squares align 1-on-1 on actual versus projected MC% classes, while the 
shades from dark red to white repersent the number of 1-on-1 class-by-class projection 
differences. 
 
the tracks, are higher under softwood forest cover, decrease with increasing soil 
moisture content, and increase with increasing soil density. The associated signi-
ficance levels vary as follows: 

for Equation (18): Track > Depth > MCPS > SW > Db 
for Equation (19): Track > Depth > SW ≈ DTW1ha > MCPS0 
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Table 7. Best-fitted CI models based on using plot-generated [Equation (18)] versus 
plot-projected [Equation (19)] and log10 plot-generated CI [Equation (20)], listing signif-
icant regression variables and their coefficients, standard error estimates, and t- and 
p-values, together with R2, RMSE values and sample size (n). 

Dependent 
variables 

Intercept &  
Predictor variables 

Regr. 
coeff. 

±SE t-value p-value R2 RMSE n 

CI MPa Intercept 1.599 0.159 10.064 <0.0001 0.41 0.59 372 

Equation (18) MCPS −0.011 0.002 −5.982 <0.0001 
   

 
Depth 0.025 0.002 9.896 0.0583 

   

 
Tracks 0.760 0.064 11.913 <0.0001 

   

 
SW Blocks 0.397 0.064 6.200 <0.0001 

   
CI MPa Intercept 1.604 0.367 4.366 <0.0001 0.39 0.60 376 

Equation (19) MCPS0 −0.023 0.009 −2.529 0.0119 
   

 
DTW1ha 0.034 0.009 3.852 <0.0001 

   

 
Depth 0.022 0.002 8.865 <0.0001 

   

 
Tracks 0.644 0.067 9.616 <0.0001 

   

 
SW Blocks 0.319 0.087 3.657 0.0003 

   
log10CI MPa Intercept 0.152 0.039 3.903 <0.0001 0.41 0.14 372 

Equation (20) MCPS −0.002 0.001 −5.580 <0.0001 
   

 
Depth 0.006 0.001 10.027 <0.0001 

   

 
SW Blocks 0.091 0.016 5.844 <0.0001 

   

 
Tracks 0.189 0.015 12.111 <0.0001 

   
 

Other variables such as Sand, Clay, CF and OM would also affect CI, but these 
variables were not found to make additionally significant CI contributions to the 
plot-determined or projected values. Quantitatively, Equation (18) indicates that 
a change in MCPS from 0% to 100% would lead to a change in CI by 3.1 MPa (all 
other conditions remaining the same). In comparison, CI would on average in-
crease by 2.6 MPa from 0 to 1m soil depth. In comparison, CI values are about 
0.7 MPa higher inside than outside tracks.  

The scatterplots associated with Equation (18) and Equation (19) are pre-
sented in Figure 15, with the former more heteroscedastic than the latter. 
Log-transforming CI the best-fitted results as listed in Table 7 produced an even 
scatterplot in Figure 15, based on the following equation: 

10 PS
2

log CI 0.152 0.002MC 0.006Depth

0.189Track 0.091SW; 0.41R

= − +

+ + =
           (20) 

The overlays of the field-determined on the Equation (18) projected CI values 
for the top 15 cm of soil are shown by Block in Figure 16, which also shows the 
corresponding values at 30, 45, and 60 cm depth for Block 3.  

Grouping the field-determined and projected CI values into 0.25 MPa classes 
produced the CI confusion matrix and associated cumulative conformance plots 
in Figure 17. As shown, the CI confusion matrix has an actual with projected  
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Figure 15. Scatterplots of actual versus best-fitted CI scatterplots associated with Equations (18)-(20). Left: Using Equation (18) 
demonstrates the additional improvements obtained by adding forest cover type, soil depth and track versus non tracked specifi-
cations to the CI regression analysis. Middle: Using Equation (19) demonstrates that CI estimates can be generated from 
block-specific and weather-dependent MCPS0 and DTW determinations. Right: Using Equation (20) demonstrates how the actual 
log10CI values relate to the corresponding log10CI projections. 

 

 
Figure 16. Equation (18) CI projections at 15 cm depth for Blocks 1 - 9 outside 
wood-forwarding (top), and for 15, 30, 45 and 60 cm soil depths outside (left) and inside (right) 
wood-forwarding tracks in Block 3 (bottom). 
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Figure 17. Confusion matrix for modelled vs Equation (18) projected CI (left) and best-fitted 
cumulative conformance probabilities for Equation (18) and Equation (19) (right). Blue 
squares align 1-on-1 on the actual versus projected MC% classes, while the shades from 
dark red to white represent the number of 1-on-1 class-by-class projection differences. 
 
ΔCI ≤ 0.25 MPa class conformance of 32% across the 0.5 < CI < 4.5 MPa range. 
This conformance increases to 78% and 95% as the uncertainty range for CI in-
creases from ±0.5 and ±0.75 MPa, respectively. Achieving these agreements has 
kappa values equal to 0.23, 0.67 and 0.88, respectively. In comparison with the 
MCPS kappa values, this suggests that the CI projections are slightly more ran-
dom than the MCPS projections. 

3.4. Forecasting Block-Specific Soil Moisture and Penetrability  

The above results show that the combination of emulating layered soil properties 
and daily soil moisture simulations produces non-random soil moisture and 
cone penetrability projections across harvest blocks of varying topography, forest 
cover, substrates and weather conditions. To this effect, the extent of pore-filled 
moisture content can be predicted with a tolerance of ±15%, 8 times out of 10 
within the 20% to 100% soil moisture range. Similarly, the cone penetrability 
index can be predicted with a tolerance of ±0.5 MPa, 8 times out of 10 within the 
0.2 to 4.5 MPa range.  

In summary, generalizing similar results for the purpose of soil-trafficability 
forecasting block-by-block requires:  

1) a 10 m resolution DEM layer with a tolerance of at least ≤ 2 m, 8 times of 
out 10 (Furze et al., 2017); 

2) a digital soil mapping process that emulates the required soil property lay-
ers at a general conformance level of 80% (Furze, 2018); 

3) an assessment of the season and weather dependent minimum upslope 
open-channel flow initiation area (FIA) as this could vary from ≤0.25 to ≥8 ha 
(Figure 4); 

4) a forest hydrology model that can be used to estimate weather- and sea-
son-affected soil moisture content (MCPS0) for ridge-top soils, to initiate, e.g., the 
Equation (15) and Equation (18) calculations (Jones & Arp, 2017), based on 
block-by-block elevation, slope, aspect, texture, Db, OM, CF, vegetation type 
and % canopy closure. 

The MC and CI results so produce are projected in Figure 18 for hardwood  
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Figure 18. ForHyM modelled MCPS for ice and water combined, in relation to soil mois-
ture retention at field capacity (top) with spatially projected MCPS [Equation (16)] and CI 
[Equation (19)] maps on block 3 (hardwood forest and soil conditions; middle) and block 
4 (softwood forest and soil conditions; bottom). 
 
and softwood areas somewhat larger than Block 3 and Block 4. This was done for 
weather conditions that varied from essentially frozen in February to wet in 
May, dry in July, and moist in October. The blue shading in these plots suggests 
where rutting would occur on account of elevated MC and lowered CI values 
once wood-forwarding operations cross the areas so marked. For the most part, 
areas prone delineations as these vary by weather and season. Least rutting 
would have occurred in February (ground mostly frozen) and in July and August 
(ground mostly dry), but would have been most extensive in May and late fall 
(ground mostly moist to wet). 
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3.5. Additional Comments 

While the above study provides a useful framework for delineating and evaluat-
ing soil trafficability restrictions due to changes in soil moisture and soil pene-
trability, there is a need to validate the generality of this framework by: 

1) testing across all dominant and minor soil types within the same region; 
2) repeating the same across other regions;  
3) conducting sequential MC and CI determinations as ground conditions 

transit from wet to dry and from frozen to non-frozen; 
4) advancing the digital soil property mapping process from coarse textured 

DEMs (Furze, 2018) to 1 m LiDAR-generated terrain elevation resolution. Doing 
so will likely increase the significance by which projected sand, clay, organic 
matter, coarse fragments and bulk density gain significance as MC and CI pre-
dictors.  

Repeated topsoil moisture and density testing should ideally be done without 
probe insertions, i.e. via nuclear moisture-density gauge (Corns, 1988; Brown et 
al., 1998; Labelle & Jaeger, 2011). CI testing would further benefit from hydraulic 
rather than manual testing (Hooks & Jansen, 1984; Herrick & Jones, 2002). 
Doing so would assist in reducing manually generated errors, inconsistencies, 
and biases, but would increase sampling expense.  

There are other DEM-utilizing soil MC projection techniques. Most notably 
among these is the topographic wetness index (TWI; Beven & Kirkby, 1979; 
Sørensen et al., 2006). This index relates soil wetness to local upslope 
flow-accumulation areas and slopes, i.e., TWI = ln (flow accumulation area/slope). 
Comparative studies revealed that TWI-inferred MC depends strongly on TWI-cell 
averaging (Murphy et al., 2009a, 2011; Ågren et al., 2014), while DTW-inferred 
MC can directly be related to field-based DTW measurements (Dobbie & Smith, 
2006; Murphy et al., 2009b). 

Optimal TWI-based MC interpretations are generated by filling noise-generated 
DEM pits, followed by changing the focal search radius for cell-centered mean 
elevation differences, slope and TWI (Southee et al., 2012). The resulting MC 
correlations with TWI had R2 values ranging from 0.06 to 0.36, with best-results 
obtained for the 5 to 10 m cell-size range. Attempts focused on analyzing soil 
moisture conditions from spectral surface images tend to produce mixed results, 
especially for soils covered by vegetation and vegetation litter (Njoku & Entek-
habi, 1996; Das & Paul, 2015). Best results are generally observed for bare to 
open mineral soil surfaces (Jackson, 1993; Engman & Chauhan, 1995; Wang & 
Qu, 2009; Das & Paul, 2015).   

Further digital soil property mapping improvements can likely be obtained 
using LiDAR-generated DEMs at 1 m resolution. Doing so would likely increase 
the significance by which projected sand, clay, organic matter, coarse fragments 
and bulk density gain significance as MC and CI predictors.  

With reasonable soil- and weather-informed MC and CI projections, it is 
feasible to generate machine- and load-specific rut depth maps as affected by 
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machine type, loads, tire dimensions, and number of wood-forwarding passes, as 
demonstrated by Vega-Nieva et al. (2009) and Jones et al. (2018). In turn, such 
projections can be used to evaluate existing traffic-induced soil disturbance im-
pacts as demonstrated by Campbell et al. (2013). 

4. Conclusion 

The above soil MC and CI assessment is limited to forested areas within north-
western New Brunswick, Canada. The approach taken emulates block-specific 
soil MC and CI variations with R2 = 0.61 and 0.40, respectively. The dominant 
predictor variable refers to daily soil moisture levels as affected by weather, 
DTW, sand, Db, CF, soil depth, stand type (HW or SW) and sampling location, 
inside or away from harvest tracks. Other potentially important MC and/or CI 
contributing variables yet to be addressed refer to the presence and extent of 
stumps and roots, depth of local forest litter accumulations, local variations in 
micro-topography pertaining to mounds and pits, and the number of passes per 
track. Implicitly addressed are the variations in soil OM due to the associations 
between OM, Db and soil pore space via Equations (3) to (6). The effect of 
brush-matting on MC and CI was found to be too variable to make significant 
contributions to the best-fitted MC and CI regression results. The lack thereof is 
likely related to branch-specific soil compaction and displacement at the centi-
meter scale. 
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Appendix 

 
Figure A1. Modelled vs measured ForHyM generated calibration outputs for snowpack 
and stream discharge for Northwestern Uplands (top), Midwestern Uplands (middle) and 
Lowlands (bottom). 
 
Table A1. Soil association, landform, and lithology for Blocks 1 - 11. 

Landform Lithology Soil Association 
Block # 
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Continued 

 
Metamorphosed non- to weakly- calcareous 

slate, quartzite, argillite, sandstone 
McGee 4 

Ablation 
Granite, quartzite, gneiss, argillite, volcanics 

and some sandstones 
Juniper 8 

 
Metamorphosed rhyolite, andesite, schist, 

slate, granite 
Jacquet River 6, 7 

Basal Mafic volcanics, gabbro, diorite Kingston 11 

 
Metamorphosed rhyolite, andesite, schist, 

slate, granite 
Popple Depot 10 

 
Strongly metamorphosed slate, quartzite, 

volcanics 
Long Lake 9 

Ablation/Basal till 
Metamorphosed non- to weakly-calcareous 

slate, quartzite, argillite, sandstone 
Glassville 3, 5 

 

Table A2. Soil physical and moisture properties by block. 

Block Sand% Silt% Clay% OM% CF% 
Db,Balland 
g/cm3 

Db,Cup 
g/cm3 

PS% MCg% MCV% MCPS% CI1 MPa 

1 Mean 27.1 12.4 6.5 11.6 42.4 0.92 1.02 0.65 49.3 41.0 62.1 2.4 

n = 56 Min 2.2 1.1 0.7 3.6 1.0 0.34 0.29 0.47 17.3 19.9 30.9 0.8 

 
Max 44.0 26.9 24.1 43.9 73.0 1.42 1.64 0.86 231.1 95.2 100.0 4.4 

 
SD 9.0 6.0 3.7 7.2 13.9 0.19 0.26 0.07 32.7 15.3 18.6 0.9 

2 Mean 16.7 12.7 6.8 11.4 52.3 0.91 1.02 0.65 50.0 44.2 68.2 1.9 

n = 28 Min 4.6 1.7 1.7 5.1 27.0 0.61 0.62 0.50 26.4 32.8 45.3 0.6 

 
Max 34.4 32.1 12.3 18.8 79.0 1.30 1.36 0.76 105.9 70.9 100.0 3.2 

 
SD 7.4 6.9 2.9 3.7 12.9 0.15 0.19 0.05 14.9 9.1 13.7 0.7 

3 Mean 25.5 10.6 5.4 10.3 48.2 0.96 0.99 0.64 43.8 40.1 62.8 2.0 

n = 80 Min 9.6 3.7 2.4 4.3 26.0 0.56 0.42 0.51 23.3 27.1 41.5 1.0 

 
Max 43.7 17.1 12.7 21.6 73.0 1.37 1.48 0.77 85.8 68.4 100.0 3.5 

 
SD 7.8 3.7 2.4 5.1 9.9 0.19 0.26 0.07 13.8 8.3 12.5 0.6 

4 Mean 25.5 9.2 3.4 9.4 52.5 0.98 1.26 0.06 32.4 31.1 49.5 1.8 

n = 46 Min 11.8 5.2 1.4 4.0 34.0 0.61 0.65 0.52 17.9 16.7 22.2 0.5 

 
Max 38.3 14.7 6.9 18.5 69.0 1.39 2.01 0.75 60.3 46.2 72.6 3.6 

 
SD 8.5 3.1 1.4 3.3 10.6 0.16 0.32 0.05 8.7 6.8 11.3 0.8 

5 Mean 8.6 5.5 2.2 12.5 72.5 0.91 1.32 0.67 20.0 17.8 26.9 2.5 

n = 33 Min 0.0 0.0 0.0 5.7 11.0 0.57 1.02 0.52 9.5 9.7 12.3 1.7 

 
Max 42.5 28.6 12.9 21.7 91.0 1.23 1.55 0.78 49.8 39.3 60.7 3.5 

 
SD 13.7 9.4 3.8 4.9 24.9 0.16 0.13 0.06 8.1 6.8 10.6 0.5 

6 Mean 22.5 11.0 7.1 14.6 44.8 0.90 1.0 0.65 56.0 44.5 69.3 1.7 

n = 26 Min 12.2 5.6 3.2 3.2 19.0 0.42 0.32 0.48 24.5 28.3 45.2 0.7 

 
Max 37.1 22.2 14.8 33.4 61.0 1.44 1.55 0.82 98.6 60.2 100.0 3.6 

 
SD 10.1 5.8 3.9 11.3 13.4 0.33 0.39 0.11 22.7 10.3 21.8 0.8 
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7 Mean 30.1 11.5 4.7 9.0 44.7 0.99 1.25 0.62 42.4 42.1 65.7 1.5 

n = 43 Min 13.3 3.7 1.4 4.0 19.0 0.59 0.58 0.50 25.5 23.8 32.9 0.4 

 
Max 49.5 16.4 10.2 19.7 68.0 1.34 2.05 0.76 86.5 87.7 100.0 3.7 

 
SD 8.0 3.2 2.3 3.7 10.6 0.17 0.29 0.06 12.2 14.2 19.0 0.7 

8 Mean 32.5 10.0 5.3 7.3 44.9 1.09 1.17 0.59 43.1 43.9 69.3 1.9 

n = 54 Min 3.1 1.3 0.5 0.7 19.0 0.64 0.3 0.40 11.1 12.1 18.2 0.8 

 
Max 51.8 18.0 12.1 16.5 90.0 1.67 1.87 0.73 130.6 100.0 100.0 3.5 

 
SD 11.6 4.4 2.3 4.3 16.4 0.23 0.38 0.08 24.2 19.5 21.5 0.7 

9 Mean 33.6 10.3 4.4 24.1 28.9 0.79 0.64 0.68 118.2 59.8 74.9 1.5 

n = 24 Min 8.9 1.8 0.7 15.3 0.0 0.18 0.15 0.48 20.3 19.5 28.0 0.5 

 
Max 57.2 17.5 7.1 32.9 55.0 1.48 0.89 0.87 447.5 100.0 100.0 2.9 

 
SD 12.9 4.8 1.7 8.8 17.0 0.36 0.23 0.11 125.5 26.8 23.6 0.6 

10 Mean 10.8 9.1 5.5 14.4 60.5 0.85 - 0.68 34.9 28.8 43.5 2.9 

n = 147 Min 0.0 0.0 0.0 4.2 22.0 0.44 - 0.47 19.6 14.3 18.0 1.8 

 
Max 26.1 24.5 14.2 32.5 86.0 1.42 - 0.83 87.6 61.6 100.0 4.7 

 
SD 7.9 6.6 4.0 6.3 16.4 0.19 - 0.07 12.4 9.6 16.7 0.7 

11 Mean 9.4 5.5 4.9 21.2 61.9 0.85 - 0.74 51.1 33.4 45.5 2.1 

n = 159 Min 0.0 0.0 0.0 10.5 14.0 0.27 - 0.61 32.3 24.9 31.0 0.4 

 
Max 37.5 17.7 18.4 36.7 100.0 1.33 - 0.84 101.7 51.9 100.0 4.6 

 
SD 11.7 6.7 6.0 6.2 22.9 0.26 - 0.05 13.5 7.1 11.3 1.0 

1Blocks 10 and 11 measured max CI per plot. 
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